导航:首页 > 网络连接 > 电脑五层网络结构

电脑五层网络结构

发布时间:2025-01-23 17:12:24

‘壹’ 计算机网络中五层协议它们分别的主要功能是什么它们具体分别是在哪里(从硬件层面上谈)实现的

1,物理层;其主要功能是:主要负责在物理线路上传输原始的二进制数据。

2、数据链路层;其主要功能是:主要负责在通信的实体间建立数据链路连接。

3、网络层;其主要功能是:要负责创建逻辑链路,以及实现数据包的分片和重组,实现拥塞控制、网络互连等功能。

4、传输层;其主要功能是:负责向用户提供端到端的通信服务,实现流量控制以及差错控制。

5、应用层;其主要功能是:为应用程序提供了网络服务。

物理层和数据链路层是由计算机硬件(如网卡)实现的,网络层和传输层由操作系统软件实现,而应用层由应用程序或用户创建实现。

(1)电脑五层网络结构扩展阅读:

应用层是体系结构中的最高层。应用层确定进程之间通信的性质以满足用户的需要。这里的进程就是指正在运行的程序。

应用层不仅要提供应用进程所需要的信息交换
和远地操作,而且还要作为互相作用的应用进程的用户代理,来完成一些为进行语义上有意义的信息交换所必须的功能。应用层直接为用户的应用进程提供服务。

传输层的任务就是负责主机中两个进程之间的通信。因特网的传输层可使用两种不同协议:即面向连接的传输控制协议TCP,和无连接的用户数据报协议UDP。

面向连接的服务能够提供可靠的交付,但无连接服务则不保证提供可靠的交付,它只是“尽最大努力交付”。这两种服务方式都很有用,备有其优缺点。在分组交换网内的各个交换结点机都没有传输层。

网络层负责为分组交换网上的不同主机提供通信。在发送数据时,网络层将运输层产生的报文段或用户数据报封装成分组或包进行传送。

在TCP/IP体系中,分组也叫作IP数据报,或简称为数据报。网络层的另一个任务就是要选择合适的路由,使源主
机运输层所传下来的分组能够交付到目的主机。

‘贰’ 简述计算机网络的组成,以及各个组成部分的作用

计算机网络由七层组成:

1、物理层:传递信息需要利用一些物理传输媒体,如双绞线、同轴电缆、光纤等。物理层的任务就是为上层提供一个物理的连接,以及该物理连接表现出来的机械、电气、功能和过程特性,实现透明的比特流传输。

2、数据链路层:数据链路层负责在2个相邻的结点之间的链路上实现无差错的数据帧传输。在接收方接收到数据出错时要通知发送方重发,直到这一帧无差错地到达接收结点,数据链路层就是把一条有可能出错的实际链路变成让网络层看起来像不会出错的数据链路。

3、网络层:网络中通信的2个计算机之间可能要经过许多结点和链路,还可能经过几个通信子网。网络层数据传输的单位是分组。网络层的主要任务是为要传输的分组选择一条合适的路径,使发送分组能够正确无误地按照给定的目的地址找到目的主机,交付给目的主机的传输层。

4、传输层:传输层的主要任务是通过通信子网的特性,最佳地利用网络资源,并以可靠与经济的方式为2个端系统的会话层之间建立一条连接通道,以透明地传输报文。传输层向上一层提供一个可靠的端到端的服务,使会话层不知道传输层以下的数据通信的细节。

5、会话层:在会话层以及以上各层中,数据的传输都以报文为单位,会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立以及维护应用之间的通信机制。如服务器验证用户登录便是由会话层完成的。

6、表示层:这一层主要解决用户信息的语法表示问题。它将要交换的数据从适合某一用户的抽象语法,转换为适合OSI内部表示使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩、加密和解密等工作都由表示层负责。

7、应用层:这是OSI参考模型的最高层。应用层确定进程之间通信的性质以满足用户的需求,以及提供网络与用户软件之间的接口服务。

(2)电脑五层网络结构扩展阅读:

传输层作为整个计算机网络的核心,是惟一负责总体数据传输和控制的一层。因为网络层不一定保证服务的可靠,而用户也不能直接对通信子网加以控制,因此在网络层之上,加一层即传输层以改善传输质量。

传输层利用网络层提供的服务,并通过传输层地址提供给高层用户传输数据的通信端口,使系统间高层资源的共享不必考虑数据通信方面和不可靠的数据传输方面的问题。

‘叁’ 网络协议分别是哪七层协议

根据建议X.200,OSI将计算机网络体系结构划分为以下七层,标有1~7,第1层在底部。 现“OSI/RM”是英文“Open Systems Interconnection Reference Model”的缩写。

其中高层(即7、6、5、4层)定义了应用程序的功能,下面3层(即3、2、1层)主要面向通过网络的端到端的数据流。

‘肆’ 电脑之间连接所用的网线是怎么样传输信息的

一般情况下,网络从上至下分为五层:应用层、传输层、网络层、数据链路层、物理层。每一层都有各自需要遵守的规则,称之为“协议”。TCP/IP协议就是一组最常用的网络协议。
网线在网络中属于物理层,计算机中所需要传输的数据根据这些协议被分解成一个一个数据包(其中包括本地机和目的机的地址)后,按照闹搭一定的原则最后通过网线传输给目的机。通俗讲,和我们去寄信的道理一样,先写好信的内容(计算机上的数据)、装信封然后在封面上写地址(打包成数据包,里面包含液隐拿本地机和目的机的地址)、寄出(传输),那么网线就相当于你的地址和你要寄到的地址之间的路。和电线传输电的原理一样,只不过网线上传输的就是脉冲电信号携皮,而且遵守一定的规则。

‘伍’ 一层层了解网络通信协议

互联网的实现,分为好几层,每一层都有自己特有的功能,而且每一层都靠下一层支持。用户接触到的,只是最上面的一层,我们称为应用层,要理解互联网,必须从最下层开始,自下而上的理解每一层的功能。

我们常见的网络模型,有以下三种:

它们之间的关系如下图所示

其中, 理论五层模型 是综合 OSI七层 和 TCP/IP四层 的优点,采用的一种原理体系结构。 我们接下来的探讨也是基于 理论五层模型 来展开的。

理论五层模型 的结构如下图

各层的作用如下:

简单说,越下面的层,越靠近硬件;越上面的层,越靠近用户。

每一层都是为了完成某一种功能。为了实现这些功能,需要遵守一些共同的规则,这些规则就是 协议(protocol) 。

互联网的每一层,都定义了很多协议。这些协议的总称,叫做 互联网协议(Internet Protocol Suite) ,它们是互联网的核心。

下面的内容中,我们通过每一层的功能的介绍,对每一层中的主要协议所起作用进行讲解。

电脑要进行联网,需要把电脑通过各种设备连接进网络,设备有光缆、电缆、双绞线、无限电波等方式。

物理层是用于传输信号的介质,它传输的是 0和1 的电信号。但是关于电信号如何分组,每个信号位有何意义并没有规定。

这就是 数据链路层 的功能,它在 物理层 的上方,确定了0和1的分组方式,用于两个设备(同一种数据链路结点)之间进行信息传递。

早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做 以太网(Ethernet) 的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做 帧(frame) ,每一帧分为两个部分: 标头(Head) 和 数据(Data) 。

MTU是链路层对物理层的限制。

由于链路层存在MTU的限制,导致网络层的报文如果超过1500字节,就必要要对其进行分片发送。

上面我们提到,以太网数据包的 标头 ,包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?

以太网规定,连入网络的所有设备,都必须具有 网卡 接口。数据包必须是从一块网卡,传送到另一块网卡。 网卡的地址,就是数据包的发送地址和接收地址,这叫做 MAC地址 。

每块网卡出厂的时候,都有一个全世界 独一无二的MAC地址 ,长度是 48个二进制位 ,通常用 12个十六进制数 表示。

前6个十六进制数是厂商编号,后6个十六进制数是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

定义地址只是第一步,后面还有更多的步骤:

上图中,5号计算机向3号计算机 发送一个数据包 ,同一个子网络的1号、2号、3号、4号、6号计算机 都会收到 这个包。它们读取这个包的 标头 ,找到 接收方的MAC地址 ,然后 与自身的 MAC地址相 比较 ,如果两者 相同 ,就 接收这个包 ,做进一步处理, 否则就丢弃 这个包。这种发送方式就叫做 广播 (broadcasting)。

有了数据包的定义、网卡的MAC地址、广播的发送方式,"链接层"就可以在多台计算机之间传送数据了。

以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,成都的网卡就可以找到休斯顿的网卡了,技术上是可以实现的。

但是,这样做有一个重大的缺点。 以太网 采用 广播 方式 发送数据包 ,所有成员人手一包,不仅 效率低 ,而且 局限在发送者所在的子网络 。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

互联网是无数子网络共同组成的一个巨型网络,很像想象成都和休斯顿的电脑会在同一个子网络,这几乎是不可能的。

因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是 同一个子网络 ,就采用 广播 方式发送, 否则 就采用 路由 方式发送。( 路由 的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。

这就导致了 网络层 的诞生。 它的作用是 引进一套新的地址 ,使得我们能够 区分 不同的计算机是否属于同一个 子网络 。这套地址就叫做 网络地址 ,简称 网址 。

于是, 网络层 出现以后,每台计算机有了 两种地址 ,一种是 MAC地址 ,另一种是 网络地址 。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。

网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

规定网络地址的协议,叫做 IP协议 。它所定义的地址,就被称为 IP地址 。目前,广泛采用的是IP协议的第四版和第六版,分别称为IPv4和IPv6。

互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成 两个部分 , 前一部分代表网络,后一部分代表主机 。比如,IP地址14.215.177.39,这是一个32位的地址,假定它的网络部分是前24位(14.215.177),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说14.215.177.2应该与14.215.177.1处在同一个子网络。
但是,问题在于单单从IP地址,我们无法判断网络部分。还是以14.215.177.39为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。
那么,怎样才能从IP地址, 判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数 子网掩码 (subnet mask)

子网掩码

我们知道,IPv4的地址只有32位,地球上网民数量已经远远超出这个数字,那么,为啥至今还没出现地址枯竭呢?

因为我们还有一些技术,可以变相的缓解地址不足,比如NAT技术。

NAT(Network Address Translation,网络地址转换)

IPv6拥有128位巨大的地址空间,对于那么大的空间,也不是随意的划分,而是使用按照bit位进行号段划分。

IPv6地址结构如下图

例如 RFC4291 中定义了n=48, m=16,也就是子网和接口ID与各占64位。

IPv6没有子网掩码mask的概念,它支持的是 子网前缀标识方法 。

使用 IPv6地址/前缀长度 表示方法,例如:

可以看到,一个IPv6的地址有子网前缀+接口ID构成,子网前缀由地址分配和管理机构定义和分配,而接口ID可以由各操作系统实现生成。

IPv6是用来解决IPv4 地址枯竭 问题的,IPv4地址为32位,而IPv6地址为 128位
除了地址数量以外,IPv6还有很多 优点 ,例如:

如上所述,IP协议的作用主要有两个:

根据IP协议发送的数据,就叫做 IP数据包 。我们直接把IP数据包直接放进以太网数据包的"数据"部分,不用修改以太网的规格。这就是互联网分层结构的好处: 上层的变动完全不涉及下层的结构

具体来说,IP数据包也分为 标头 和 数据 两个部分:
其中, 标头 范围为 20-60字节 ( IPv6固定为40字节 ), 整个 数据包的总长度 最大为65535字节 。因此, 理论上 ,一个IP数据包的 数据部分 , 最长为65515字节 。

如图所示,标头中 20字节是固定不变的 ,它包含了版本、长度、IP地址等信息,另外还有可变部分的标头可选。而数据则是IP数据包的具体内容。

将它放入以太网数据包后,以太网数据包就变成了下面这样:

在以太网协议中,以太网数据包的数据部分,最长只有1500字节。因此, 如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了

关于网络层,还有最后一点需要说明。因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道 两个地址 ,一个是对方的 MAC地址 ,另一个是对方的 IP地址 。通常情况下,对方的IP地址是已知的,但是我们 不知道它的MAC地址 。

所以,我们需要一种机制,能够从IP地址得到MAC地址。

这里又可以分成两种情况:

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

ARP攻击是利用ARP协议设计时缺乏安全验证漏洞来实现的,通过伪造ARP数据包来窃取合法用户的通信数据,造成影响网络传输速率和盗取用户隐私信息等严重危害。

ARP攻击主要是存在于局域网网络中,局域网中若有一台计算机感染ARP木马,则感染该ARP木马的系统将会试图通过“ARP欺骗”手段截获所在网络内其它计算机的通信信息,并因此造成网内其它计算机的通信故障。

局域网中比较常见的ARP攻击包括:上网时断时续,拷贝文件无法完成,局域网内的ARP包激增。出现不正常的MAC地址,MAC地址对应多个IP地址,网络数据发不出去了,网上发送信息被窃取,个人PC中毒局域网内MAC地址泛洪使MAC地址缓存表溢出等问题。据包的协议地址不匹配,从而在网络中产生大量的ARP。
在局域网环境中,ARP攻击是主要的安全威胁,在传统网络中主要是通过静态绑定的方式来解决,但是这种方式限制了网络扩展的易用性。

有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。

接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

也就是说,我们还需要一个参数,表示这个数据包到底供哪个 程序(进程) 使用。这个参数就叫做 端口 (port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

端口是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。 不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

传输层 的功能,就是建立 端口到端口 的通信 。相比之下, 网络层 的功能是建立 主机到主机 的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把 主机+端口,叫做 套接字 (socket)。有了它,就可以进行网络应用程序开发了。

现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

UDP数据包,也是由标头和数据两部分组成:

UDP数据包非常简单,标头部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

因此, TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

TCP数据包和UDP数据包一样,都是内嵌在IP数据包的数据部分。 TCP数据包没有长度限制,理论上可以无限长 ,但是为了保证网络的效率, 通常 TCP数据包的长度 不会超过IP数据包的长度 ,以确保单个TCP数据包不必再分割。

应用程序收到传输层的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。 应用层的作用,就是规定应用程序的数据格式。

举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了应用层。这是最高的一层,直接面对用户。它的数据就放在TCP数据包的数据部分。

因此,现在的以太网的数据包就变成下面这样:

‘陆’ 计算机网络包括哪些层

对于计算机或计算机网络来说,他包含了很多种硬件设备,如计算机本身、网卡、交换机、路由器等。但硬件本身并不能工作,就像一台新买回来的电脑没有安装操作系统(如:Windows XP),它除了会浪费电以外,什么也干不了。所以能让这些硬件设备所工作的是设备所安装的软件系统,及“协议”。而这些软件协议又很多,又很复杂,人们为了把这些复杂的协议让人更容易操作、理解、学习。就把这些协议按照不同的功能分为七类,及七层,每一层的协议按照自己特定的功能去工作。去实现对数据的传输。

首先我们要了解OSI七层模型各层的功能。

第七层:应用层 数据 用户接口,提供用户程序“接口”。
第六层:表示层 数据 数据的表现形式,特定功能的实现,如数据加密。
第五层:会话层 数据 允许不同机器上的用户之间建立会话关系,如WINDOWS
第四层:传输层 段 实现网络不同主机上用户进程之间的数据通信,可靠
与不可靠的传输,传输层的错误检测,流量控制等。
第三层:网络层 包 提供逻辑地址(IP)、选路,数据从源端到目的端的
传输
第二层:数据链路层 帧 将上层数据封装成帧,用MAC地址访问媒介,错误检测
与修正。
第一层:物理层 比特流 设备之间比特流的传输,物理接口,电气特性等。

下面是对OSI七层模型各层功能的详细解释:

OSI七层模型 OSI 七层模型称为开放式系统互联参考模型 OSI 七层模型是一种框架性的设计方法
OSI 七层模型通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯,因此其最主
要的功能使就是帮助不同类型的主机实现数据传输
物理层 : O S I 模型的最低层或第一层,该层包括物理连网媒介,如电缆连线连接器。物理层的协议产生并检测电压以便发送和接收携带数据的信号。在你的桌面P C 上插入网络接口卡,你就建立了计算机连网的基础。换言之,你提供了一个物理层。尽管物理层不提供纠错服务,但它能够设定数据传输速率并监测数据出错率。网络物理问题,如电线断开,将影响物理层。
数据链路层: O S I 模型的第二层,它控制网络层与物理层之间的通信。它的主要功能是如何在不可靠的物理线路上进行数据的可靠传递。为了保证传输,从网络层接收到的数据被分割成特定的可被物理层传输的帧。帧是用来移动数据的结构包,它不仅包括原始数据,还包括发档丛送方和接收方的网络地址以及纠错和控制信息。其中的地址确定了帧将发送到何处,而纠错和控制信息则确保帧无差错到达。
数据链路层的功能独立于网络和它的节点和所采用的物理层类型,它也不关心是否正在运行 Wo r d 、E x c e l 或使用I n t e r n e t 。有一些连接设备,如交换机,由于它们要对帧解码并使用帧信息将数据发送到正确的接收方,所以它们是工作在数据链路层的。
网络层: O S I 模型的第三层,其主要功能是将网络地址翻译成对应的物理地址,并决定如何将数据从发送方路由到接收方。
网络层通过综合考虑发送优先权、网络拥塞程度、服务质量以及可选路由的花费来决定从一个网络中节点A 到另一个网络中节点B 的最佳路径。由于网络层处理路由,而路由器因为即连接网络各段,并智能指导数据传送,属于网络层。在网络中,“路由”是基于编址方案、使用模式以及可达性来指引数据的发送。
传输层: O S I 模型中最重要的一层。传输协议同时进行流量控制或是基于接收方可接收数据的快慢程度规定适当的发送速率。除此之外,传输层按照网络能处理的最大尺寸将较长的数据包进行强制分割。例如,以太网无法接收大于1 5 0 0 字节的数据包。发送方节点的传输层将数据分割成较小的数据片,同时对每一数据片安排一序列号,以便数据到达接收方节点的传输层时,能以正确的顺序重组。该过程即被称为排序。
工作在传输层的一种服务是 T C P / I P 协议套中的T C P (传输控制协议),另一项传输层服务是I P X / S P X 协议集的S P X (序列包交换)。
会话层: 负责在网络中的两乱蠢陪节点之间建立和维持通信。 会话层的功能包括:建立通信链接,保持会话过程通信链接的畅通,同步两个节点之间的对 话,决定通信是否被中断以及通信中断时决定从何处重新发送。
你可能常常听哗蠢到有人把会话层称作网络通信的“交通警察”。当通过拨号向你的 I S P (因特网服务提供商)请求连接到因特网时,I S P 服务器上的会话层向你与你的P C 客户机上的会话层进行协商连接。若你的电话线偶然从墙上插孔脱落时,你终端机上的会话层将检测到连接中断并重新发起连接。会话层通过决定节点通信的优先级和通信时间的长短来设置通信期限
表示层: 应用程序和网络之间的翻译官,在表示层,数据将按照网络能理解的方案进行格式化;这种格式化也因所使用网络的类型不同而不同。
表示层管理数据的解密与加密,如系统口令的处理。例如:在 Internet上查询你银行账户,使用的即是一种安全连接。你的账户数据在发送前被加密,在网络的另一端,表示层将对接收到的数据解密。除此之外,表示层协议还对图片和文件格式信息进行解码和编码。
应用层: 负责对软件提供接口以使程序能使用网络服务。术语“应用层”并不是指运行在网络上的某个特别应用程序 ,应用层提供的服务包括文件传输、文件管理以及电子邮件的信息处理。

‘柒’ 有一家公司一共有五层楼,每层楼有五台电脑,现要求组建成局域网,如何画出组建拓扑结构图

采用分层结构,分两层,所有路由都为8口路由。

第一层路由地址192.168.1.1,其他子网掩码等,第一层路由的wan接口接外网;

第二层有5个路由,地址依次是192.168.2.1、192.168.3.1、192.168.4.1、192.168.5.1、192.168.6.1,第二层路由的地址进入路由(默认为192.168.1.1)修改路由的管理地址,依次修改就OK了。

第三层为计算机,所有的地址均为自动获取,至于网段自己到路由的DHCP分配池修改。

阅读全文

与电脑五层网络结构相关的资料

热点内容
公司网络插入360随身wifi 浏览:857
连接到网络后如何查看网络密码 浏览:561
平板修改不了网络设置 浏览:554
手机无线网络为什么总是连不上 浏览:281
只有电脑没有网络如何投屏 浏览:974
华为网络专家要多少钱 浏览:101
苹果手机照相网络在哪呢 浏览:891
怎么查看wifi的网络速率 浏览:185
电信网络充值在哪里 浏览:96
今天手机网络怎么用不了了 浏览:732
无盘网络系统哪个品牌好 浏览:310
新年到了没有网络了怎么办 浏览:312
设置两个手机网络共享 浏览:478
网络信号25正常99代表什么 浏览:306
华为手机网络太卡了咋办 浏览:650
红米手机检测网络差怎么办 浏览:280
广电网络产品怎么样 浏览:363
信号满网络特别慢 浏览:150
内网网络安全隐患 浏览:747
小米11如何通过蓝牙共享网络 浏览:980

友情链接