‘壹’ 计算机网络由哪三大部分组成
计算机网络由以下三个主要部分组成:
硬件:计算机网络中的硬件包括计算机、服务器、路由器、交换机、网卡、集线器等设备,用于实现数据在网络中的传输和交链清含换。棚笑
软件:计算机网络中的软件包括各种协议、应用程序、操作系统等,用于控制数据在网络中的传输、处理和存储。
协议:计算机网络中的协议是实现数据在网络中传输和交换的一系列规则和标准,包括物理层、数据链路层、网络层、传输层、应用层等不同的协议,用于控制数据在网络中的传输格式、传输方式、传输控制和数据处理等方面。
这三个部分共同构成了计算机网络的基本框架,使得计算机和其他设备可以互相连接和通信,并实现数据在网络中的传输和交换。其中,硬件提供了数据传输和交换的正吵物理基础,软件则控制了数据在网络中的传输和处理,协议则规定了数据在网络中传输的方式、格式和控制方式。
-------FunNet超有趣学网络
‘贰’ 计算机网路-物理层
物理层特性: 与传输媒体有关的一些特性
机械特性
电气特性
功能特性
过程特性
一个数据通信系统可划分为三大部分,即源系统(发送端、发送方)、传输系统(传输网络)和目的系统(接收端、接收方)
根据信号中代表消息的参数的取值方式不同,信号课分为模拟信号(连续信号)和数字信号(离散信号)。代表数字信号不同离散数值的基本波形称为码元。
没有经过调制的信号叫做基带信号
调制可分为两大类。一类是仅仅对基带信号的波形进行变换,变换后的信号仍然是基带信号,这类调制称为基带调制,或者称为 编码
另一类调制需要使用载波进行调制,把基带信号的频率范围搬迁到较高的频段,并转换为模拟信号。经过载波调制后的信号称为带通信号,而使用载波的调制称为带通调制。
载波:载波或者载频(载波频率)是一个物理概念,是一个特定频率的无线电波,单位 Hz ,是一种在频率、调幅或相位方面被调制以传输语言、音乐、图象或其它信号的电磁波。
信道的极限容量
具体的信道所能通过的频率范围总是有限的。奈氏准则:在任何信道中,码元传输的速率是有上限的,传输速率超过此上限,就会出现严重的码间串扰问题,使接收端对码元的判决成为不可能。
理想低通信道的最高码元传输速率 = 2W Baud
这里W是理想低通信道①的带宽,单位为赫(Hz);
Baud是波特,是码元传输速率的单位,1波特为每秒传送1个码元.
上式就是着名的奈氏准则.奈氏准则的另一种表达方法是:每赫带宽的理想低通信道的最高码元传输速率是每秒2个码元.
码间串扰
信噪比
信号的平均功率和噪声的平均功率之比,记为 S/N,用分贝(dB)作为度量单位
信噪比(dB)=10log 10 (S/N)(dB)
极限传输速率
C = W log 2 (1+S/N)(bit/s)
物理层使用的传输媒体
屏蔽双绞线(STP):抗电磁干扰能力强,价格贵
非屏蔽双绞线(UTP):廉价,以太网一般都用的这种
同轴电缆
光纤
信道复用
频分复用(FDM)
时分复用(TDM)
统计时分复用(STDM)
码分复用、码分多址(CDM、CDMA)
在CDMA中,每一个比特时间划分为 m 个短的时间间隔,称为 码片 。使用 CDMA 的每一个站都被指派一个唯一的 m bit 码片序列。一个站如果发送比特 1 ,则发送自己的 m bit码片序列,如果发送比特 0,则发送反码。例如,指派给 S 站的 8 bit 码片序列时 00011011。当发送比特 1 时,它就发送 00011011,发送比特 0 时,就发送 11100100。为了方便,按惯例把码片中 0 写为 -1,将 1 写为+1,所以 S 站的码片序列为(-1 -1 -1 +1 +1 -1 +1 +1)
两个不同站的码片序列正交,向量 S 和 T 的规格化内积为 0。
任何一个码片向量和该码片向量自己的规格化内积都是1
当接收站打算接收 S 站发送的信号时,就用 S 站的码片序列与收到的信号求规格化内积。这相当于分别计算 S·Sx 和 S·Tx。显然,S·Sx 就是 S 站发送的数据比特,因为在计算规格化内积时,按上面公式计算相加的各项,都是+1 或者 -1;而 S·Tx一定是零,因为相加的 8 项中的+1和-1各占一半,因此总和一定为零。
波分复用(WDM):光纤专用
物理层使用的协议:RJ45,clock,IEEE802.3(中继器、集线器、网关)
‘叁’ 我们常见的计算机网络设备工作在OSI参考模型的哪一层
我们常见的计算机网络设备工作在OSI参考模型的第三层。
OSI参考模型的数据传输过程分为三层:
1、第一层物理层:包括物理连网媒介 如双绞线、同轴电缆、电缆连线连接器等,计算机连网的基础,在这一层,数据还没有被组织。
(1)、中继器:它的作用是放大信号,补偿信号衰减,支持远距离的通信。
(2)、集线器:提供信号放大和中转的功能,有信号广播。中继器与集线器的区别在于连接设备的线缆的数量。一个中继器通常只有两个端口,而一个集线器通常有4至20个或更多的端口。
2、第二层数据链路层:它控制网络层与物理层之间的通信。
(1)、交换机:物理编址、网络拓扑结构、错误校验、帧序列以及流控。
(2)、网卡:有帧的发送与接收、帧的封装与拆封、介质访问控制、数据的编码与解码以及数据缓存的功能
3、第三层网络层其主要功能是将网络地址翻译成对应的物理地址。
(1)、路由器(网关):连通不同的网络、选择信息传送的线路。
(2)、三层交换机有路由功能,一次路由,多次转发。
(3)计算机网络三物理层面扩展阅读:
1、划分原则
ISO为了更好的使网络应用更为普及,就推出了OSI参考模型,其含义就是推荐所有公司使用这个规范来控制网络,这样所有公司都有相同的规范,就能互联了,提供各种网络服务功能的计算机网络系统是非常复杂的。
根据分而治之的原则,ISO将整个通信功能划分为七个层次,划分原则是:
(1)、网路中各节点都有相同的层次。
(2)、不同节点的同等层具有相同的功能。
(3)、同一节点内相邻层之间通过接口通信。
(4)、每一层使用下层提供的服务,并向其上层提供服务。
(5)、不同节点的同等层按照协议实现对等层之间的通信。
(6)、根据功能需要进行分层,每层应当实现定义明确的功能。
(7)、向应用程序提供服务。
2、模型用途:
(1)、OSI模型用途相当广泛,比如交换机、集线器、路由器等很多网络设备的设计都是参照OSI模型设计的。
(2)、网络设计者在解决网络体系结构时经常使用ISO/OSI(国际标准化组织/开放系统互连)七层模型,该模型每一层代表一定层次的网络功能,最下面是物理层,它代表着进行数据传输的物理介质,换句话说,即网络电缆,其上是数据链路层,它通过网络接口卡提供服务。
参考资料来源:
网络-OSI参考模型
‘肆’ 计算机网络有那几个层次~
1、应用层
与其它计算机进行通讯的一个应用,它是对应应用程序的通信服务的。例如,一个没有通信功能的字处理程序就不能执行通信的代码,从事字处理工作的程序员也不关心OSI的第7层。但是,如果添加了一个传输文件的选项,那么字处理器的程序就需要实现OSI的第7层。示例:TELNET,HTTP,FTP,NFS,SMTP等。
2、表示层
这一层的主要功能是定义数据格式及加密。例如,FTP允许你选择以二进制或ASCII格式传输。如果选择二进制,那么发送方和接收方不改变文件的内容。如果选择ASCII格式,发送方将把文本从发送方的字符集转换成标准的ASCII后发送数据。在接收方将标准的ASCII转换成接收方计算机的字符集。示例:加密,ASCII等。
3、会话层
它定义了如何开始、控制和结束一个会话,包括对多个双向消息的控制和管理,以便在只完成连续消息的一部分时可以通知应用,从而使表示层看到的数据是连续的,在某些情况下,如果表示层收到了所有的数据,则用数据代表表示层。示例:RPC,SQL等。
4、传输层
这层的功能包括是否选择差错恢复协议还是无差错恢复协议,及在同一主机上对不同应用的数据流的输入进行复用,还包括对收到的顺序不对的数据包的重新排序功能。示例:TCP,UDP,SPX。
5、网络层
这层对端到端的包传输进行定义,它定义了能够标识所有结点的逻辑槐搭地址,还定义了路由实现的方式和学习的方式。为了适应最大传输单元长度小于包长毁历度的传输介质,网络层还定义了如何将一个包分解成更小的包的分段方法。示例:IP,IPX等。
6、数据链路层
它定义了在单个链路上如何传输数据。这些协议与被讨论的各种介质有关铅余拿。示例:ATM,FDDI等。
7、物理层
OSI的物理层规范是有关传输介质的特性,这些规范通常也参考了其他组织制定的标准。连接头、帧、帧的使用、电流、编码及光调制等都属于各种物理层规范中的内容。物理层常用多个规范完成对所有细节的定义。示例:Rj45,802.3等。