导航:首页 > 网络连接 > 计算机网络链路节点草图

计算机网络链路节点草图

发布时间:2023-12-18 14:22:52

㈠ 认识一下网络拓扑,几张图片几条线。

网络拓扑,不就是网络和拓扑组合在一起的新名词吗。这样理解很有道理,网络很好理解,关键是这个拓扑,首先来了解一下什么是拓扑。

拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。是一种不考虑物体的大小、形状等物理属性,而仅仅使用点或者线描述多个物体实际位置与关系的抽象表示方法。拓扑不关心事物的细节,也不在乎相互的比例关系,而只是以图的形式表示一定范围内多个物体之间的相互关系。

拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。

"拓扑"是一个外来词,中国人把Topo译为“拓扑”!谁?江泽涵先生是也!

江泽涵(1902-1994年),安徽旌德人,1926年毕业于南开大学数学系教授,1955年当选为中国科学院数理学部委员。他是把拓扑学引入中国的第一人,他出版的《拓扑学引论》是中国人编写的第一部拓扑学教材。

译Topo为拓扑,音义兼顾,形神俱备———“拓”者,对土地之开发也,“扑”者,全面覆盖也。

网络拓扑(Network Topology)结构是指用传输介质互连各种设备的物理布局。指构成网络的成员间特定的物理的即真实的、或者逻辑的即虚拟的排列方式。如果两个网络的连接结构相同我们就说它们的网络拓扑相同,尽管它们各自内部的物理接线、节点间距离可能会有不同。

在实际生活中,计算机与网络设备要实现互联,就必须使用一定的组织结构进行连接,这种组织结构就叫做“拓扑结构”。网络拓扑结构形象地描述了网络的安排和配置方式,以及各节点之间的相互关系,通俗地说,“拓扑结构”就是指这些计算机与通讯设备是如何连接在一起的。

研究网络和它的线图的拓扑性质的理论,又称网络图论。拓扑是指几何体的一种接触关系或连接关系;当几何体发生连续塑性变形时,它的接触关系会保持不变。用节点和支路组成的线图表示的网络结构也具有这种性质。

网络拓朴的早期研究始于1736年瑞士数学家L.欧拉发表的关于柯尼斯堡桥问题的论文。1845年和1847年,G.R.基尔霍夫发表的两篇论文为网络奠定了基础。

在设计网络拓扑结构时,我们经常会遇到如“节点”、“结点”、”链路”和“通路”这四个术语。它们到底各自代表什么,它们之间又有什么关系呢?

(1) 节点

一个“节点”其实就是一个网络端口。节点又分为“转节点”和“访问节点”两类。“转节点”的作用是支持网络的连接,它通过通信线路转接和传递信息,如交换机、网关、路由器、防火墙设备的各个[网络端口]等;而“访问节点”是信息交换的源点和目标点,通常是用户计算机上的网卡接口。如我们在设计一个网络系统时,通常所说的共有××个节点,其实就是在网络中有多个要配置IP地址的网络端口。

(2)结点

一个“结点”是指一台网络设备,因为它们通常连接了多个“节点”,所以称之为“结点”。在计算机网络中的结点又分为链路结点和路由结点,它们就分别对应的是网络中的交换机和路由器。从网络中的结点数多少就可以大概知道你的计算机网络规模和基本结构了。

(3)链路

“链路”是两个节点间的线路。链路分物理链路和逻辑链路(或称数据链路)两种,前者是指实际存在的通信线路,由设备网络端口和传输介质连接实现;后者是指在逻辑上起作用的网络通路,由计算机网络体系结构中的数据链路层标准和协议来实现。如果链路层协议没有起作用,数据链路也就无法建立起来。

(4)通路

“通路”从发出信息的节点到接收信息的节点之间的一串节点和链路的组合。也就是说,它是一系列穿越通信网络而建立起来的节点到节点的链路串连。它与“链路”的区别主要在于一条“通路”中可能包括多条“链路”。

星形拓扑结构的主要优点有:

1.结构简单,容易管理维护;

2.重新配置灵活;

3.方便故障检测与隔离;

4.控制简单,便于建网;

5.网络延迟时间较小,传输误差较低;

星形拓扑结构的主要缺点有:

1.成本高、可靠性较低;

优点是由于每个节点都同时与两个方向的各一个节点相连接,此路不通彼路通,因此环状拓扑具有天然的容错性。缺点是由于存在来自两个方向的数据流,因此必须对这两个方向加以区分,或者进行限制,以避免无法区分的冗余数据流对正常通信的干扰。管理和维护比较复杂。

优点是结构简单,可扩充性好。缺点是维护难、单点的结构可能会影响全网络。

㈡ 计算机网络(三)数据链路层

结点:主机、路由器

链路:网络中两个结点之间的物理通道,链路的传输介质主要有双绞线、光纤和微波。分为有线链路、无线链路。

数据链路:网络中两个结点之间的逻辑通道,把实现控制数据传输协议的硬件和软件加到链路上就构成数据链路。

帧:链路层的协议数据单元,封装网络层数据报。

数据链路层负责通过一条链路从一个结点向另一个物理链路直接相连的相邻结点传送数据报。

数据链路层在物理层提供服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。其主要作用是加强物理层传输原始比特流的功能,将物理层提供的可能出错的物理连接改造成为 逻辑上无差错的数据链路 ,使之对网络层表现为一条无差错的链路。

封装成帧就是在一段数据的前后部分添加首部和尾部,这样就构成了一个帧。接收端在收到物理层上交的比特流后,就能根据首部和尾部的标记,从收到的比特流中识别帧的开始和结束。首部和尾部包含许多的控制信息,他们的一个重要作用:帧定界(确定帧的界限)。

帧同步:接收方应当能从接收到的二进制比特流中区分出帧的起始和终止。

组帧的四种方法:

透明传输是指不管所传数据是什么样的比特组合,都应当能够在链路上传送。因此,链路层就“看不见”有什么妨碍数据传输的东西。

当所传数据中的比特组合恰巧与某一个控制信息完全一样时,就必须采取适当的措施,使收方不会将这样的数据误认为是某种控制信息。这样才能保证数据链路层的传输是透明的。

概括来说,传输中的差错都是由于噪声引起的。

数据链路层编码和物理层的数据编码与调制不同。物理层编码针对的是单个比特,解决传输过程中比特的同步等问题,如曼彻斯特编码。而数据链路层的编码针对的是一组比特,它通过冗余码的技术实现一组二进制比特串在传输过程是否出现了差错。

较高的发送速度和较低的接收能力的不匹配,会造成传输出错,因此流量控制也是数据链路层的一项重要工作。数据链路层的流量控制是点对点的,而传输层的流量控制是端到端的。

滑动窗口有以下重要特性:

若采用n个比特对帧编号,那么发送窗口的尺寸W T 应满足: 。因为发送窗口尺寸过大,就会使得接收方无法区别新帧和旧帧。

每发送完一个帧就停止发送,等待对方的确认,在收到确认后再发送下一个帧。

除了比特出差错,底层信道还会出现丢包 [1] 问题

“停止-等待”就是每发送完一个分组就停止发送,等待对方确认,在收到确认后再发送下一个分组。其操作简单,但信道利用率较低

信道利用率是指发送方在一个发送周期内,有效地发送数据所需要的时间占整个发送周期的比率。即

GBN发送方:

GBN接收方:

因连续发送数据帧而提高了信道利用率,重传时必须把原来已经正确传送的数据帧重传,是传送效率降低。

设置单个确认,同时加大接收窗口,设置接收缓存,缓存乱序到达的帧。

SR发送方:

SR接收方:

发送窗口最好等于接收窗口。(大了会溢出,小了没意义),即

传输数据使用的两种链路

信道划分介质访问控制将使用介质的每个设备与来自同一通信信道上的其他设备的通信隔离开来,把时域和频域资源合理地分配给网络上的设备。

当传输介质的带宽超过传输单个信号所需的带宽时,人们就通过在一条介质上同时携带多个传输信号的方法来提高传输系统的利用率,这就是所谓的多路复用,也是实现信道划分介质访问控制的途径。多路复用技术把多个信号组合在一条物理信道上进行传输,使多个计算机或终端设备共享信道资源,提高了信道的利用率。信道划分的实质就是通过分时、分频、分码等方法把原来的一条广播信道,逻辑上分为几条用于两个结点之间通信的互不干扰的子信道,实际上就是把广播信道转变为点对点信道。

频分多路复用是一种将多路基带信号调制到不同频率载波上,再叠加形成一个复合信号的多路复用技术。在物理信道的可用带宽超过单个原始信号所需带宽的情况下,可将该物理信道的总带宽分割成若千与传输单个信号带宽相同(或略宽)的子信道,每个子信道传输一种信号,这就是频分多路复用。

每个子信道分配的带宽可不相同,但它们的总和必须不超过信道的总带宽。在实际应用中,为了防止子信道之间的千扰,相邻信道之间需要加入“保护频带”。频分多路复用的优点在于充分利用了传输介质的带宽,系统效率较高;由于技术比较成熟,实现也较容易。

时分多路复用是将一条物理信道按时间分成若干时间片,轮流地分配给多个信号使用。每个时间片由复用的一个信号占用,而不像FDM那样,同一时间同时发送多路信号。这样,利用每个信号在时间上的交叉,就可以在一条物理信道上传输多个信号。

就某个时刻来看,时分多路复用信道上传送的仅是某一对设备之间的信号:就某段时间而言,传送的是按时间分割的多路复用信号。但由于计算机数据的突发性,一个用户对已经分配到的子信道的利用率一般不高。统计时分多路复用(STDM,又称异步时分多路复用)是TDM 的一种改进,它采用STDM帧,STDM帧并不固定分配时隙,面按需动态地分配时隙,当终端有数据要传送时,才会分配到时间片,因此可以提高线路的利用率。例如,线路传输速率为8000b/s,4个用户的平均速率都为2000b/s,当采用TDM方式时,每个用户的最高速率为2000b/s.而在STDM方式下,每个用户的最高速率可达8000b/s.

波分多路复用即光的频分多路复用,它在一根光纤中传输多种不同波长(频率)的光信号,由于波长(频率)不同,各路光信号互不干扰,最后再用波长分解复用器将各路波长分解出来。由于光波处于频谱的高频段,有很高的带宽,因而可以实现多路的波分复用

码分多路复用是采用不同的编码来区分各路原始信号的一种复用方式。与FDM和 TDM不同,它既共享信道的频率,又共享时间。下面举一个直观的例子来理解码分复用。

实际上,更常用的名词是码分多址(Code Division Multiple Access.CDMA),1个比特分为多个码片/芯片( chip),每一个站点被指定一个唯一的m位的芯片序列,发送1时发送芯片序列(通常把o写成-1) 。发送1时站点发送芯片序列,发送o时发送芯片序列反码。

纯ALOHA协议思想:不监听信道,不按时间槽发送,随机重发。想发就发

如果发生冲突,接收方在就会检测出差错,然后不予确认,发送方在一定时间内收不到就判断发生冲突。超时后等一随机时间再重传。

时隙ALOHA协议的思想:把时间分成若干个相同的时间片,所有用户在时间片开始时刻同步接入网络信道,若发生冲突,则必须等到下一个时间片开始时刻再发送。

载波监听多路访问协议CSMA(carrier sense multiple access)协议思想:发送帧之前,监听信道。

坚持指的是对于监听信道忙之后的坚持。

1-坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:只要媒体空闲,站点就马上发送,避免了媒体利用率的损失。

缺点:假如有两个或两个以上的站点有数据要发送,冲突就不可避免。

非坚持指的是对于监听信道忙之后就不继续监听。

非坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:采用随机的重发延迟时间可以减少冲突发生的可能性。

缺点:可能存在大家都在延迟等待过程中,使得媒体仍可能处于空闲状态,媒体使用率降低。

p-坚持指的是对于监听信道空闲的处理。

p-坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:既能像非坚持算法那样减少冲突,又能像1-坚持算法那样减少媒体空闲时间的这种方案。

缺点:发生冲突后还是要坚持把数据帧发送完,造成了浪费。

载波监听多点接入/碰撞检测CSMA/CD(carrier sense multiple access with collision detection)

CSMA/CD的工作流程:

由图可知,至多在发送帧后经过时间 就能知道所发送的帧有没有发生碰撞。因此把以太网端到端往返时间为 称为争周期(也称冲突窗口或碰撞窗口)。

截断二进制指数规避算法:

最小帧长问题:帧的传输时延至少要两倍于信号在总线中的传播时延。

载波监听多点接入/碰撞避免CSMA/CA(carrier sense multiple access with collision avoidance)其工作原理如下

CSMA/CD与CSMA/CA的异同点:

相同点:CSMA/CD与CSMA/CA机制都从属于CSMA的思路,其核心是先听再说。换言之,两个在接入信道之前都须要进行监听。当发现信道空闲后,才能进行接入。

不同点:

轮询协议:主结点轮流“邀请”从属结点发送数据。

令牌:一个特殊格式的MAC控制帧,不含任何信息。控制信道的使用,确保同一时刻只有一个结点独占信道。每个结点都可以在一定的时间内(令牌持有时间)获得发送数据的权利,并不是无限制地持有令牌。应用于令牌环网(物理星型拓扑,逻辑环形拓扑)。采用令牌传送方式的网络常用于负载较重、通信量较大的网络中。

轮询访问MAC协议/轮流协议/轮转访问MAC协议:基于多路复用技术划分资源。

随机访问MAC协议: 用户根据意愿随机发送信息,发送信息时可独占信道带宽。 会发生冲突

信道划分介质访问控制(MAC Multiple Access Control )协议:既要不产生冲突,又要发送时占全部带宽。

局域网(Local Area Network):简称LAN,是指在某一区域内由多台计算机互联成的计算机组,使用广播信道。其特点有

决定局域网的主要要素为:网络拓扑,传输介质与介质访问控制方法。

局域网的分类

IEEE 802标准所描述的局域网参考模型只对应OSI参考模型的数据链路层与物理层,它将数据链路层划分为逻辑链路层LLC子层和介质访问控制MAC子层。

以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带总线局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术。 以太网只实现无差错接收,不实现可靠传输。

以太网两个标准:

以太网提供无连接、不可靠的服务

10BASE-T是传送基带信号的双绞线以太网,T表示采用双绞线,现10BASE-T 采用的是无屏蔽双绞线(UTP),传输速率是10Mb/s。

计算机与外界有局域网的连接是通过通信适配器的。

在局域网中,硬件地址又称为物理地址,或MAC地址。MAC地址:每个适配器有一个全球唯一的48位二进制地址,前24位代表厂家(由IEEE规定),后24位厂家自己指定。常用6个十六进制数表示,如02-60-8c-e4-b1-21。

最常用的MAC帧是以太网V2的格式。

IEEE 802.11是无线局域网通用的标准,它是由IEEE所定义的无线网络通信的标准。

广域网(WAN,Wide Area Network),通常跨接很大的物理范围,所覆盖的范围从几十公里到几千公里,它能连接多个城市或国家,或横跨几个洲并能提供远距离通信,形成国际性的远程网络。

广域网的通信子网主要使用分组交换技术。广域网的通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网,它将分布在不同地区的局域网或计算机系统互连起来,达到资源共享的目的。如因特网(Internet)是世界范围内最大的广域网。

点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的数据链路层协议,用户使用拨号电话接入因特网时一般都使用PPP协议。 只支持全双工链路。

PPP协议应满足的要求

PPP协议的三个组成部分

以太网交换机

冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。简单的说就是同一时间内只能有一台设备发送信息的范围。

广播域:网络中能接收任一设备发出的广播帧的所有设备的集合。简单的说如果站点发出一个广播信号,所有能接收收到这个信号的设备范围称为一个广播域。

以太网交换机的两种交换方式:

直通式交换机:查完目的地址(6B)就立刻转发。延迟小,可靠性低,无法支持具有不同速率的端口的交换。

存储转发式交换机:将帧放入高速缓存,并检查否正确,正确则转发,错误则丢弃。延迟大,可靠性高,可以支持具有不同速率的端口的交换。

㈢ 计算机网络:数据链路层

互联网是指很多异构的网络由路由器联系起来的一个大网络。在研究这个大网络之前,我们要庖丁解牛,先研究其局部和单元。最小的网络单元就是局域网,局域网是一个单位所拥有,且地理范围和站点数量都很有限。

局域网内的计算机通信不需要路由器,所以不会用到网络层的协议,而是依赖数据链路层。

上图说明了数据链路层在整个互联网体系中的位置。数据链路层的信道分为两种:

在点到点信道的数据链路层协议上,可以采用简化的三层模型。无论是主机和主机,主机和路由器,或者两个路由器之间,我们都可以看成结点和结点之间的通信。

数据链路层不必考虑物理层是如何实现比特传输的细节,我们甚至可以简单设想,节点A沿着数据链路层的水平方向把帧输出给结点B。

数据链路层的协议有多个,但有三个共性问题。

从上图可以得出以下结论:

利用转义字符(ESC,十六进制编码0x1B)来解决帧的数据部分包含控制字符的问题

信道往往不是理想的,所以通信会带来误差。常用误码率来衡量传输误差。误码率BER(bit error rate)等于错误的比特占全部比特的百分比。

那么我们怎么知道所接受到的帧有没有错误比特呢?这就需要校验机制,目前数据链路层广泛采用循环冗余校验CRC((Cyclic Rendancy Check)。其原理是在帧的数据部分后面加上冗余码(FCS),接受方利用冗余码校验数据部分。具体细节请参考《计算机网络》。

综上,封装成帧和透明传输保证收到完整的帧,差错检验保证收到正确的帧。这三种机制能保证帧的无差错传输,但不能保证可靠传输(发送什么就接收到什么)。造成不可靠传输的原因有两类:

1. 帧中的比特错误
2. 帧重复,帧丢失,帧失序
数据链路层的帧的三种机制只能消除第一种错误,至于第二种则需要确认和重传机制。在早期互联网中,数据链路层曾经保证可靠传输,但随着光纤技术的发展,误码率大大下降,数据链路层就采用了简单的不可靠传输协议,把可靠运输的实现放在了运输层中。实践证明,这样可以提高通信效率。

最后,我们可以看到,计算机网络本质是通信问题,里面包含了很多通信元素:完整,误差,校验,重复,丢失,失序,可靠传输等。

㈣ 计算机有线网络的几种常用拓扑结构图

计算机网络中常用的拓扑结构有总线型、星型、环型等。
①总线拓扑结构
总线拓扑结构是一种共享通路的物理结构。这种结构中总线具有信息的双向传输功能,普遍用于局域网的连接,总线一般采用同轴电缆或双绞线。
总线拓扑结构的优点是:安装容易,扩充或删除一个节点很容易,不需停止网络的正常工作,节点的故障不会殃及系统。由于各个节点共用一个总线作为数据通路,信道的利用率高。但总线结构也有其缺点:由于信道共享,连接的节点不宜过多,并且总线自身的故障可以导致系统的崩溃。
②星型拓扑结构
星型拓扑结构是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构。这种结构适用于局域网,特别是近年来连接的局域网大都采用这种连接方式。这种连接方式以双绞线或同轴电缆作连接线路。
星型拓扑结构的特点是:安装容易,结构简单,费用低,通常以集线器(Hub)作为中央节点,便于维护和管理。中央节点的正常运行对网络系统来说是至关重要的。
③环型拓扑结构
环型拓扑结构是将网络节点连接成闭合结构。信号顺着一个方向从一台设备传到另一台设备,每一台设备都配有一个收发器,信息在每台设备上的延时时间是固定的。
这种结构特别适用于实时控制的局域网系统。
环型拓扑结构的特点是:安装容易,费用较低,电缆故障容易查找和排除。有些网络系统为了提高通信效率和可靠性,采用了双环结构,即在原有的单环上再套一个环,使每个节点都具有两个接收通道。环型网络的弱点是,当节点发生故障时,整个网络就不能正常工作。
④树型拓扑结构
树型拓扑结构就像一棵“根”朝上的树,与总线拓扑结构相比,主要区别在于总线拓扑结构中没有“根”。这种拓扑结构的网络一般采用同轴电缆,用于军事单位、政府部门等上、下界限相当严格和层次分明的部门。
树型拓扑结构的特点:优点是容易扩展、故障也容易分离处理,缺点是整个网络对根的依赖性很大,一旦网络的根发生故障,整个系统就不能正常工作。

阅读全文

与计算机网络链路节点草图相关的资料

热点内容
网络词没眼看是什么意思 浏览:748
现在的情况哪个网络信号好 浏览:895
ios145网络信号 浏览:363
鸿蒙系统设置3g网络 浏览:914
网络电视如何看篮球赛 浏览:108
手机连接wifi没网络电脑也没网络 浏览:544
免费连接网络的软件排行 浏览:680
怎么样才能导致网络异常电话中断 浏览:525
网络音频录制软件 浏览:366
杭州中国移动网络公司 浏览:678
网络信息安全指哪些问题 浏览:87
两个网络插口互换路由器 浏览:35
电脑上的网络适配器怎么安装 浏览:361
网络工程软考高级考哪个好 浏览:284
海岛上网络信号怎么解决 浏览:974
计算机网络实验设置telnet 浏览:546
有线网络上不去什么原因 浏览:437
计算机网络基础教学心得 浏览:996
无线网络技术岗位 浏览:925
网络有多少人会送礼物 浏览:145

友情链接