❶ 计算机网络第三章(数据链路层)
3.1、数据链路层概述
概述
链路 是从一个结点到相邻结点的一段物理线路, 数据链路 则是在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现)
网络中的主机、路由器等都必须实现数据链路层
局域网中的主机、交换机等都必须实现数据链路层
从层次上来看数据的流动
仅从数据链路层观察帧的流动
主机H1 到主机H2 所经过的网络可以是多种不同类型的
注意:不同的链路层可能采用不同的数据链路层协议
数据链路层使用的信道
数据链路层属于计算机网路的低层。 数据链路层使用的信道主要有以下两种类型:
点对点信道
广播信道
局域网属于数据链路层
局域网虽然是个网络。但我们并不把局域网放在网络层中讨论。这是因为在网络层要讨论的是多个网络互连的问题,是讨论分组怎么从一个网络,通过路由器,转发到另一个网络。
而在同一个局域网中,分组怎么从一台主机传送到另一台主机,但并不经过路由器转发。从整个互联网来看, 局域网仍属于数据链路层 的范围
三个重要问题
数据链路层传送的协议数据单元是 帧
封装成帧
封装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。
首部和尾部的一个重要作用就是进行 帧定界 。
差错控制
在传输过程中可能会产生 比特差错 :1 可能会变成 0, 而 0 也可能变成 1。
可靠传输
接收方主机收到有误码的帧后,是不会接受该帧的,会将它丢弃
如果数据链路层向其上层提供的是不可靠服务,那么丢弃就丢弃了,不会再有更多措施
如果数据链路层向其上层提供的是可靠服务,那就还需要其他措施,来确保接收方主机还可以重新收到被丢弃的这个帧的正确副本
以上三个问题都是使用 点对点信道的数据链路层 来举例的
如果使用广播信道的数据链路层除了包含上面三个问题外,还有一些问题要解决
如图所示,主机A,B,C,D,E通过一根总线进行互连,主机A要给主机C发送数据,代表帧的信号会通过总线传输到总线上的其他各主机,那么主机B,D,E如何知道所收到的帧不是发送给她们的,主机C如何知道发送的帧是发送给自己的
可以用编址(地址)的来解决
将帧的目的地址添加在帧中一起传输
还有数据碰撞问题
随着技术的发展,交换技术的成熟,
在 有线(局域网)领域 使用 点对点链路 和 链路层交换机 的 交换式局域网 取代了 共享式局域网
在无线局域网中仍然使用的是共享信道技术
3.2、封装成帧
介绍
封装成帧是指数据链路层给上层交付的协议数据单元添加帧头和帧尾使之成为帧
帧头和帧尾中包含有重要的控制信息
发送方的数据链路层将上层交付下来的协议数据单元封装成帧后,还要通过物理层,将构成帧的各比特,转换成电信号交给传输媒体,那么接收方的数据链路层如何从物理层交付的比特流中提取出一个个的帧?
答:需要帧头和帧尾来做 帧定界
但比不是每一种数据链路层协议的帧都包含有帧定界标志,例如下面例子
前导码
前同步码:作用是使接收方的时钟同步
帧开始定界符:表明其后面紧跟着的就是MAC帧
另外以太网还规定了帧间间隔为96比特时间,因此,MAC帧不需要帧结束定界符
透明传输
透明
指某一个实际存在的事物看起来却好像不存在一样。
透明传输是指 数据链路层对上层交付的传输数据没有任何限制 ,好像数据链路层不存在一样
帧界定标志也就是个特定数据值,如果在上层交付的协议数据单元中, 恰好也包含这个特定数值,接收方就不能正确接收
所以数据链路层应该对上层交付的数据有限制,其内容不能包含帧定界符的值
解决透明传输问题
解决方法 :面向字节的物理链路使用 字节填充 (byte stuffing) 或 字符填充 (character stuffing),面向比特的物理链路使用比特填充的方法实现透明传输
发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面 插入一个转义字符“ESC” (其十六进制编码是1B)。
接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。
如果转义字符也出现在数据当中,那么应在转义字符前面插入一个转义字符 ESC。当接收端收到连续的两个转义字符时,就删除其中前面的一个。
帧的数据部分长度
总结
3.3、差错检测
介绍
奇偶校验
循环冗余校验CRC(Cyclic Rendancy Check)
例题
总结
循环冗余校验 CRC 是一种检错方法,而帧校验序列 FCS 是添加在数据后面的冗余码
3.4、可靠传输
基本概念
下面是比特差错
其他传输差错
分组丢失
路由器输入队列快满了,主动丢弃收到的分组
分组失序
数据并未按照发送顺序依次到达接收端
分组重复
由于某些原因,有些分组在网络中滞留了,没有及时到达接收端,这可能会造成发送端对该分组的重发,重发的分组到达接收端,但一段时间后,滞留在网络的分组也到达了接收端,这就造成 分组重复 的传输差错
三种可靠协议
停止-等待协议SW
回退N帧协议GBN
选择重传协议SR
这三种可靠传输实现机制的基本原理并不仅限于数据链路层,可以应用到计算机网络体系结构的各层协议中
停止-等待协议
停止-等待协议可能遇到的四个问题
确认与否认
超时重传
确认丢失
既然数据分组需要编号,确认分组是否需要编号?
要。如下图所示
确认迟到
注意,图中最下面那个数据分组与之前序号为0的那个数据分组不是同一个数据分组
注意事项
停止-等待协议的信道利用率
假设收发双方之间是一条直通的信道
TD :是发送方发送数据分组所耗费的发送时延
RTT :是收发双方之间的往返时间
TA :是接收方发送确认分组所耗费的发送时延
TA一般都远小于TD,可以忽略,当RTT远大于TD时,信道利用率会非常低
像停止-等待协议这样通过确认和重传机制实现的可靠传输协议,常称为自动请求重传协议ARQ( A utomatic R epeat re Q uest),意思是重传的请求是自动进行,因为不需要接收方显式地请求,发送方重传某个发送的分组
回退N帧协议GBN
为什么用回退N帧协议
在相同的时间内,使用停止-等待协议的发送方只能发送一个数据分组,而采用流水线传输的发送方,可以发送多个数据分组
回退N帧协议在流水线传输的基础上,利用发送窗口来限制发送方可连续发送数据分组的个数
无差错情况流程
发送方将序号落在发送窗口内的0~4号数据分组,依次连续发送出去
他们经过互联网传输正确到达接收方,就是没有乱序和误码,接收方按序接收它们,每接收一个,接收窗口就向前滑动一个位置,并给发送方发送针对所接收分组的确认分组,在通过互联网的传输正确到达了发送方
发送方每接收一个、发送窗口就向前滑动一个位置,这样就有新的序号落入发送窗口,发送方可以将收到确认的数据分组从缓存中删除了,而接收方可以择机将已接收的数据分组交付上层处理
累计确认
累计确认
优点:
即使确认分组丢失,发送方也可能不必重传
减小接收方的开销
减小对网络资源的占用
缺点:
不能向发送方及时反映出接收方已经正确接收的数据分组信息
有差错情况
例如
在传输数据分组时,5号数据分组出现误码,接收方通过数据分组中的检错码发现了错误
于是丢弃该分组,而后续到达的这剩下四个分组与接收窗口的序号不匹配
接收同样也不能接收它们,讲它们丢弃,并对之前按序接收的最后一个数据分组进行确认,发送ACK4, 每丢弃一个数据分组,就发送一个ACK4
当收到重复的ACK4时,就知道之前所发送的数据分组出现了差错,于是可以不等超时计时器超时就立刻开始重传,具体收到几个重复确认就立刻重传,根据具体实现决定
如果收到这4个重复的确认并不会触发发送立刻重传,一段时间后。超时计时器超时,也会将发送窗口内以发送过的这些数据分组全部重传
若WT超过取值范围,例如WT=8,会出现什么情况?
习题
总结
回退N帧协议在流水线传输的基础上利用发送窗口来限制发送方连续发送数据分组的数量,是一种连续ARQ协议
在协议的工作过程中发送窗口和接收窗口不断向前滑动,因此这类协议又称为滑动窗口协议
由于回退N帧协议的特性,当通信线路质量不好时,其信道利用率并不比停止-等待协议高
选择重传协议SR
具体流程请看视频
习题
总结
3.5、点对点协议PPP
点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的点对点数据链路层协议
PPP协议是因特网工程任务组IEIF在1992年制定的。经过1993年和1994年的修订,现在的PPP协议已成为因特网的正式标准[RFC1661,RFC1662]
数据链路层使用的一种协议,它的特点是:简单;只检测差错,而不是纠正差错;不使用序号,也不进行流量控制;可同时支持多种网络层协议
PPPoE 是为宽带上网的主机使用的链路层协议
帧格式
必须规定特殊的字符作为帧定界符
透明传输
必须保证数据传输的透明性
实现透明传输的方法
面向字节的异步链路:字节填充法(插入“转义字符”)
面向比特的同步链路:比特填充法(插入“比特0”)
差错检测
能够对接收端收到的帧进行检测,并立即丢弃有差错的帧。
工作状态
当用户拨号接入 ISP 时,路由器的调制解调器对拨号做出确认,并建立一条物理连接。
PC 机向路由器发送一系列的 LCP 分组(封装成多个 PPP 帧)。
这些分组及其响应选择一些 PPP 参数,并进行网络层配置,NCP 给新接入的 PC 机
分配一个临时的 IP 地址,使 PC 机成为因特网上的一个主机。
通信完毕时,NCP 释放网络层连接,收回原来分配出去的 IP 地址。接着,LCP 释放数据链路层连接。最后释放的是物理层的连接。
可见,PPP 协议已不是纯粹的数据链路层的协议,它还包含了物理层和网络层的内容。
3.6、媒体接入控制(介质访问控制)——广播信道
媒体接入控制(介质访问控制)使用一对多的广播通信方式
Medium Access Control 翻译成媒体接入控制,有些翻译成介质访问控制
局域网的数据链路层
局域网最主要的 特点 是:
网络为一个单位所拥有;
地理范围和站点数目均有限。
局域网具有如下 主要优点 :
具有广播功能,从一个站点可很方便地访问全网。局域网上的主机可共享连接在局域网上的各种硬件和软件资源。
便于系统的扩展和逐渐地演变,各设备的位置可灵活调整和改变。
提高了系统的可靠性、可用性和残存性。
数据链路层的两个子层
为了使数据链路层能更好地适应多种局域网标准,IEEE 802 委员会就将局域网的数据链路层拆成 两个子层 :
逻辑链路控制 LLC (Logical Link Control)子层;
媒体接入控制 MAC (Medium Access Control)子层。
与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关。 不管采用何种协议的局域网,对 LLC 子层来说都是透明的。
基本概念
为什么要媒体接入控制(介质访问控制)?
共享信道带来的问题
若多个设备在共享信道上同时发送数据,则会造成彼此干扰,导致发送失败。
随着技术的发展,交换技术的成熟和成本的降低,具有更高性能的使用点对点链路和链路层交换机的交换式局域网在有线领域已完全取代了共享式局域网,但由于无线信道的广播天性,无线局域网仍然使用的是共享媒体技术
静态划分信道
信道复用
频分复用FDM (Frequency Division Multiplexing)
将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。
频分复用 的所有用户在同样的时间 占用不同的带宽资源 (请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。
❷ 《计算机网络第5版》pdf下载在线阅读,求百度网盘云资源
《计算机网络》(谢希仁)电子书网盘下载免费在线阅读
链接:
书名:计算机网络
作者:谢希仁
豆瓣评分:7.9
出版社:电子工业出版社
出版年份:2008-1
页数:402
内容简介:
《计算机网络(第5版)》自1989年首次出版以来,于1994年、1999年和2003年分别出了修订版。2006年8月本教材通过了教育部的评审,被纳入普通高等教育“十一五”国家级规划教材。《计算机网络》的第5版,在内容和结构方面都有了很大的修改。
全书分为10章,比较全面系统地介绍了计算机网络的发展和原理体系结构、物理层、数据链路层、网络层、运输层、应用层、网络安全、因特网上的音频/视频服务、无线网络和下一代因特网等内容。各章均附有练习题。此外,附录A给出了部分习题的答案和提示。随书配套的光盘中,有全书课件和作者教学中经常遇到的150多个问题及解答,计算机网络最基本概念的演示(PowerPoint文件),以及《计算机网络(第5版)》引用的全部RFC文档等,供读者参阅。
❸ 《计算机网络(第7版)》epub下载在线阅读全文,求百度网盘云资源
《计算机网络(第7版)》(谢希仁)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1UqUnDvE8FLNUkdVIJW11kQ
书名:计算机网络(第7版)
作者:谢希仁
豆瓣评分:8.8
出版社:电子工业出版社
出版年份:2017-1
页数:464
内容简介:
本书自1989年首次出版以来,曾于1994年、1999年、2003年、2008年和2013年分别出了修订版。在2006年本书通过了教育部的评审,被纳入普通高等教育“十一五”国家级规划教材;2008年出版的第5版获得了教育部2009年精品教材称号。2013年出版的第6版是“十二五”普通高等教育本科国家级规划教材。
目前2017年发行的第7版又在第6版的基础上进行了一些修订。 全书分为9章,比较全面系统地介绍了计算机网络的发展和原理体系结构、物理层、数据链路层(包括局域网)、网络层、运输层、应用层、网络安全、互联网上的音频/视频服务,以及无线网络和移动网络等内容。各章均附有习题(附录A给出了部分习题的答案和提示)。
本书的特点是概念准确、论述严谨、内容新颖、图文并茂,突出基本原理和基本概念的阐述,同时力图反映计算机网络的一些最新发展。本书可供电气信息类和计算机类专业的大学本科生和研究生使用,对从事计算机网络工作的工程技术人员也有参考价值。
作者简介:
谢希仁,解放军理工大学指挥自动化学院,教授,博士生导师。主要学术成果有:1986年完成总参通信部局域网办公系统项目;1987年在《电子学报》发表“分组话音通信新进展”;为国内首次介绍分组数据通信;1991年完成国家自然科学基金项目“分组交换的话音数据通信系统”项目。1999年完成第一个军用卫星通信系统网管中心的研制任务及“金桥网网管技术”项目等。上述科研项目分别获得国家、军队和部级奖项。着有:《计算机网络》第1至第7版(“十一五国家级规划教材”),曾两次获得国家级优秀教材奖,成为高校最受读者欢迎的本国计算机网络教材。
❹ 求解CSMA/CD的一道题!计算机网络第五版(谢希仁) 第3章25题!!
t=0时,A,B开始传输数据; t=225比特时间,A和B同时检测到发生碰撞; t=225+48=273比特时间,完成了干扰信号的传输; 开始各自进行退避算法: A: 因为rA=0,则A在干扰信号传输完之后立即开始侦听 t=273+225(传播时延)=498比特时间,A检测到信道开始空闲 t=498+96(帧间最小间隔)=594比特时间,A开始重传数据 -----第一问A的重传时间 t=594+225 (传播时延)=819比特时间,A重传完毕 ----第二问A重传的数据帧到达B的时间 B: 因为rB=1,则B在干扰信号传输完之后1倍的争用期,即512比特时间才开始侦听 t=273+512=785比特时间,B开始侦听 若侦听空闲,则 t=785+96(帧间最小间隔)=881比特时间,B开始重传数据 若侦听费空闲,则继续退避算法 又因为t=819比特时间的时候,A才重传数据完毕,所以B在785比特时间侦听的时候,肯定会侦听信道非空闲,即B在预定的881比特时间之前侦听到信道忙, 所以,第四问的答案:B在预定的881比特时间是停止发送数据的。 即第三问A重传的数据不会和B重传的数据再次发生碰撞。
❺ 谢希仁计算机网络答案
答:a=τ/T0=τC/L=100÷(2×108)×1×109/L=500/L,信道最大利用率Smax =1/(1+4.44a),最大吞吐量Tmax=Smax×1Gbit/s帧长512字节时,a=500/(512×8)=0.122, Smax =0.6486,Tmax=648.6 Mbit/s帧长1500字节时,a=500/(1500×8)=0.0417,Smax =0.8438 ,Tmax=843.8 Mbit/s帧长64000字节时,a=500/(64000×8)=0.000977,Smax =0.9957,Tmax=995.7 Mbit/s可见,在端到端传播时延和数据发送率一定的情况下,帧长度越大,信道利用率越大,信道的最大吞吐量月越大。
❻ 运输层知识要点——谢希仁《计算机网络》
为了在计算机网络中有条不紊地交换数据,就必须遵守一些事先约定好的规则。这些规则明确规定了所 交换数据的格式 以及有关的 同步 问题。
同步的含义:在一定条件下应当发生什么事件,因而含有时序的意思。
网络协议:为进行网络中的数据交换而建立的规则、标准或约定。
网络协议由以下三个要素组成:
1)语法:即数据与控制信息的结构或格式
2)语义:即需要发出何种控制信息,完成何种动作以及做出何种反应
3)同步:即事件实现顺序的详细说明
一、运输层协议的概述
1.1 进程之间的通信
1.2 运输层的两个主要协议
1.3 运输层的端口
二、用户数据报协议UDP
2.1 UDP概述
2.2 UDP的首部格式
三、传输控制协议TCP概述
3.1 TCP的最主要的特点
3.2 TCP的连接
四、可靠传输的工作原理
4.1 停止等待协议
4.2 连续ARQ协议
五、TCP报文段的首部格式
六、TCP可靠传输的实现
6.1 以字节为单位的滑动窗口
6.2 超时重传时间的选择
6.3 选择确认SACK
七、TCP的流量控制
7.1 利用滑动窗口实现流量控制
7.2 必须考虑传输效率
八、TCP的拥塞控制
8.1 拥塞控制的一般原理
8.2 几种拥塞控制方法
8.3 随机早期检测RED
九、TCP的运输连接管理
9.1 TCP的连接建立
9.2 TCP的连接释放
9.3 TCP的有限状态机
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1.1 进程之间的通信
1.只有主机的协议栈才有运输层,而网络核心部分中的路由器在转发分组时都只用到了下三层的功能
2.两个主机进行通信就是两个主机中的应用进程互相通信。从运输层的角度看,通信的真正端点并不是主机而是主机中的进程。(IP协议能把分组送到目的主机)
网络层时为主机之间提供逻辑通信,而运输层为应用进程之间提供端到端的逻辑通信。
3.运输层一个重要功能——复用、分用。 (应用进程复用、分用运输层)
1.2 运输层的两个主要协议
1.UDP—User Datagram Protocol 用户数据报协议(无连接):DNS/RIP/DHCP/SNMP/NFS
TCP—Transmission Control Protocol 传输控制协议(面向连接):SMTP/TELNET/HTTP/ FTP
1.3 运输层的端口
问题:为了使运行不同操作系统的计算机的应用进程能够互相通信,就必须使用统一的方法(而这种方法必须与特定操作系统无关)对TCP/IP体系的应用进程进行标识。
为什么不用进程号来区分?(第一,不同操作系统的进程标识符不同;第二,用功能来识别,而不是进程,例如邮件服务功能,而不管具体是哪个进程)
解决方案:在运输层使用协议端口号,即端口。软件端口是应用层的各种协议进程与运输实体进行层间交互的一种地址。(端口号只具有本地意义,只是为了标识本计算机应用层中各个进程在和运输层交互时的层间接口。)
端口分为两大类:
1)服务器使用的端口号:熟知端口号或系统端口号(0~1023);登记端口号(1024~49151)
2)客户端使用的端口号:49152~65535
2.1 UDP概述
1.UDP只在IP的数据报服务至上增加了很少一点功能,就是复用、分用以及差错检测功能
2.特点
1)无连接
2)尽最大努力交付
3)面向报文 (不合并、不拆分、保留这些报文的边界)
4)UDP没有拥塞控制
5)UDP支持一对一、一对多、多对一和多对多的交互通信
6)UDP的首部开销小,只有8字节
应用进程本身可以在不影响应用的实时性的前提下,增加一些提高可靠性的措施,如采用前向纠错或重传已丢失的报文。
2.2 UDP的首部格式
1.traceroute 让发送的UDP用户数据报故意使用一个非法的UDP端口号,接收方丢弃报文,并由ICMP(网络控制报文协议)发送“端口不可达”差错报文给发送方。
2.计算检验和。IP数据报的校验和只检验IP数据报的首部,但UDP的校验和是把首部和数据部分一起都检验。(12字节的首部+真正的首部+数据来进行校验和的计算)
Q1.为什么计算校验和要加12字节的伪首部
Q2.计算校验和的原理是什么?
3.1 TCP的最主要的特点
1.面向连接的运输层协议(建立连接、传输数据、释放连接)
2.点对点,每一条TCP连接只能有两个端点
3.可靠交付(无差错、不丢失、不重复、并且按序到达)
4.全双工通信。TCP连接的两端都设有发送缓存和接收缓存。
5.面向字节流。(流指的是流入到进程或从进程流出的字节序列;面向字节流:TCP把应用程序交下来的数据看成是一连串的无结构字节流。 接收方的应用程序必须有能力识别接收到的字节流,把它还原成有意义的应用层数据。 因此TCP可以根据窗口值和当前网络状况调整发送的报文长度。划分短一点,或者积累到足够多再发送出去。)
3.2 TCP的连接
1.TCP把连接作为最基本的抽象。
2.每一条TCP连接有两个端点。TCP连接的端点叫作套接字。
套接字soket = (IP地址:端口号)
每一条TCP连接唯一地被通信两端的两个端点(即两个套接字)所确定。
TCP连接 ::= {socket1, socket2}
理想的传输条件有以下两个特点:
1)传输信道不产生差错
2)不管发送方以多快的速度发送数据,接收方总是来得及处理收到的数据
实际的网络并不具备,因此:
1)出现差错时,让发送方重传
2)接收方来不及处理时,及时告诉发送方适当降低发送数据的速度
4.1 停止等待协议
1.“停止等待”就是没发送完一个分组就停止发送,等待对方的确认,在收到确认后再发送下一个分组。
2.超时重传。在每发完一个分组就设置一个超时计时器,如果在超时计时器之前收到对方的确认,就撤销已设置的超时计时器。如果未收到,就认为刚才的分组丢失,并重传。
3.三种情况:A发送的分组出错、丢失;B发送的确认丢失;B发送的确认迟到
确认丢失:B丢弃重复的分组,向A重传确认
确认迟到:A丢弃重复的确认,B丢弃重复分组,并向A重传确认
4.常称为自动重传请求ARQ,重传时自动进行的(超时即重传)
5.缺点:信道利用率太低
U=Td/(Td+RTT+Ta)
为了提高传输效率,发送方不使用停止等待协议,而是采用流水线传输。流水线传输就是发送发可连续发送多个分组,不必等每发完一个分组就停顿下来等待对方的确认。(连续ARQ协议和滑动窗口协议)
4.2 连续ARQ协议
1.位于发送窗口内的分组都可连续发送出去,而不需要等待对方的确认。
2.累积确认:接收方不必对收到的分组逐个发送确认,而是在收到几个分组后,对按序到达的最后一个分组发送确认。
3.缺点:Go-back-N (发送前5个分组,第3个分组丢失,后面三个要重传)
1.源端口和目的端口
2.序号。 每个字节都按顺序编号。
3.确认号。 期望收到对方下一个报文段的第一个数据字节的序号。
若确认号=N,则表明:到序号N-1为止的所有数据都已正确收到。
4.数据偏移。 指出TCP报文段的数据起始处距离TCP报文段的起始处有多远(也即TCP报文段首部长度)。由于首部中还有长度不确定的选项字段,因此数据偏移字段是必要的。
5.窗口。窗口字段明确指出了现在允许对方发送的数据量。窗口值是经常在动态变化着。
6.1 以字节为单位的滑动窗口
1.发送缓存用来暂存:
1)发送应用程序传送给发送方TCP准备发送的数据;
2)TCP已发送但未收到确认德尔数据
2.接收缓存用来存放:
1)按序到达的、但尚未被接收应收程序读取的数据;
2)未按序到达的数据
3.注意三点:
1)A的发送窗口是根据B的接收窗口设置的,但是在同一时刻,由于网络传输的滞后,A的发送窗口并不总是B的接收窗口一样大
2)TCP通常对不按序到达的数据是先临时存放在接收窗口中,等到字节流中所缺少的字节收到后,再按序交付上层的应用进程
3)TCP接收方有累计确认功能(不能过分推迟发送确认,否则会导致发送方不必要的重传)
6.2 超时重传时间的选择
1.超时重传时间设置太短,会引起很多不必要的重传;如果设置太长,使网络的空闲时间增大,降低传输效率。
2.新的RTTs = (1-a)x(旧的RTTs) + ax(新的RTT样本),其中RTT样本的时间为:记录一个报文段发出的时间,以及收到相应的确认时间,时间差就是报文段的往返时间RTT。
3.RTO = RTTs + 4 x RTTd,其中RTO为超时重传时间,RTTd是RTT的偏差的加权平均值。
新的RTTd = (1-b) x (旧的RTTd)+ b x |RTTs - 新的RTT样本|
4.一个问题:发送一个报文段,设定的重传时间到了,还没有收到确认。于是重传报文段。经过一段时间,收到了确认报文段。现在的问题是:如何判定此确认报文段是对先发送的报文段的确认,还是对后来重传的报文段的确认?
1)解决方法1,在计算加权平均值RTTs时,只要报文段重传了,就不采用其往返时间样本。
引入的问题:报文段的时延突然增大的情况
2)解决方法2,报文段每重传一次,就把超时重传时间RTO增大一些(一般是2倍)。当不在发生报文段的重传时,再根据加权平均计算。
6.3 选择确认SACK
SACK文档并没有指明发送发应当怎样响应SACK。因此大多数的实现还是重传所有未被确认的数据块。
7.1 利用滑动窗口实现流量控制
1.流量控制:就是让发送方的发送速率不要太快,要让接收方来得及接收。
2.利用滑动窗口机制可很方便地在TCP连接上实现对发送方的流量控制。发送方的发送窗口不能超过接收方给出的接收窗口的数值。
3.死锁情况:B向A发送了零窗口的报文段后不久,B又有了一些缓存空间,因此B向A发送rwnd = 400.然而该报文段在传送过程中丢失。A一直等待B发送的非零窗口的通知,B也一直等待A发送的数据。( 窗口通知不超时重传?为什么? )
解决方法:TCP为每个连接设有一个持续计时器。只要一方收到对方的零窗口通知,就启动计时器。计时器到期后,发送一个零窗口探测报文段,而对方就在确认这个探测报文段时给出了现在的窗口值。若仍为零,收到报文段的一方重新设置持续计时器。
7.2 必须考虑传输效率
1.应用程序把数据传送到TCP的发送缓存后,剩下的发送任务就由TCP来控制了。
2.三种不同的机制来控制TCP报文段的发送时机:
1)TCP维持一个变量,它等于最大报文段长度MSS,只要缓存中的存放的数据达到MSS,就组装成一个TCP报文段发送出去
2)由发送方的应用进程指明要求发送报文段,即TCP支持推送操作
3)发送方设置一个定时器
3.问题一、若用户只发送一个字节,则非常浪费带宽。
解决方法:若发送应用程序把要发送的数据逐个字节地送到TCP的发送缓存,则发送方就把第一个数据字节先发送出去,把后面到达的数据字节都缓存起来。当发送方收到对第一个数据字符的确认后,再把发送缓存中的所有数据组装成一个报文段发送出去。(采用收到确认就发送+并开始缓存的方式;同时当到达的数据已达到发送窗口大小的一半或已达到报文段的最大长度时,就立即发送一个报文段。)
4.问题二、糊涂窗口综合症。接收缓存已满,应用程序一次只读取一个字节,然后向发送方发送确认。
解决方法:让接收方等待一段时间,使得接收缓存已有足够空间容纳一个最长的报文段,或者等到接收缓存已有一半空闲的空间。则接收方就发出确认报文。
8.1 拥塞控制的一般原理
1.拥塞的定义:对资源的需求 > 可用资源。 在计算机网络中的链路带宽、交换结点中的缓存和处理机等,都是网络中的资源。
2.拥塞解决不能靠解决某一个部分的问题。因为这会将瓶颈转移到其他地方。问题的实质往往是整个系统的各个部分不匹配。只有所有部分都平衡了,问题才会得到解决。
3.拥塞控制与流量控制的比较。
1)拥塞控制:防止过多的数据注入到网络中,这样可以使网络中的路由器或链路不致过载。
拥塞控制有个前提:网络能够承受现有的网络负荷
拥塞控制是一个全局性过程。(发送拥塞时,不知道在某处、什么原因造成的)
2)流量控制:点对点通信量的控制,是个端到端的问题
流量控制:抑制发送端发送数据的速率,以便使接收端来得及接收。
4.寻找拥塞控制的方案无非就是使不等式 “对资源的需求 > 可用资源 ”不再成立的条件。但是必须考虑该措施带来的其他影响。
5.计算机网络是个复杂的系统。从控制理论的角度来看拥塞控制,可以分为开环控制和闭环控制两种方法。
1)开环控制:设计网络时事先将有关发生拥塞的因素考虑周到,力求网络在工作时不产生拥塞。但一旦系统运行起来,就不再中途改正。
2)闭环控制:基于反馈环路。
步骤一、监测网络系统以便检测到拥塞在何时、何处发生;
步骤二、把拥塞发生的信息传送到可采取行动的地方
步骤三、调整网络系统的运行以解决出现的问题
8.2 几种拥塞控制方法(只考虑网络拥塞程度,即假设接收方总是有足够大的缓存空间)
1.慢开始和拥塞避免
1)发送方维持一个拥塞窗口。
拥塞窗口的大小取决于网络的拥塞程度,并且动态地在变化。
控制拥塞窗口的原则是:只要网络没有出现拥塞,拥塞窗口增大;如果网络出现拥塞,则减小。
2)慢开始的思路:由小到大逐渐增大拥塞窗口数值。每收到一个对新的报文段的确认,把拥塞窗口增加至多一个MSS的数值。(没经过一个传输轮次,拥塞窗口cwnd就加倍)
轮次:把拥塞窗口所允许发送的报文段都连续发送出去,并收到了对已发送的最后一字节的确认。
慢开始的“慢”并不是指cwnd的增长速率慢,而是指TCP开始发送报文段时先设置cwnd=1(一个MSS数值)。
3)慢开始门限ssthresh
为防止拥塞窗口增长过大,引入一个慢开始门限ssthresh。
当cwnd < ssthresh时,使用上述的慢开始算法
当cwnd > ssthresh时,停止使用慢开始算法而改用拥塞避免算法
4)拥塞避免算法
思路:让拥塞窗口cwnd缓慢增大,即没经过一个往返时间RTT就把发送方的拥塞窗口cwnd增加1,而不是加倍。
5)慢开始门限的设置
只要发送方判断网络出现拥塞(没有按时收到确认),就把慢开始门限ssthresh设置为出现拥塞时发送方窗口值的一半,然后把拥塞窗口cwnd重置为1,执行慢开始算法。
6)乘法减小和加法增大
乘法减小:网络出现拥塞时,把慢开始门限ssthresh减半(当前的ssthresh的一半),并执行慢开始算法。
加法增大:执行拥塞避免方法
2.快重传和快恢复
1)快重传(尽快重传未被确认的报文段)
首先,要求接收方每收到一个失序的报文段后就立即发出重复确认。(如接收方收到了M1和M2后都分别发出了确认,但接收方没有收到M3但接着收到了M4。此时接收方立即发送对M2的重复确认。)
其次,发送方只要一连收到三个重复确认,就应当立即重传对方尚未收到的报文段M3.
2)快恢复
要点一、当发送方连续收到三个重复确认,就执行“乘法减小”算法,把慢开始门限ssthresh减半。
要点二、由于发送方认为网络很可能没有发生拥塞(因为收到了连续的重复确认),把cwnd设置为慢开始门限ssthresh减半后的值,然后开始执行拥塞避免算法
慢开始算法只在TCP连接建立时和网络出现超时才使用。
3.发送方的窗口
发送方窗口的上限值 = Min [rwnd, cwnd]
8.3 随机早期检测RED(IP层影响TCP层的拥塞控制)
1.网络层的分组丢弃策略
网络层的策略对TCP拥塞控制影响最大的就是路由器的分组丢弃策略。
如果路由器队列已满,则后续到达的分组将都被丢弃。这就叫做尾部丢弃策略。
2.全局同步
由于TCP复用IP,若发生路由器中的尾部丢弃,就可能会同时影响到很多条TCP连接,结果就使许多TCP连接在同一时间突然都进入到慢开始状态。全局同步使得全网的通信量突然下降了很多,网络恢复正常后,其通信量又突然增大很多。
3.随机早期检测RED
使路由器的队列维持两个参数,即队列长度最小门限THmin和最大门限THmax。当每一个分组到达时,RED就先计算平均队列长度Lav。RED算法是:
1)若平均队列长度小于最小门限THmin,则把新到达的分组放入队列进行排队
2)若平均队列长度超过最大门限THmax,则把新到达的分组丢弃
3)若平均队列长度在最小门限THmin和最大门限THmax之间,则按照某一概率p将新到达的分组丢弃。
随机体现在3),在检测到网络拥塞的早期征兆时(即路由器的平均队列长度超过一定的门限值时),就先以概率p随机丢弃个别的分组,让拥塞控制只在个别的TCP连接上进行,因而避免发生全局性的拥塞控制。
4.平均队列长度Lav和分组丢弃概率p
Lav = (1-d) x (旧的Lav) +d x (当前的队列长度样本)
p = ptemp / (1- count x ptemp)
ptemp = pmax x (Lav - THmin) / (THmax - THmin)
TCP时面向连接的协议。
运输连接就有三个阶段:连接建立、数据传送和连接释放
运输连接的管理:使运输连接的建立和释放都能正常地进行。
在TCP连接建立过程中要解决以下三个问题:
1)要使每一方能够确知对方的存在
2)要允许双方协商一些参数(如最大窗口值、是否使用窗口扩大选项和时间戳等等)
3)能够对运输实体资源(如缓存大小、连接表中的项目等)进行分配
9.1 TCP的连接建立
1.TCP规定,SYN=1报文段不能携带数据,但消耗一个序号
2.TCP规定,ACK=1报文段可以携带数据,如果不携带数据则不消耗序号
3.为什么A还要发送一次确认?为了防止已失效的连接请求报文突然又传送到B,因而产生错误。
“已失效的连接请求报文段”
A发出第一个连接请求报文段,在网络中滞留超时,又发出了第二个连接请求。但B收到第一个延迟的失效的连接请求报文段后,就误认为是A又发出了一次新的连接请求。于是就向A发出确认报文段,同意建立连接。假定不采用三次握手,那么只要B发出确认,新的连接就建立。此时A不会理睬B的确认,也不会发数据,但B一直等A发送数据,B的许多资源就浪费了。
采用三次握手,A不会向B发送确认,因此B就知道A并没有要求建立确认。
9.2 TCP的连接释放
1.TCP规定,FIN报文段基石不携带数据,也消耗一个序号
2.第二次握手后,TCP通知高层应用程序,因而从A到B这个方向的连接就释放,TCP连接处于半关闭状态
3.为什么A在TIME-WAIT状态必须等待2MSL的时间
1)为了保证A发送的最后一个ACK报文段能够到达B。因为ACK可能丢失,此时B可能会超时重传,然后A重传确认,并重新启动2MSL计时器
2)防止“已失效的连接请求报文段”出现在本连接中。可以使本连接持续时间内所产生的所有报文段都从网络中消失。
9.3 TCP的有限状态机
❼ 计算机网络 第五版 答案
第一章 概述
传播时延=信道长度/电磁波在信道上的传播速度
发送时延=数据块长度/信道带宽
总时延=传播时延+发送时延+排队时延
101 计算机网络的发展可划分为几个阶段?每个阶段各有何特点?
102 试简述分组交换的要点。
103 试从多个方面比较电路交换、报文交换和分组交换的主要优缺点。
104 为什么说因特网是自印刷术以来人类通信方面最大的变革?
105 试讨论在广播式网络中对网络层的处理方法。讨论是否需要这一层?
106 计算机网络可从哪几个方面进行分类?
107 试在下列条件下比较电路交换和分组交换。要传送的报文共x(bit)。从源站到目的站共经过k段链路,每段链路的传播时延为d(s),数据率为b(b/s)。在电路交换时电路的建立时间为S(s)。在分组交换时分组长度为p(bit),且各结点的排队等待时间可忽略不计。问在怎样的条件下,分组交换的时延比电路交换的要小?
108 在上题的分组交换网中,设报文长度和分组长度分别为x 和(p+h)(bit),其中p为分组的数据部分的长度,而此为每个分组所带的控制信息固定长度,与p的大小无关。通信的两端共经过k段链路。链路的数据率为b(b/s),但传播时延和结点的排队时间均可忽略不计。若打算使总的时延为最小,问分组的数据部分长度P应取为多大?
109 计算机网络中的主干网和本地接入同各有何特点?
110 试计算以下两种情况的发送时延和传播时延:(1)数据长度为107bit,数据发送速率为100kb/s,收发
111 计算机网络由哪几部分组成?
101 计算机网络的发展可划分为几个阶段?每个阶段各有何特点?
答:计算机网络的发展可分为以下四个阶段。
(1)面向终端的计算机通信网:其特点是计算机是网络的中心和控制者,终端围绕中心
计算机分布在各处,呈分层星型结构,各终端通过通信线路共享主机的硬件和软件资源,计
算机的主要任务还是进行批处理,在20 世纪60 年代出现分时系统后,则具有交互式处理和
成批处理能力。
(2)分组交换网:分组交换网由通信子网和资源子网组成,以通信子网为中心,不仅共
享通信子网的资源,还可共享资源子网的硬件和软件资源。网络的共享采用排队方式,即由
结点的分组交换机负责分组的存储转发和路由选择,给两个进行通信的用户断续(或动态)
分配传输带宽,这样就可以大大提高通信线路的利用率,非常适合突发式的计算机数据。
(3)形成计算机网络体系结构:为了使不同体系结构的计算机网络都能互联,国际标准
化组织ISO提出了一个能使各种计算机在世界范围内互联成网的标准框架—开放系统互连基
本参考模型OSI.。这样,只要遵循OSI标准,一个系统就可以和位于世界上任何地方的、也
遵循同一标准的其他任何系统进行通信。
(4)高速计算机网络:其特点是采用高速网络技术,综合业务数字网的实现,多媒体和
智能型网络的兴起。
102 试简述分组交换的要点。
答:分组交换实质上是在“存储——转发”基础上发展起来的。它兼有电路交换和报文交
换的优点。在分组交换网络中,数据按一定长度分割为许多小段的数据——分组。以短的分
组形式传送。分组交换在线路上采用动态复用技术。每个分组标识后,在一条物理线路上采
用动态复用的技术,同时传送多个数据分组。在路径上的每个结点,把来自用户发端的数据
暂存在交换机的存储器内,接着在网内转发。到达接收端,再去掉分组头将各数据字段按顺
序重新装配成完整的报文。分组交换比电路交换的电路利用率高,比报文交换的传输时延小,
交互性好。
分组交换网的主要优点是:
① 高效。在分组传输的过程中动态分配传输带宽,对通信链路是逐段占有。
② 灵活。每个结点均有智能,为每一个分组独立地选择转发的路由。
③ 迅速。以分组作为传送单位,通信之前可以不先建立连接就能发送分组;网络使用高
速链路。
④ 可靠。完善的网络协议;分布式多路由的通信子网。
103 试从多个方面比较电路交换、报文交换和分组交换的主要优缺点。
答:(1)电路交换电路交换就是计算机终端之间通信时,一方发起呼叫,独占一条物理
线路。当交换机完成接续,对方收到发起端的信号,双方即可进行通信。在整个通信过程中
双方一直占用该电路。它的特点是实时性强,时延小,交换设备成本较低。但同时也带来线
路利用率低,电路接续时间长,通信效率低,不同类型终端用户之间不能通信等缺点。电路
交换比较适用于信息量大、长报文,经常使用的固定用户之间的通信。
(2)报文交换将用户的报文存储在交换机的存储器中。当所需要的输出电路空闲时,
再将该报文发向接收交换机或终端,它以“存储——转发”方式在网内传输数据。报文交换的
优点是中继电路利用率高,可以多个用户同时在一条线路上传送,可实现不同速率、不同规
程的终端间互通。但它的缺点也是显而易见的。以报文为单位进行存储转发,网络传输时延
大,且占用大量的交换机内存和外存,不能满足对实时性要求高的用户。报文交换适用于传
输的报文较短、实时性要求较低的网络用户之间的通信,如公用电报网。
(3)分组交换分组交换实质上是在“存储——转发”基础上发展起来的。它兼有电路交
换和报文交换的优点。分组交换在线路上采用动态复用技术传送按一定长度分割为许多小段
的数据——分组。每个分组标识后,在一条物理线路上采用动态复用的技术,同时传送多个
数据分组。把来自用户发端的数据暂存在交换机的存储器内,接着在网内转发。到达接收端,
再去掉分组头将各数据字段按顺序重新装配成完整的报文。分组交换比电路交换的电路利用
率高,比报文交换的传输时延小,交互性好。
104 为什么说因特网是自印刷术以来人类通信方面最大的变革?
105 试讨论在广播式网络中对网络层的处理方法。讨论是否需要这一层?
答:广播式网络是属于共享广播信道,不存在路由选择问题,可以不要网络层,但从OSI
的观点,网络设备应连接到网络层的服务访问点,因此将服务访问点设置在高层协议与数据
链路层中逻辑链路子层的交界面上,IEEE 802 标准就是这样处理的。
106 计算机网络可从哪几个方面进行分类?
答:从网络的交换功能进行分类:电路交换、报文交换、分组交换和混合交换;从网络的拓扑结构进行分类:集中式网络、分散式网络和分布式网络;从网络的作用范围进行分类:广域网WAN、局域网LAN、城域网MAN;从网络的使用范围进行分类:公用网和专用网。
107 试在下列条件下比较电路交换和分组交换。要传送的报文共x(bit)。从源站到目的站共经过k段链路,每段链路的传播时延为d(s),数据率为b(b/s)。在电路交换时电路的建立时间为S(s)。在分组交换时分组长度为p(bit),且各结点的排队等待时间可忽略不计。问在怎样的条件下,分组交换的时延比电路交换的要小?
答:对于电路交换,t=s时电路建立起来;t=s+x/b 时报文的最后1 位发送完毕;t=s+x/b+kd时报文到达目的地。而对于分组交换,最后1位在t=x/b时发送完毕。为到达最终目的地,最后1个分组必须被中间的路由器重发k1 次,每次重发花时间p/b(一个分组的所有比特都接收齐了,才能开始重发,因此最后1位在每个中间结点的停滞时间为最后一个分组的发送时间),所以总的延迟为
所以:
108在上题的分组交换网中,设报文长度和分组长度分别为x 和(p+h)(bit),其中p为分组的数据部分的长度,而此为每个分组所带的控制信息固定长度,与p的大小无关。通信的两端共经过k段链路。链路的数据率为b(b/s),但传播时延和结点的排队时间均可忽略不计。若打算使总的时延为最小,问分组的数据部分长度P应取为多大?
答:所需要的分组总数是x /p ,因此总的数据加上头信息交通量为(p+h)x/p 位。源端发送这些位需要时间为: 中间的路由器重传最后一个分组所花的总时间为(k1)(p+h)/b因此我们得到的总的延迟为对该函数求p的导数,得到 令 ?得到 ?因为p>0,所以 故 时能使总的延迟最小。
109 计算机网络中的主干网和本地接入同各有何特点?
答:主干网络一般是分布式的,具有分布式网络的特点:其中任何一个结点都至少和其它两个结点直接相连;本地接入网一般是集中式的,具有集中式网络的特点:所有的信息流必须经过中央处理设备(交换结点),链路从中央交换结点向外辐射。
110 试计算以下两种情况的发送时延和传播时延:(1)数据长度为107bit,数据发送速率为100kb/s,收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2×108m/s。 解:发送时延= 107bit/100kbit/s =100s
传播时延= 1000km/2×108m/s =5×103s
(2)数据长度为103bit,数据发送速率为1Gb/s。收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2×108 m/s。
解:发送时延=103bit/1×109bit/s =1×106s
传播时延= 1000km/2×108m/s =5×103s
111 计算机网络由哪几部分组成?
答:一个计算机网络应当有三个主要的组成部分:
(1)若干主机,它们向用户提供服务;
(2)一个通信子网,它由一些专用的结点交换机和连接这些结点的通信链路所组成的; (3)一系列协议,这些协议为主机之间或主机和子网之间的通信而用的。