导航:首页 > 网络连接 > 计算机网络课堂作业三

计算机网络课堂作业三

发布时间:2023-08-12 18:56:55

‘壹’ 计算机网络(三)——网络层

网络层的 目的 是实现在任意结点间进行数据报传输,它的目的与链路层、物理层不是一样的吗?但是通过它数据可以在更大的网络中传输。

为了能使数据更好地在更大的网络中传输,网络层主要实现三个功能: 异构网络互联 路由与转发 拥塞控制

我们知道,在物理层、链路层,可以使用不同的传输介质和拓扑结构将几台、十几台主机连接在一起形成一个小型的局域网,把这些组成结构不完全相同的局域网称为异构网,因此将它们连接扩大成更大的网络,需要一个类似转接头的设备——路由器,路由器不仅仅可以连接异构网,还能隔离冲突域和广播域,依照IP地址转发。

下图对集线器、网桥、交换机和路由器能否隔离冲突域和广播域进行比较:

路由器作为连接多个网络的结点,不仅需要完成对数据的分组转发,还要选择传输路径,因此路由器主要由 路由选择 分组转发 组成。

网络层最重要的功能是 路由与转发 功能。路由也就是选择一条合适的路,转发则是在这条路上遵守协议。这有点像从某个多个国家的交界城市自驾,选其中一条路,那么就遵守这个国家的交通协议。

数据通过一个又一个路由器到达目的地址,路由器怎么知道数据应该从哪个端口出发才能到达目的地呢?这就需要构造路由表。
路由表有两种构造方式: 静态 动态

一个个小网络可以构成一个区域,足够多的区域互连成一个网络,多个网络又形成巨大的互联网。要想让数据高效在网络中传输,采用“分而治之”的理念。
将互联网分为许多较小的自治系统,系统有权决定自己内部采用什么路由协议,这便是层次路由。通过层次路由便可以采用灵活的协议传输数据。数据在自治系统内传输采用 内部网关协议 而自治系统之间则采用 外部网关协议

内部网关协议有两种协议: 路由信息协议(RIP) 开放最短路径优先协议(OSPF)

外部网关协议则是边界网关协议(BGP)。内部网关协议服务某个自治系统,范围较小,所以尽可能有效地从源站送到目的站,也就是找到一条最佳路径。而外部网关协议需要面对更大的网络范围和网络环境,因此更关注的找到比较好的路径,也就是不能兜圈子。

BGP工作原理:

将三种路由协议进行比较:

构建大规模、异构网络的互联网除了硬件的支持外,还需要建立协议以实现数据报传输服务——IP协议。
目前IP协议有两个版本:IPv4和IPv6。

现在主流的IP协议版本还是IPv4。

IP数据报主要由首部和数据部分组成,由TCP报文段封装到数据部分,再在前端加上一些描述信息的首部,其格式如下图:

IP协议使用分组转发,当报文过大时需要分片。分片的思路如下:

如果把IP数据报看作是信,那么首部中的源地址与目的地址则分别是发信地址和邮件地址。为了方便路由计算这些地址,并且使IP地址足够使用,因此将IP地址进行分类。

IP地址的格式 : {<网络号>,<主机号>},网络号标志主机所连接的网络,主机号标志该主机,每个IP地址都是唯一的。

IP地址分类 如下:

通过分类,可以计算每个网络中最大的主机数:

网络地址转换(NAT)是一种转换机制,将专用网络地址转换为公用地址,目的是为了对外隐藏内部管理的IP地址,这样不仅可以保证网络安全,还可以解决IP地址不足问题。
当路由器接收到的目的地址是私有地址则一律不进行转发,而如果是公用地址,则是用NAT转换表将源IP及端口号映射成全球IP号,然后从WAN端口发送到因特网上。

IP地址有A、B、C类网络号,如果把A类网络号分给一个广播域,那么这个广播域可以接入16,777,212台主机,然而一个广播域不可能融入这么多台主机,因为这样会导致广播域过饱和而瘫痪,而只给其分配一定数量的网络号,则会浪费大量的IP地址。因此在IP地址中增加一个“子网号字段”,将IP地址划分为三级,即IP地址={<网络号>,<子网号>,<主机号>},也就是从主机号中借用几个比特号作为子网号,这个子网号是对内划分的,对外仍旧表现为二级IP地址。

主机或路由器如何判断一个网络是否进行子网划分了呢?——利用子网掩码。

CIDR是 无分类 域间路由器选择,目的是消除A、B、C类网络划分,这样可以大幅度提高IP地址空间利用率。相比较子网掩码划分,它更加灵活。

上图中,如果R1收到前缀为206.1的IP地址,它只需要转发给R2,具体发往网络1还是网络2,则由R2计算得出。

通过IP地址,可以将数据从某个网络传输到目的网络,但是把信息发送给哪台主机呢?由于路由器的隔离,IP网路没办法使用广播方式查找MAC地址,只有通过链路层的MAC地址以广播方式寻址。
因此,IP协议还包括三个协议—— ARP、DHCP和ICMP ,共同配合完成数据转发。

IPv6是解决IP地址耗尽的根本手段。它与IPv4的报文形式差别如下图:

IPv6与IPv4地址通信示意图:

在通信过程中,如果分组过量而导致网路性能下降,会产生拥塞。

拥塞的控制方式:

‘贰’ 计算机网络技术题目3

1\TCP/IP协议族中包括上百个互为关联的协议,不同功能的协议分布在不同的协议层, 3个常用协议如下:
1、Telnet(Remote Login):提供远程登录功能,一台计算机用户可以登录到远程的另一台计算机上,如同在远程主机上直接操作一样。
2、FTP(File Transfer Protocol):远程文件传输协议,允许用户将远程主机上的文件拷贝到自己的计算机上。
3、SMTP(Simple Mail transfer Protocol):简单邮政传输协议,用于传输电子邮件。
协议(protocol)是指两个或两个以上实体为了开展某项活动,经过协商后达成的一致意见。协议总是指某一层的协议。准确地说,它是在同等层之间的实体通信时,有关通信规则和约定的集合就是该层协议,例如物理层协议、传输层协议、应用层协议。
面向连接的服务和无连接服务

网络提供的服务分两种: 面向连接的服务和无连接的服务.

对于无连接的服务(邮寄), 发送信息的计算机把数据以一定的格式封装在帧中, 把目的地址和源地址加在信息头上, 然后把帧交给网络进行发送. 无连接服务是不可靠的.

对于面向连接的服务(电话), 发送信息的源计算机必须首先与接收信息的目的计算机建立连接. 这种连接是通过三次握手(three hand shaking)的方式建立起来的. 一旦连接建立起来, 相互连接的计算机就可以进行数据交换. 与无连接服务不同, 面向连接的服务是以连接标识符来表示源地址和目的地址的. 面向连接的服务是可靠的, 当通信过程中出现问题时, 进行通信的计算机可以得到及时通知
英文原义:NetBIOS Extend User Interface 中文释义:NetBIOS用户扩展接口协议 NetBEUI即NetBios Enhanced User Interface ,或NetBios增强用户接口。它是NetBIOS协议的增强版本,曾被许多操作系统采用,例如Windows for Workgroup、Win 9x系列、Windows NT等。NETBEUI协议在许多情形下很有用,是WINDOWS98之前的操作系统的缺省协议。总之NetBEUI协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置,特别适合于在“网络邻居”传送数据。所以建议除了TCP/IP协议之外,局域网的计算机最好也安上NetBEUI协议。 NETBEUI是为IBM开发的非路由协议,用于携带NETBIOS通信。NETBEUI缺乏路由和网络层寻址功能,既是其最大的优点,也是其最大的缺点。因为它不需要附加的网络地址和网络层头尾,所以很快并很有效且适用于只有单个网络或整个环境都桥接起来的小工作组环境。 因为不支持路由,所以NETBEUI永远不会成为企业网络的主要协议。NETBEUI帧中唯一的地址是数据链路层媒体访问控制(MAC)地址,该地址标识了网卡但没有标识网络。路由器靠网络地址将帧转发到最终目的地,而NETBEUI帧完全缺乏该信息。 网桥负责按照数据链路层地址在网络之间转发通信,但是有很多缺点。因为所有的广播通信都必须转发到每个网络中,所以网桥的扩展性不好。NETBEUI特别包括了广播通信的记数并依赖它解决命名冲突。一般而言,桥接NETBEUI网络很少超过100台主机。 近年来依赖于第二层交换器的网络变得更为普遍。完全的转换环境降低了网络的利用率,尽管广播仍然转发到网络中的每台主机。事实上,联合使用100-BASE-T Ethernet,允许转换NetBIOS网络扩展到350台主机,才能避免广播通信成为严重的问题。
[编辑本段]IPX/SPX协议概述
现在解释一下这种应用很广的网络协议。 IPX(Internet work Packet Exchange,互联网络数据包交换)是一个专用的协议簇,它主要由Novell NetWare操作系统使用。IPX是IPX协议簇中的第三层协议。 以下我们列出IPX协议的要点,作为IPX相关实验前的准备。
[编辑本段]1.IPX的协议构成
IPX协议簇包括如下主要协议: ●IPX:第三层协议,用来对通过互联网络的数据包进行路由选择和转发,它指定一个无连接的数据报,相当于TCP/IP协议簇中的IP协议; ●SPX:顺序包交换 (Sequenced Packet Exchange)协议。是IPX协议簇中的第四层的面向连接的协议,相当于TCP/IP协议簇中的TCP协议; ●NCP:NetWare核心协议(NetWare Core Protocol),提供从客户到服务器的连接和应用; ●SAP:服务通告协议 (Service Advertising Protocol),用来在IPX网络上通告网络服务; ●IPX RIP:Novell路由选择信息协议(Routing Information Protocol),完成路由器之间路由信息的交换并形成路由表。
[编辑本段]2.IPX编址
IPX网络的地址长度为80位 (bit,由两部分构成,第一部分是32位的网络号,第二部分是48位的节点号。IPX地址通常用十六进制数来表示。 IPX网络号是由网管人员分配的,可以根据需要来定义网络号。 IPX节点号通常是网络接口本身的MAC地址。
[编辑本段]3.IPX协议在以太网上的封装
IPX协议在以太网上支持以下4种封装格式,也称为帧格式,它们是: ●以太网802.3:也叫原始以太网,Cisco设备中称为"novell-ether",它是NetWare版本2到版本3.1中缺省的帧格式; ●以太网802.2,也称sap,是标准的IEEE帧格式,它是NetWare版本3.12到4.x中的标准帧格式; ●以太网II,也称arpa,采用标准以太网版本II的头格式; ●以太网SNAP(子网访问协议),或snap,通过增加一个于网接入协议(SNAP)扩展了IEEE 802.2的头格式。 采用不同IPX封装格式的设备之间不能进行通信。
[编辑本段]4.IPX服务通告
SAP是IPX服务通告协议,它可以通告诸如网络服务器和打印服务器等网络资源设备的地址和所能提供的服务。 路由器可以监听SAP更新消息,建立一个已知服务和相应网络地址的对应表。客户机可以利用路由器上的SAP表得到网上服务和地址的信息,从而直接访问相应服务。

‘叁’ 解决下10道网络信息安全课的在线作业

1、物理安全

物理安全是指防止意外事件或人为破坏具体的物理设备,如服务器、交换机、路由器、机柜、线路等。机房和机柜的钥匙一定要管理好,不要让无关人员随意进入机房,尤其是网络中心机房,防止人为的蓄意破坏。

2、设置安全

设置安全是指在设备上进行必要的设置(如服务器、交换机的密码等),防止黑客取得硬件设备的远程控制权。比如许多网管往往没有在服务器或可网管的交换机上设置必要的密码,懂网络设备管理技术的人可以通过网络来取得服务器或交换机的控制权,这是非常危险的。因为路由器属于接入设备,必然要暴露在互联网黑客攻击的视野之中,因此需要采取更为严格的安全管理措施,比如口令加密、加载严格的访问列表等。

软件系统的安全防护

同硬件系统相比,软件系统的安全问题是最多的,也是最复杂的。

现在TCP/IP协议广泛用于各种网络。但是TCP/IP协议起源于Internet,而Internet在其早期是一个开放的为研究人员服务的网际网,是完全非赢利性的信息共享载体,所以几乎所有的Internet协议都没有考虑安全机制。网络不安全的另一个因素是因为人们很容易从Internet上获得相关的核心技术资料,特别是有关Internet自身的技术资料及各类黑客软件,很容易造成网络安全问题。

安全防护的措施

面对层出不穷的网络安全问题我们也并非无计可施,可从以下几个方面着手,就能够做到防患于未然。

1、安装补丁程序

任何操作系统都有漏洞,作为网络系统管理员就有责任及时地将“补丁”(Patch)打上。大部分中小企业服务器使用的是微软的Windows NT/2000/2003操作系统,因为使用的人特别多,所以发现的Bug也特别多,同时,蓄意攻击它们的人也特别多。微软公司为了弥补操作系统的安全漏洞,在其网站上提供了许多补丁,可以到网上下载并安装相关升级包。对于Windows2003,至少要升级到SP1,对于Windows 2000,至少要升级至Service Pack 2,对于Windows NT 4.0,至少要升级至Service Pack 6。

2、安装和设置防火墙

现在有许多基于硬件或软件的防火墙,如华为、神州数码、联想、瑞星等厂商的产品。对于企业内部网来说,安装防火墙是非常必要的。防火墙对于非法访问具有很好的预防作用,但是并不是安装了防火墙之后就万事大吉了,而是需要进行适当的设置才能起作用。如果对防火墙的设置不了解,需要请技术支持人员协助设置。

3、安装网络杀毒软件

现在网络上的病毒非常猖獗,想必大家都尝到了“尼姆达”病毒的厉害。这就需要在网络服务器上安装网络版的杀毒软件来控制病毒的传播,目前,大多数反病毒厂商(如瑞星、冠群金辰、趋势、赛门铁克、熊猫等)都已经推出了网络版的杀毒软件;同时,在网络版的杀毒软件使用中,必须要定期或及时升级杀毒软件。

4、账号和密码保护

账号和密码保护可以说是系统的第一道防线,目前网上的大部分对系统的攻击都是从截获或猜测密码开始的。一旦黑客进入了系统,那么前面的防卫措施几乎就没有作用,所以对服务器系统管理员的账号和密码进行管理是保证系统安全非常重要的措施。

系统管理员密码的位数一定要多,至少应该在8位以上,而且不要设置成容易猜测的密码,如自己的名字、出生日期等。对于普通用户,设置一定的账号管理策略,如强制用户每个月更改一次密码。对于一些不常用的账户要关闭,比如匿名登录账号。

5、监测系统日志

通过运行系统日志程序,系统会记录下所有用户使用系统的情形,包括最近登录时间、使用的账号、进行的活动等。日志程序会定期生成报表,通过对报表进行分析,你可以知道是否有异常现象。

6、关闭不需要的服务和端口

服务器操作系统在安装的时候,会启动一些不需要的服务,这样会占用系统的资源,而且也增加了系统的安全隐患。对于假期期间完全不用的服务器,可以完全关闭;对于假期期间要使用的服务器,应关闭不需要的服务,如Telnet等。另外,还要关掉没有必要开的TCP端口。

7、定期对服务器进行备份

为防止不能预料的系统故障或用户不小心的非法操作,必须对系统进行安全备份。除了对全系统进行每月一次的备份外,还应对修改过的数据进行每周一次的备份。同时,应该将修改过的重要系统文件存放在不同的服务器上,以便出现系统崩溃时(通常是硬盘出错),可及时地将系统恢复到正常状态。

‘肆’ 计算机网络简答题(3题)

1、什么是计算机网络?计算机网络的主要功能是什么?
2、TCP/IP协议模型分为几层?每层包含什么协议?
3、网络协议的三要素是什么?

1 计算机网络,是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。

2 TCP/IP整体构架概述

TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:

应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。

传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。

互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。

网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。

TCP/IP中的协议

以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的:

1. IP

网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。

IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。

高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好像是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。

2. TCP

如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。

TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。

面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。

3.UDP

UDP与TCP位于同一层,但对于数据包的顺序错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网络时间协议)和DNS(DNS也使用TCP)。

欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。

4.ICMP

ICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。

5. TCP和UDP的端口结构

TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。

两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:

源IP地址 发送包的IP地址。

目的IP地址 接收包的IP地址。

源端口 源系统上的连接的端口。

目的端口 目的系统上的连接的端口。

端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。

相信大家都听说过TCP/IP这个词,这个词好像无处不在,时时都会在你面前跳出来。那TCP/IP到底是什么意思呢?

TCP/IP其实是两个网络基础协议:IP协议、TCP协议名称的组合。下面我们分别来看看这两个无处不在的协议。

IP协议

IP(Internet Protocol)协议的英文名直译就是:因特网协议。从这个名称我们就可以知道IP协议的重要性。在现实生活中,我们进行货物运输时都是把货物包装成一个个的纸箱或者是集装箱之后才进行运输,在网络世界中各种信息也是通过类似的方式进行传输的。IP协议规定了数据传输时的基本单元和格式。如果比作货物运输,IP协议规定了货物打包时的包装箱尺寸和包装的程序。 除了这些以外,IP协议还定义了数据包的递交办法和路由选择。同样用货物运输做比喻,IP协议规定了货物的运输方法和运输路线。

TCP协议

我们已经知道了IP协议很重要,IP协议已经规定了数据传输的主要内容,那TCP(Transmission Control Protocol)协议是做什么的呢?不知大家发现没有,在IP协议中定义的传输是单向的,也就是说发出去的货物对方有没有收到我们是不知道的。就好像8毛钱一份的平信一样。那对于重要的信件我们要寄挂号信怎么办呢?TCP协议就是帮我们寄“挂号信”的。TCP协议提供了可靠的面向对象的数据流传输服务的规则和约定。简单的说在TCP模式中,对方发一个数据包给你,你要发一个确认数据包给对方。通过这种确认来提供可靠性。

TCP/IP(Transmission Control Protocol/Internet Protocol的简写,中文译名为传输控制协议/互联网络协议)协议是Internet最基本的协议,简单地说,就是由底层的IP协议和TCP协议组成的。TCP/IP协议的开发工作始于70年代,是用于互联网的第一套协议。

3 网络协议三要素:语法 语义 同步

‘伍’ 计算机网络(3)| 数据链路层

数据链路层属于计算机网络的低层。数据链路层使用的信道主要是两种类型:
(1)点对点信道 。即信道使用的是一对一点对点通信方式。
(2)广播信道 。这种信道使用的是一对多的光播通信方式,相对复杂。在广播信道上连接的主机很多,因此必须使用专用的共享信道协议来协调这些主机的数据发送。

首先我们应该了解一些有关点对点信道的一点基本概念。
(1)数据链路 。值得是当我们需要在一条线路上传送数据时,除了有一条物理线路外(链路),还必须有一些必要的通信协议来控制这些数据的传输,若把实现这些协议的硬件和软件加到链路上就构成了数据链路。
(2)帧 。帧指的是点对点信道的数据链路层的协议数据单元,即数据链路层把网络层交下来的数据构成帧发送到链路上以及把接收到的帧中的数据取出并上交给网络层。

点对点信道的数据链路层在进行通信时的主要步骤如下:
(1)结点A的数据链路层把网络层交下来的IP数据报添加首部和尾部封装成帧。
(2)结点A把封装好的帧发送给结点B的数据链路层。
(3)若B接收的帧无差错,则从接收的帧中提取出IP数据报上交给上面的网络层;否则丢弃这个帧。

接下来是来介绍数据链路层的三个基本问题,而这三个问题对于各种数据链路层的协议都是通用的。

(1)封装成帧 。指的是在一段数据的前后分别添加首部和尾部,这样就构成了一个帧,从而能够作为数据链路层的基本单位进行数据传输。在发送帧时,是从帧的首部开始发送的。各种数据链路层协议都对帧首部和帧尾部的格式有着明确的规定,且都规定了所能传送的 帧的数据部分 长度上限—— 最大传送单元MTU 。首部和尾部的作用是进行帧定界,帧定界可以使用特殊的 帧定界符 ,当数据在传输中出现差错时,通过帧的帧定界符就可以知道收到的数据是一个不完整的帧(即只有首部开始符而没有结束符)。

(2)透明传输 。从上面的介绍中知道帧的开始和结束标记使用了专门的控制字符,因此所传输的数据中任何与帧定界符相同的比特编码是不允许出现的,否则就会出现帧定界错误。当传送的帧是用文本文件组成的帧时,它的数据部分一定不会出现和帧定界符相同的字符,这样的传输就叫做 透明传输 。为了解决其他类型文件传输时产生的透明传输问题,就将帧定界符的前面插入一个 转义字符ESC ,这种方法称为 字节填充 。如果转义字符也出现在数据中,就在转义字符前面加上一个转义字符,当接收端收到两个转义字符时,就删除前面的那一个。

(3)差错检测 。在现实中,通信链路都不会是完美的,在传输比特的过程当中都是会产生差错的,1变成0或者0变成1都是可能发生的,我们把这样的错误叫做差错检测。在数据链路层中,为了保证数据传输的可靠性,减少差错出现的数量,就会采用各种差错检测措施,目前最常使用的检错技术是 循环冗余校验 。它的原理简单来说就是在被传输的数据M后面添加供错检测用的n为冗余码,构成一个帧数据发送出去。关于n位冗余码的得出方式与检验方式,可以 点击这里进一步了解 。

对于点对点链路,点对点协议PPP是目前使用得最广泛的数据链路层协议。由于因特网的用户通常都要连接到某个ISP才能接入到因特网,PPP协议就是用户计算机和ISP进行通信所使用的数据链路层协议。

在设计PPP协议时必须要考虑以下多方面的需求:
(1)简单 。简单的设计可使协议在实现时不容易出错,这样使得不同厂商对协议的不同实现的互操作性提高了。
(2)封装成帧 。PPP协议必须规定特殊的字符作为帧定界符(即标志一个帧的开始和结束的字符),以便使接收端从收到的比特流中能准确的找出帧的开始和结束的位置。
(3)透明性 。PPP协议必须保证数据传输的透明性。如果说是数据中碰巧出现和帧定界符一样的比特组合时,就要采用必要的措施来解决。
(4)多种网络层协议 。PPP协议必须能够在同一条物理链路上同时支持多种网络层协议(IP和IPX等)的运行。
(5)多种类型链路 。除了要支持多种网络层的协议外,PPP还必须能够在多种链路上运行(串行与并行链路)。
(6)差错检测 。PPP协议必须能够对接收端收到的帧进行检测,并舍弃有差错的帧。
(7)检测连接状态 。必须具有一种机制能够及时(不超过几分钟)自动检测出链路是否处于正常工作状态。
(8)最大传送单元 。协议对每一种类型的点对点链路设置最大传送单元MTU。
(9)网络层地址协商 。协议必须提供一种机制使通信的两个网络层(如两个IP层)的实体能够通过协商知道或能够配置彼此的网络层地址。
(10)数据压缩协商 。协议必须能够提供方法来协商使用数据压缩算法。但PPP协议不要求将数据压缩算法进行标准化。

PPP协议主要是由三个方面组成的:
(1) 一个将IP数据报封装到串行链路的方法。
(2) 一个用来建立、配置和测试数据链路连接的链路控制协议LCP(Link Control Protocol)。
(3) 一套网络控制协议NCP(Network Control Protocol),其中的每一个协议支持不同的网络层协议,如IP、OSI的网络层、DECnet,以及AppleTalk等。

最后来介绍PPP协议帧的格式:

首先是各个字段的意义。首部中的地址字段A规定为0xFF,控制字段C规定为0x03,这两个字段并没有携带PPP帧的信息。首部的第一个字段和尾部的第二个字段都是标识字段F(Flag)。首部的第四个字段是2字节的协议字段。当协议字段为0x0021时,PPP帧的信息部分字段就是IP数据报。若为0xC021,则信息字段是PPP链路控制协议LCP的数据,而 0x8021表示这是网络层的控制数据。尾部中的第一个字段(2字节)是使用CRC的帧检验序列FCS。

接着是关于PPP协议的差错检测的方法,主要分为字节填充和零比特填充。当是PPP异步传输时,采用的是字节填充的方法。字节填充是指当信息字段中出现和标志字段一样的比特(0x7E)组合时,就必须采取一些措施使这种形式上和标志字段一样的比特组合不出现在信息字段中。而当PPP协议使用的是同步传输时,就会采用零比特填充方法来实现透明传输,即只要发现有5个连续1,则立即填入一个0的方法。

广播信道可以进行一对多的通信。由于局域网采用的就是广播通信,因此下面有关广播通信的讨论就是基于局域网来进行的。

首先我们要知道局域网的主要 特点 ,即网络为一个单位所拥有,且地理范围和站点数目均有限。在局域网才出现时,局域网比广域网有着较高的数据率、较低的时延和较小的误码率。

局域网的 优点 主要有一下几个方面:
(1) 具有广播功能,从一个站点可方便地访问全网。
(2) 便于系统的扩展和逐渐地演变,各设备的位置可灵活地调整和改变。
(3) 提高了系统的可靠性(reliability)、可用性(availibility)、生存性(survivability)。

关于局域网的分类,我们一般是对局域网按照网络拓扑进行分类:
1.星状网: 由于集线器的出现和双绞线大量用于局域网中,星形以太网和多级星形结构的以太网获得了非常广泛的应用。
2.环形网: 顾名思义,就是将各个主机像环一样串起来的拓扑结构,最典型的就是令牌环形网。
3.总线网: 各站直接连在总线上。总线两端的匹配电阻吸收在总线上传播的电磁波信号的能量,避免在总线上产生有害的电磁波反射。

以太网主要有两个标准,即DIX Ethernet V2和IEEE 802.3标准,这两种标准的差别很小,可以不是很严格的区分它们。

但是由于有关厂商的商业上的激烈竞争,导致IEEE 802委员会未能形成一个最佳的局域网标准而制定了几个不同的局域网标准,所以为了数据链路层能够更好的适应各种不同的标准,委员会就把局域网的数据链路层拆成两个子层: 逻辑链路控制LLC子层 媒体接入控制MAC子层

计算机与外界局域网的连接是通过通信适配器(adapter)来进行的。适配器本来是在电脑主机箱内插入的一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡),这种接口板又称为网络接口卡NIC(Network Interface Card)或简称为网卡。适配器和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的,而适配器和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行的,因此适配器的一个重要功能就是要进行数据串行传输和并行传输的转换。由于网络上的数据率和计算机总线上的数据率并不相同,所以在适配器中必须装有对数据进行缓存的存储芯片。若在主板上插入适配器时,还必须把管理该适配器的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉适配器,应当从存储器的什么位置上把多长的数据块发送到局域网,或应当在存储器的什么位置上把局域网传送过来的数据块存储下来。适配器还要能够实现以太网协议。

要注意的是,适配器在接收和发送各种帧时是不使用计算机的CPU的,所以这时计算机中的CPU可以处理其他的任务。当适配器收到有差错的帧时,就把这个帧丢弃而不必通知计算机,而当适配器收到正确的帧时,它就使用中断来通知该计算机并交付给协议栈中的网络层。当计算机要发送IP数据报时,就由协议栈把IP数据报向下交给适配器,组装成帧后发送到局域网。特别注意: 计算机的硬件地址—MAC地址,就在适配器的ROM中。计算机的软件地址—IP地址,就在计算机的存储器中。

CSMA/CD协议主要有以下3个要点:
1.多点接入 :指的是这是总线型网络,许多计算机以多点接入的方式连接在一根总线上。
2.载波监听 :就是用电子技术检测总线上有没有其他的计算机也在发送。载波监听也称为检测信道,也就是说,为了获得发送权,不管在发送前,还是在发送中,每一个站都必须不停的检测信道。如果检测出已经有其他站在发送,则自己就暂时不发送数据,等到信道空闲时才发送数据。而在发送中检测信道是为了及时发现有没有其他站的发送和本站发送的碰撞。
3.碰撞检测 :也就是边发送边监听。适配器一边发送数据一边检测信道上的信号电压的变化情况,以便判断自己在发送数据时其他站是否也在发送数据。所谓碰撞就是信号之间产生了冲突,这时总线上传输的信号严重失真,无法从中恢复出有用的信息来。

集线器的一些特点如下:
(1)使用集线器的以太网在逻辑上仍然是一个总线网,各个站点共享逻辑上的总线,使用的还是CSMA/CD协议。
(2)一个集线器是有多个接口。一个集线器就像一个多接口的转发器。
(3)集线器工作在物理层,所以它的每一个接口仅仅是简单的转发比特。它不会进行碰撞检测,所以当两个接口同时有信号的输入,那么所有的接口都将收不到正确的帧。
(4)集线器自身采用了专门的芯片来进行自适应串音回波抵消。这样可使接口转发出去的较强的信号不致对该接口收到的较弱信号产生干扰。
(5)集线器一般都有少量的容错能力和网络管理能力,也就是说如果在以太网中有一个适配器出现了故障,不停地发送以太网帧,这是集线器可以检测到这个问题从而断开与故障适配器的连线。

在局域网中,硬件地址又称为物理地址或者MAC地址,这种地址是用在MAC帧中的。由于6字节的地址字段可以使全世界所有的局域网适配器具有不同的地址,所以现在的局域网适配器都是使用6字节MAC地址。

主要负责分配地址字段的6个字节中的前3个字节。世界上凡事要生产局域适配器的厂家都必须向IEEE购买这3个字节构成的地址号,这个地址号我们通常叫做 公司标识符 ,而地址字段的后3个字节则由厂家自行指派,称为 扩展标识符

IEEE规定地址字段的第一字节的最低位为I/G位。当I/G位为0时,地址字段表示一个单个站地址,而当I/G位为1时表示组地址,用来进行多播。所以IEEE只分配地址字段前三个字节中的23位,当I/G位分别为0和1时,一个地址块可分别生 2^24 个单个站地址和2^24个组地址。IEEE还把地址字段第1个字节的最低第二位规定为G/L位。当G/L位为0时是全球管理,来保证在全球没有相同的地址,厂商向IEEE购买的都属于全球管理。当地址段G/L位为1时是本地管理,这时用户可以任意分配网络上的地址,但是以太网几乎不会理会这个G/L位的。

适配器对MAC帧是具有的过滤功能的,当适配器从网络上每收到一个MAC帧就先用硬件检查MAC帧中的目的地址。如果是发往本站的帧则收下,然后再进行其他的处理,否则就将此帧丢弃。这样做就可以不浪费主机的处理机和内存资源这里发往本站的帧包括以下三种帧:
(1)单播帧:即收到的帧的MAC地址与本站的硬件地址相同。
(2)广播帧:即发送给本局域网上所有站点的帧。
(3)多播帧:即发送给本局域网上一部分站点的帧。

常用的以太网MAC帧格式是以太网V2的MAC帧格式。如下图:

可以看到以太网V2的MAC帧比较的简单,有五个字段组成。前两个字段分别为6字节长的目的地址和源地址字段。第三个字段是2字节的类型字段,用来标志上一层使用的是什么协议,以便把收到的MAC帧的数据上交给上一层的这个协议。下一个字段是数据字段,其长度在46到1500字节之间。最后一个字段是4字节的帧检验序列FCS(使用CRC检验)。

从图中可以看出,采用以太网V2的MAC帧并没有一个结构来存储一个数据的帧长度。这是由于在曼彻斯特编码中每一个码元的正中间一定有一次电压的转换,如果当发送方在发送完一个MAC帧后就不再发送了,则发送方适配器的电压一定是不会在变化的。这样接收方就可以知道以太网帧结束的位置,在这个位置减去FCS序列的4个字节,就可以知道帧的长度了。

当数据字段的长度小于42字节时,MAC子层就会在MAC帧后面加入一个整数字节来填充字段,来保证以太网的MAC帧的长度不小于64字节。当MAC帧传送给上层协议后,上层协议必须具有能够识别填充字段的功能。当上层使用的是IP协议时,其首部就有一个总长度字段,因此总长度加上填充字段的长度,就是MAC帧的数据字段的长度。

从图中还可以看出,在传输MAC帧时传输媒体上实际是多发送了8个字节,这是因为当MAC帧开始接收时,由于适配器的时钟尚未与比特流达成同步,因此MAC帧的最开始的部分是无法接收的,结果就是会使整个MAC成为无用帧。所以为了接收端能够迅速的与比特流形成同步,就需要在前面插入这8个字节。这8个字节是由两个部分组成的,第一个部分是由前7个字节构成的前同步码,它的主要作用就是就是实现同步。第二个部分是帧开始界定符,它的作用就是告诉接收方MAC帧马上就要来了。需要注意的是,帧与帧之间的传输是需要一定的间隔的,否则接收端在收到了帧开始界定符后就会认为后面的都是MAC帧而会造成错误。

以太网上的主机之间的距离不能太远,否则主机发送的信号经过铜线的传输就会衰减到使CSMA/CD协议无法正常工作,所以在过去常常使用工作在物理层的转发器来拓展以太网的地理覆盖范围。但是现在随着双绞线以太网成为以太网的主流类型,拓展以太网的覆盖范围已经很少使用转发器,而是使用光纤和一对光纤调制解调器来拓展主机和集线器之间的距离。

光纤解调器的作用是进行电信号与光信号的转换。由于光纤带来的时延很小,并且带宽很宽,所以才用这种方法可以很容易地使主机和几公里外的集线器相连接。

如果是使用多个集线器,就可以连接成覆盖更大范围的多级星形结构的以太网:

使用多级星形结构的以太网不仅能够让连接在不同的以太网的计算机能够进行通信,还可以扩大以太网的地理覆盖范围。但是这样的多级结构也带来了一些缺点,首先这样的结构会增大它们的碰撞域,这样做会导致图中的某个系的两个站在通信时所传送的数据会通过所有的集线器进行转发,使得其他系的内部在这时都不能进行通信。其次如果不同的以太网采用的是不同的技术,那么就不可能用集线器将它们互相连接起来。

拓展以太网的更常用的方法是在数据链路层中进行的,在开始时人们使用的是网桥。但是现在人们更常用的是 以太网交换机

以太网交换机实质上是一个多接口的网桥,通常是有十几个或者更多的接口,而每一个接口都是直接与一个单台主机或者另一个以太网交换机相连。同时以太网交换机还具有并行性,即能同时连通多对接口,使多对主机能同时通信,对于相互通信的主机来说都是独占传输媒体且无碰撞的传输数据。

以太网交换机的接口还有存储器,能够在输出端口繁忙时把到来的帧进行缓存,等到接口不再繁忙时再将缓存的帧发送出去。

以太网交换机还是一种即插即用的设备,它的内部的地址表是通过自学习算法自动的建立起来的。以太网交换机由于使用了专用的交换结构芯片,用硬件转发,它的转发速率是要比使用软件转发的网桥快很多。

如下图中带有4个接口的以太网交换机,它的4个接口各连接一台计算机,其MAC地址分别为A、B、C、D。在开始时,以太网交换机里面的交换表是空的。

首先,A先向B发送一帧,从接口1进入到交换机。交换机收到帧后,先查找交换表,但是没有查到应从哪个接口转发这个帧,接着交换机把这个帧的源地址A和接口1写入交换表中,并向除接口1以外的所有接口广播这个帧。C和D因为目的地址不对会将这个帧丢弃,只有B才收下这个目的地址正确的帧。从新写入的交换表(A,1)可以得出,以后不管从哪一个接口收到帧,只要其目的地址是A,就应当把收到的帧从接口1转发出去。以此类推,只要主机A、B、C也向其他主机发送帧,以太网交换机中的交换表就会把转发到A或B或C应当经过的借口号写入到交换表中,这样交换表中的项目就齐全了,以后要转发给任何一台主机的帧,就都能够很快的在交换表中找到相应的转发接口。

考虑到有时可能要在交换机的接口更换主机或者主机要更换其网络适配器,这就需要更改交换表中的项目,所以交换表中每个项目都设有一定的有效时间。

但是这样的自学习有时也会在某个环路中无限制的兜圈子,如下图:

假设一开始主机A通过接口交换机#1向主机B发送一帧。交换机#1收到这个帧后就向所有其他接口进行广播发送。其中一个帧的走向:离开#1的3->交换机#2的接口1->接口2->交换机#1的接口4->接口3->交换机#2的接口1......一直循环下去,白白消耗网络资源。所以为了解决这样的问题,IEEE制定了一个生成树协议STP,其要点就是不改变网络的实际拓扑,但在逻辑上切断某些链路,从而防止出现环路。

虚拟局域网VLAN是由一些局域网网段构成的与物理位置无关的逻辑组,而这些网段具有某些共同的需求。每一个VLAN的帧都有一个明确的标识符,指明发送这个帧的计算机属于VLAN。要注意虚拟局域网其实只是局域网给用户提供的一种服务,而不是一种新型局域网。

现在已经有标准定义了以太网的帧格式的扩展,以便支持虚拟局域网。虚拟局域网协议允许在以太网的帧格式中插入一个4字节的标识符,称为VLAN标记,它是用来指明发送该帧的计算机属于哪一个虚拟局域网。VLAN标记字段的长度是4字节,插入在以太网MAC帧的源地址字段和类型字段之间。VLAN标记的前两个字节总是设置为0x8100,称为IEEE802.1Q标记类型。当数据链路层检测到MAC帧的源地址字段后面的两个字节的值是0x8100时,就知道现在插入了4字节的VLAN标记。于是就接着检查后面两个字节的内容,在后面的两个字节中,前3位是用户优先级字段,接着的一位是规范格式指示符CFI,最后的12位是该虚拟局域网VLAN标识符VID,它唯一的标志了这个以台网属于哪一个VLAN。

高速以太网主要是分为三种,即100BASE-T以太网、吉比特以太网和10吉比特以太网:

‘陆’ 计算机网络(三)数据链路层

结点:主机、路由器

链路:网络中两个结点之间的物理通道,链路的传输介质主要有双绞线、光纤和微波。分为有线链路、无线链路。

数据链路:网络中两个结点之间的逻辑通道,把实现控制数据传输协议的硬件和软件加到链路上就构成数据链路。

帧:链路层的协议数据单元,封装网络层数据报。

数据链路层负责通过一条链路从一个结点向另一个物理链路直接相连的相邻结点传送数据报。

数据链路层在物理层提供服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。其主要作用是加强物理层传输原始比特流的功能,将物理层提供的可能出错的物理连接改造成为 逻辑上无差错的数据链路 ,使之对网络层表现为一条无差错的链路。

封装成帧就是在一段数据的前后部分添加首部和尾部,这样就构成了一个帧。接收端在收到物理层上交的比特流后,就能根据首部和尾部的标记,从收到的比特流中识别帧的开始和结束。首部和尾部包含许多的控制信息,他们的一个重要作用:帧定界(确定帧的界限)。

帧同步:接收方应当能从接收到的二进制比特流中区分出帧的起始和终止。

组帧的四种方法:

透明传输是指不管所传数据是什么样的比特组合,都应当能够在链路上传送。因此,链路层就“看不见”有什么妨碍数据传输的东西。

当所传数据中的比特组合恰巧与某一个控制信息完全一样时,就必须采取适当的措施,使收方不会将这样的数据误认为是某种控制信息。这样才能保证数据链路层的传输是透明的。

概括来说,传输中的差错都是由于噪声引起的。

数据链路层编码和物理层的数据编码与调制不同。物理层编码针对的是单个比特,解决传输过程中比特的同步等问题,如曼彻斯特编码。而数据链路层的编码针对的是一组比特,它通过冗余码的技术实现一组二进制比特串在传输过程是否出现了差错。

较高的发送速度和较低的接收能力的不匹配,会造成传输出错,因此流量控制也是数据链路层的一项重要工作。数据链路层的流量控制是点对点的,而传输层的流量控制是端到端的。

滑动窗口有以下重要特性:

若采用n个比特对帧编号,那么发送窗口的尺寸W T 应满足: 。因为发送窗口尺寸过大,就会使得接收方无法区别新帧和旧帧。

每发送完一个帧就停止发送,等待对方的确认,在收到确认后再发送下一个帧。

除了比特出差错,底层信道还会出现丢包 [1] 问题

“停止-等待”就是每发送完一个分组就停止发送,等待对方确认,在收到确认后再发送下一个分组。其操作简单,但信道利用率较低

信道利用率是指发送方在一个发送周期内,有效地发送数据所需要的时间占整个发送周期的比率。即

GBN发送方:

GBN接收方:

因连续发送数据帧而提高了信道利用率,重传时必须把原来已经正确传送的数据帧重传,是传送效率降低。

设置单个确认,同时加大接收窗口,设置接收缓存,缓存乱序到达的帧。

SR发送方:

SR接收方:

发送窗口最好等于接收窗口。(大了会溢出,小了没意义),即

传输数据使用的两种链路

信道划分介质访问控制将使用介质的每个设备与来自同一通信信道上的其他设备的通信隔离开来,把时域和频域资源合理地分配给网络上的设备。

当传输介质的带宽超过传输单个信号所需的带宽时,人们就通过在一条介质上同时携带多个传输信号的方法来提高传输系统的利用率,这就是所谓的多路复用,也是实现信道划分介质访问控制的途径。多路复用技术把多个信号组合在一条物理信道上进行传输,使多个计算机或终端设备共享信道资源,提高了信道的利用率。信道划分的实质就是通过分时、分频、分码等方法把原来的一条广播信道,逻辑上分为几条用于两个结点之间通信的互不干扰的子信道,实际上就是把广播信道转变为点对点信道。

频分多路复用是一种将多路基带信号调制到不同频率载波上,再叠加形成一个复合信号的多路复用技术。在物理信道的可用带宽超过单个原始信号所需带宽的情况下,可将该物理信道的总带宽分割成若千与传输单个信号带宽相同(或略宽)的子信道,每个子信道传输一种信号,这就是频分多路复用。

每个子信道分配的带宽可不相同,但它们的总和必须不超过信道的总带宽。在实际应用中,为了防止子信道之间的千扰,相邻信道之间需要加入“保护频带”。频分多路复用的优点在于充分利用了传输介质的带宽,系统效率较高;由于技术比较成熟,实现也较容易。

时分多路复用是将一条物理信道按时间分成若干时间片,轮流地分配给多个信号使用。每个时间片由复用的一个信号占用,而不像FDM那样,同一时间同时发送多路信号。这样,利用每个信号在时间上的交叉,就可以在一条物理信道上传输多个信号。

就某个时刻来看,时分多路复用信道上传送的仅是某一对设备之间的信号:就某段时间而言,传送的是按时间分割的多路复用信号。但由于计算机数据的突发性,一个用户对已经分配到的子信道的利用率一般不高。统计时分多路复用(STDM,又称异步时分多路复用)是TDM 的一种改进,它采用STDM帧,STDM帧并不固定分配时隙,面按需动态地分配时隙,当终端有数据要传送时,才会分配到时间片,因此可以提高线路的利用率。例如,线路传输速率为8000b/s,4个用户的平均速率都为2000b/s,当采用TDM方式时,每个用户的最高速率为2000b/s.而在STDM方式下,每个用户的最高速率可达8000b/s.

波分多路复用即光的频分多路复用,它在一根光纤中传输多种不同波长(频率)的光信号,由于波长(频率)不同,各路光信号互不干扰,最后再用波长分解复用器将各路波长分解出来。由于光波处于频谱的高频段,有很高的带宽,因而可以实现多路的波分复用

码分多路复用是采用不同的编码来区分各路原始信号的一种复用方式。与FDM和 TDM不同,它既共享信道的频率,又共享时间。下面举一个直观的例子来理解码分复用。

实际上,更常用的名词是码分多址(Code Division Multiple Access.CDMA),1个比特分为多个码片/芯片( chip),每一个站点被指定一个唯一的m位的芯片序列,发送1时发送芯片序列(通常把o写成-1) 。发送1时站点发送芯片序列,发送o时发送芯片序列反码。

纯ALOHA协议思想:不监听信道,不按时间槽发送,随机重发。想发就发

如果发生冲突,接收方在就会检测出差错,然后不予确认,发送方在一定时间内收不到就判断发生冲突。超时后等一随机时间再重传。

时隙ALOHA协议的思想:把时间分成若干个相同的时间片,所有用户在时间片开始时刻同步接入网络信道,若发生冲突,则必须等到下一个时间片开始时刻再发送。

载波监听多路访问协议CSMA(carrier sense multiple access)协议思想:发送帧之前,监听信道。

坚持指的是对于监听信道忙之后的坚持。

1-坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:只要媒体空闲,站点就马上发送,避免了媒体利用率的损失。

缺点:假如有两个或两个以上的站点有数据要发送,冲突就不可避免。

非坚持指的是对于监听信道忙之后就不继续监听。

非坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:采用随机的重发延迟时间可以减少冲突发生的可能性。

缺点:可能存在大家都在延迟等待过程中,使得媒体仍可能处于空闲状态,媒体使用率降低。

p-坚持指的是对于监听信道空闲的处理。

p-坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:既能像非坚持算法那样减少冲突,又能像1-坚持算法那样减少媒体空闲时间的这种方案。

缺点:发生冲突后还是要坚持把数据帧发送完,造成了浪费。

载波监听多点接入/碰撞检测CSMA/CD(carrier sense multiple access with collision detection)

CSMA/CD的工作流程:

由图可知,至多在发送帧后经过时间 就能知道所发送的帧有没有发生碰撞。因此把以太网端到端往返时间为 称为争周期(也称冲突窗口或碰撞窗口)。

截断二进制指数规避算法:

最小帧长问题:帧的传输时延至少要两倍于信号在总线中的传播时延。

载波监听多点接入/碰撞避免CSMA/CA(carrier sense multiple access with collision avoidance)其工作原理如下

CSMA/CD与CSMA/CA的异同点:

相同点:CSMA/CD与CSMA/CA机制都从属于CSMA的思路,其核心是先听再说。换言之,两个在接入信道之前都须要进行监听。当发现信道空闲后,才能进行接入。

不同点:

轮询协议:主结点轮流“邀请”从属结点发送数据。

令牌:一个特殊格式的MAC控制帧,不含任何信息。控制信道的使用,确保同一时刻只有一个结点独占信道。每个结点都可以在一定的时间内(令牌持有时间)获得发送数据的权利,并不是无限制地持有令牌。应用于令牌环网(物理星型拓扑,逻辑环形拓扑)。采用令牌传送方式的网络常用于负载较重、通信量较大的网络中。

轮询访问MAC协议/轮流协议/轮转访问MAC协议:基于多路复用技术划分资源。

随机访问MAC协议: 用户根据意愿随机发送信息,发送信息时可独占信道带宽。 会发生冲突

信道划分介质访问控制(MAC Multiple Access Control )协议:既要不产生冲突,又要发送时占全部带宽。

局域网(Local Area Network):简称LAN,是指在某一区域内由多台计算机互联成的计算机组,使用广播信道。其特点有

决定局域网的主要要素为:网络拓扑,传输介质与介质访问控制方法。

局域网的分类

IEEE 802标准所描述的局域网参考模型只对应OSI参考模型的数据链路层与物理层,它将数据链路层划分为逻辑链路层LLC子层和介质访问控制MAC子层。

以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带总线局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术。 以太网只实现无差错接收,不实现可靠传输。

以太网两个标准:

以太网提供无连接、不可靠的服务

10BASE-T是传送基带信号的双绞线以太网,T表示采用双绞线,现10BASE-T 采用的是无屏蔽双绞线(UTP),传输速率是10Mb/s。

计算机与外界有局域网的连接是通过通信适配器的。

在局域网中,硬件地址又称为物理地址,或MAC地址。MAC地址:每个适配器有一个全球唯一的48位二进制地址,前24位代表厂家(由IEEE规定),后24位厂家自己指定。常用6个十六进制数表示,如02-60-8c-e4-b1-21。

最常用的MAC帧是以太网V2的格式。

IEEE 802.11是无线局域网通用的标准,它是由IEEE所定义的无线网络通信的标准。

广域网(WAN,Wide Area Network),通常跨接很大的物理范围,所覆盖的范围从几十公里到几千公里,它能连接多个城市或国家,或横跨几个洲并能提供远距离通信,形成国际性的远程网络。

广域网的通信子网主要使用分组交换技术。广域网的通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网,它将分布在不同地区的局域网或计算机系统互连起来,达到资源共享的目的。如因特网(Internet)是世界范围内最大的广域网。

点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的数据链路层协议,用户使用拨号电话接入因特网时一般都使用PPP协议。 只支持全双工链路。

PPP协议应满足的要求

PPP协议的三个组成部分

以太网交换机

冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。简单的说就是同一时间内只能有一台设备发送信息的范围。

广播域:网络中能接收任一设备发出的广播帧的所有设备的集合。简单的说如果站点发出一个广播信号,所有能接收收到这个信号的设备范围称为一个广播域。

以太网交换机的两种交换方式:

直通式交换机:查完目的地址(6B)就立刻转发。延迟小,可靠性低,无法支持具有不同速率的端口的交换。

存储转发式交换机:将帧放入高速缓存,并检查否正确,正确则转发,错误则丢弃。延迟大,可靠性高,可以支持具有不同速率的端口的交换。

‘柒’ 计算机网络第三章(数据链路层)

3.1、数据链路层概述

概述

链路 是从一个结点到相邻结点的一段物理线路, 数据链路 则是在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现)

网络中的主机、路由器等都必须实现数据链路层

局域网中的主机、交换机等都必须实现数据链路层

从层次上来看数据的流动

仅从数据链路层观察帧的流动

主机H1 到主机H2 所经过的网络可以是多种不同类型的

注意:不同的链路层可能采用不同的数据链路层协议

数据链路层使用的信道

数据链路层属于计算机网路的低层。 数据链路层使用的信道主要有以下两种类型:

点对点信道

广播信道

局域网属于数据链路层

局域网虽然是个网络。但我们并不把局域网放在网络层中讨论。这是因为在网络层要讨论的是多个网络互连的问题,是讨论分组怎么从一个网络,通过路由器,转发到另一个网络。

而在同一个局域网中,分组怎么从一台主机传送到另一台主机,但并不经过路由器转发。从整个互联网来看, 局域网仍属于数据链路层 的范围

三个重要问题

数据链路层传送的协议数据单元是 帧

封装成帧

封装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。

首部和尾部的一个重要作用就是进行 帧定界 。

差错控制

在传输过程中可能会产生 比特差错 :1 可能会变成 0, 而 0 也可能变成 1。

可靠传输

接收方主机收到有误码的帧后,是不会接受该帧的,会将它丢弃

如果数据链路层向其上层提供的是不可靠服务,那么丢弃就丢弃了,不会再有更多措施

如果数据链路层向其上层提供的是可靠服务,那就还需要其他措施,来确保接收方主机还可以重新收到被丢弃的这个帧的正确副本

以上三个问题都是使用 点对点信道的数据链路层 来举例的

如果使用广播信道的数据链路层除了包含上面三个问题外,还有一些问题要解决

如图所示,主机A,B,C,D,E通过一根总线进行互连,主机A要给主机C发送数据,代表帧的信号会通过总线传输到总线上的其他各主机,那么主机B,D,E如何知道所收到的帧不是发送给她们的,主机C如何知道发送的帧是发送给自己的

可以用编址(地址)的来解决

将帧的目的地址添加在帧中一起传输

还有数据碰撞问题

随着技术的发展,交换技术的成熟,

在 有线(局域网)领域 使用 点对点链路 和 链路层交换机 的 交换式局域网 取代了 共享式局域网

在无线局域网中仍然使用的是共享信道技术

3.2、封装成帧

介绍

封装成帧是指数据链路层给上层交付的协议数据单元添加帧头和帧尾使之成为帧

帧头和帧尾中包含有重要的控制信息

发送方的数据链路层将上层交付下来的协议数据单元封装成帧后,还要通过物理层,将构成帧的各比特,转换成电信号交给传输媒体,那么接收方的数据链路层如何从物理层交付的比特流中提取出一个个的帧?

答:需要帧头和帧尾来做 帧定界

但比不是每一种数据链路层协议的帧都包含有帧定界标志,例如下面例子

前导码

前同步码:作用是使接收方的时钟同步

帧开始定界符:表明其后面紧跟着的就是MAC帧

另外以太网还规定了帧间间隔为96比特时间,因此,MAC帧不需要帧结束定界符

透明传输

透明

指某一个实际存在的事物看起来却好像不存在一样。

透明传输是指 数据链路层对上层交付的传输数据没有任何限制 ,好像数据链路层不存在一样

帧界定标志也就是个特定数据值,如果在上层交付的协议数据单元中, 恰好也包含这个特定数值,接收方就不能正确接收

所以数据链路层应该对上层交付的数据有限制,其内容不能包含帧定界符的值

解决透明传输问题

解决方法 :面向字节的物理链路使用 字节填充 (byte stuffing) 或 字符填充 (character stuffing),面向比特的物理链路使用比特填充的方法实现透明传输

发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面 插入一个转义字符“ESC” (其十六进制编码是1B)。

接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。

如果转义字符也出现在数据当中,那么应在转义字符前面插入一个转义字符 ESC。当接收端收到连续的两个转义字符时,就删除其中前面的一个。

帧的数据部分长度

总结

3.3、差错检测

介绍

奇偶校验

循环冗余校验CRC(Cyclic Rendancy Check)

例题

总结

循环冗余校验 CRC 是一种检错方法,而帧校验序列 FCS 是添加在数据后面的冗余码

3.4、可靠传输

基本概念

下面是比特差错

其他传输差错

分组丢失

路由器输入队列快满了,主动丢弃收到的分组

分组失序

数据并未按照发送顺序依次到达接收端

分组重复

由于某些原因,有些分组在网络中滞留了,没有及时到达接收端,这可能会造成发送端对该分组的重发,重发的分组到达接收端,但一段时间后,滞留在网络的分组也到达了接收端,这就造成 分组重复 的传输差错

三种可靠协议

停止-等待协议SW

回退N帧协议GBN

选择重传协议SR

这三种可靠传输实现机制的基本原理并不仅限于数据链路层,可以应用到计算机网络体系结构的各层协议中

停止-等待协议

停止-等待协议可能遇到的四个问题

确认与否认

超时重传

确认丢失

既然数据分组需要编号,确认分组是否需要编号?

要。如下图所示

确认迟到

注意,图中最下面那个数据分组与之前序号为0的那个数据分组不是同一个数据分组

注意事项

停止-等待协议的信道利用率

假设收发双方之间是一条直通的信道

TD :是发送方发送数据分组所耗费的发送时延

RTT :是收发双方之间的往返时间

TA :是接收方发送确认分组所耗费的发送时延

TA一般都远小于TD,可以忽略,当RTT远大于TD时,信道利用率会非常低

像停止-等待协议这样通过确认和重传机制实现的可靠传输协议,常称为自动请求重传协议ARQ( A utomatic R epeat re Q uest),意思是重传的请求是自动进行,因为不需要接收方显式地请求,发送方重传某个发送的分组

回退N帧协议GBN

为什么用回退N帧协议

在相同的时间内,使用停止-等待协议的发送方只能发送一个数据分组,而采用流水线传输的发送方,可以发送多个数据分组

回退N帧协议在流水线传输的基础上,利用发送窗口来限制发送方可连续发送数据分组的个数

无差错情况流程

发送方将序号落在发送窗口内的0~4号数据分组,依次连续发送出去

他们经过互联网传输正确到达接收方,就是没有乱序和误码,接收方按序接收它们,每接收一个,接收窗口就向前滑动一个位置,并给发送方发送针对所接收分组的确认分组,在通过互联网的传输正确到达了发送方

发送方每接收一个、发送窗口就向前滑动一个位置,这样就有新的序号落入发送窗口,发送方可以将收到确认的数据分组从缓存中删除了,而接收方可以择机将已接收的数据分组交付上层处理

累计确认

累计确认

优点:

即使确认分组丢失,发送方也可能不必重传

减小接收方的开销

减小对网络资源的占用

缺点:

不能向发送方及时反映出接收方已经正确接收的数据分组信息

有差错情况

例如

在传输数据分组时,5号数据分组出现误码,接收方通过数据分组中的检错码发现了错误

于是丢弃该分组,而后续到达的这剩下四个分组与接收窗口的序号不匹配

接收同样也不能接收它们,讲它们丢弃,并对之前按序接收的最后一个数据分组进行确认,发送ACK4, 每丢弃一个数据分组,就发送一个ACK4

当收到重复的ACK4时,就知道之前所发送的数据分组出现了差错,于是可以不等超时计时器超时就立刻开始重传,具体收到几个重复确认就立刻重传,根据具体实现决定

如果收到这4个重复的确认并不会触发发送立刻重传,一段时间后。超时计时器超时,也会将发送窗口内以发送过的这些数据分组全部重传

若WT超过取值范围,例如WT=8,会出现什么情况?

习题

总结

回退N帧协议在流水线传输的基础上利用发送窗口来限制发送方连续发送数据分组的数量,是一种连续ARQ协议

在协议的工作过程中发送窗口和接收窗口不断向前滑动,因此这类协议又称为滑动窗口协议

由于回退N帧协议的特性,当通信线路质量不好时,其信道利用率并不比停止-等待协议高

选择重传协议SR

具体流程请看视频

习题

总结

3.5、点对点协议PPP

点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的点对点数据链路层协议

PPP协议是因特网工程任务组IEIF在1992年制定的。经过1993年和1994年的修订,现在的PPP协议已成为因特网的正式标准[RFC1661,RFC1662]

数据链路层使用的一种协议,它的特点是:简单;只检测差错,而不是纠正差错;不使用序号,也不进行流量控制;可同时支持多种网络层协议

PPPoE 是为宽带上网的主机使用的链路层协议

帧格式

必须规定特殊的字符作为帧定界符

透明传输

必须保证数据传输的透明性

实现透明传输的方法

面向字节的异步链路:字节填充法(插入“转义字符”)

面向比特的同步链路:比特填充法(插入“比特0”)

差错检测

能够对接收端收到的帧进行检测,并立即丢弃有差错的帧。

工作状态

当用户拨号接入 ISP 时,路由器的调制解调器对拨号做出确认,并建立一条物理连接。

PC 机向路由器发送一系列的 LCP 分组(封装成多个 PPP 帧)。

这些分组及其响应选择一些 PPP 参数,并进行网络层配置,NCP 给新接入的 PC 机

分配一个临时的 IP 地址,使 PC 机成为因特网上的一个主机。

通信完毕时,NCP 释放网络层连接,收回原来分配出去的 IP 地址。接着,LCP 释放数据链路层连接。最后释放的是物理层的连接。

可见,PPP 协议已不是纯粹的数据链路层的协议,它还包含了物理层和网络层的内容。

3.6、媒体接入控制(介质访问控制)——广播信道

媒体接入控制(介质访问控制)使用一对多的广播通信方式

Medium Access Control 翻译成媒体接入控制,有些翻译成介质访问控制

局域网的数据链路层

局域网最主要的 特点 是:

网络为一个单位所拥有;

地理范围和站点数目均有限。

局域网具有如下 主要优点 :

具有广播功能,从一个站点可很方便地访问全网。局域网上的主机可共享连接在局域网上的各种硬件和软件资源。

便于系统的扩展和逐渐地演变,各设备的位置可灵活调整和改变。

提高了系统的可靠性、可用性和残存性。

数据链路层的两个子层

为了使数据链路层能更好地适应多种局域网标准,IEEE 802 委员会就将局域网的数据链路层拆成 两个子层 :

逻辑链路控制 LLC (Logical Link Control)子层;

媒体接入控制 MAC (Medium Access Control)子层。

与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关。 不管采用何种协议的局域网,对 LLC 子层来说都是透明的。

基本概念

为什么要媒体接入控制(介质访问控制)?

共享信道带来的问题

若多个设备在共享信道上同时发送数据,则会造成彼此干扰,导致发送失败。

随着技术的发展,交换技术的成熟和成本的降低,具有更高性能的使用点对点链路和链路层交换机的交换式局域网在有线领域已完全取代了共享式局域网,但由于无线信道的广播天性,无线局域网仍然使用的是共享媒体技术

静态划分信道

信道复用

频分复用FDM (Frequency Division Multiplexing)

将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。

频分复用 的所有用户在同样的时间 占用不同的带宽资源 (请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。

‘捌’ 计算机网络技术

第一章 计算机网络概述
1.1 计算机网络的定义和发展历史
1.1.1 计算机网络的定义
计算机网络是现代通信技术与计算机技术相结合的产物,是在地理上分散的通过通信线路连接起来的计算机集合,这些计算机遵守共同的协议,依据协议的规定进行相互通信,实现网络各种资源的共享。
网络资源:所谓的网络资源包括硬件资源(如大容量磁盘、打印机等)、软件资源(如工具软件、应用软件等)和数据资源(如数据库文件和数据库等)。
计算机网络也可以简单地定义为一个互连的、自主的计算机集合。所谓互连是指相互连接在一起,所谓自主是指网络中的每台计算机都是相对独立的,可以独立工作。
1.1.2 计算机网络的发展历史
课后小结:
1. 计算机网络的定义.
2. 网络资源的分类.
课后作业:预习P2-P8.

第二讲
教学类型:理论课
教学课题:1.2~1.3
教学目标:1.了解计算机网络的功能和应用;2. 了解计算机网络的系统组成
教学重点、难点:计算机网络的功能和应用;网络的系统组成
教学方法:教师讲解、演示、提问;
教学工具:多媒体幻灯片演示

1.2 计算机网络的功能和应用
1. 计算机网络的功能
(1)实现计算机系统的资源共享
(2)实现数据信息的快速传递
(3)提高可靠性
(4)提供负载均衡与分布式处理能力
(5)集中管理
(6)综合信息服务
2.计算机网络的应用
计算机网络由于其强大的功能,已成为现代信息业的重要支柱,被广泛地应用于现代生活的各个领域,主要有:
(1)办公自动化
(2)管理信息系统
(3)过程控制
(4)互联网应用(如电子邮件、信息发布、电子商务、远程音频与视频应用)
1.3计算机网络的系统组成
1.3.1 网络节点和通信链路
从拓扑结构看,计算机网络就是由若干网络节点和连接这些网络节点的通信链路构成的。计算机网络中的节点又称网络单元,一般可分为三类:访问节点、转接节点和混合节点。
通信链路是指两个网络节点之间承载信息和数据的线路。链路可用各种传输介质实现,如双绞线、同轴电缆、光缆、卫星、微波等。
通信链路又分为物理链路和逻辑链路。
1.3.2 资源子网和通信子网
从逻辑功能上可把计算机网络分为两个子网:用户资源子网和通信子网。
资源子网包括各种计算机和相关的硬件、软件;
通信子网是连接这些计算机资源并提供通信服务的连接线路。正是在通信子网的支持下,用户才能利用网络上的各种资源,进行相互间的通信,实现计算机网络的功能。
通信子网有两种类型:
(1)公用型(如公用计算机互联网CHINANET)
(2)专用型(如各类银行网、证券网等)
1.3.3 网络硬件系统和网络软件系统
计算机网络系统是由计算机网络硬件系统和网络软件系统组成的。
网络硬件系统是指构成计算机网络的硬设备,包括各种计算机系统、终端及通信设备。
常见的网络硬件有:
(1)主机系统; (2)终端; (3)传输介质; (4)网卡;(5)集线器; (6)交换机; (7)路由器
网络软件主要包括网络通信协议、网络操作系统和各类网络应用系统。
(1)服务器操作系统
常见的有:Novell公司的NetWare、微软公司的 Windows NT Server及 Unix系列。
(2)工作站操作系统
常见的有: Windows 95、Windows 98及Windows 2000等。
(3)网络通信协议
(4)设备驱动程序
(5)网络管理系统软件
(6)网络安全软件
(7)网络应用软件
课后小结:
1. 计算机网络的功能和应用
2. 网络的系统组成
课后作业:预习P8-P10

第三讲
教学类型:理论课
教学课题:1.4计算机网络的分类
教学目标:1.掌握计算机网络的分类;2. 了解计算机网络的定义和发展;3. 了解计算机网络的功能和应用;4. 了解计算机网络的系统组成
教学重点、难点:掌握计算机网络的分类
教学方法:教师讲解、演示、提问;
教学工具:多媒体幻灯片演示
1.4 计算机网络的分类
1.4.1 按计算机网络覆盖范围分类
由于网络覆盖范围和计算机之间互连距离不同,所采用的网络结构和传输技术也不同,因而形成不同的计算机网络。
一般可以分为局域网(LAN)、城域网(MAN)、广域网(WAN)三类。
1.4.2按计算机网络拓扑结构分类
网络拓扑是指连接的形状,或者是网络在物理上的连通性。如果不考虑网络的的地理位置,而把连接在网络上的设备看作是一个节点,把连接计算机之间的通信线路看作一条链路,这样就可以抽象出网络的拓扑结构。
按计算机网络的拓扑结构可将网络分为:星型网、环型网、总线型网、树型网、网型网。
1.4.3 按网络的所有权划分
1.公用网
由电信部门组建,由政府和电信部门管理和控制的网络。
2.专用网
也称私用网,一般为某一单位或某一系统组建,该网一般不允许系统外的用户使用。
1.4.4 按照网络中计算机所处的地位划分
(1)对等局域网
(2)基于服务器的网络(也称为客户机/服务器网络)。
课后小结:
1. 计算机网络的定义;2. 计算机网络的功能和应用;3. 计算机网络的分类
课后作业:(P10)1 、4、5、6

第四讲
教学类型:理论课
教学课题:1.1计算机网络的定义和发展
教学目标:1. 了解数据通信的基本概念;2. 了解数据传输方式
教学重点、难点:数据传输方式
教学方法:教师讲解、演示、提问;
教学工具:多媒体幻灯片演示
教学内容与过程
导入:由现在的网络通讯中的一些普通关键词引入新课
讲授新课:(多媒体幻灯片演示或板书)
第二章 数据通信基础
2.1 数据通信的基本概念
2.1.1 信息和数据
1.信息
信息是对客观事物的反映,可以是对物质的形态、大小、结构、性能等全部或部分特性的描述,也可表示物质与外部的联系。信息有各种存在形式。
2.数据
信息可以用数字的形式来表示,数字化的信息称为数据。数据可以分成两类:模拟数据和数字数据。
2.1.2 信道和信道容量
1.信道
信道是传送信号的一条通道,可以分为物理信道和逻辑信道。
物理信道是指用来传送信号或数据的物理通路,由传输及其附属设备组成。
逻辑信道也是指传输信息的一条通路,但在信号的收、发节点之间并不一定存在与之对应的物理传输介质,而是在物理信道基础上,由节点设备内部的连接来实现。
2.信道的分类
信道按使用权限可分为专业信道和共用信道。
信道按传输介质可分为有线信道、无线信道和卫星信道。
信道按传输信号的种类可分为模拟信道和数字信道。
3.信道容量
信道容量是指信道传输信息的最大能力,通常用数据传输率来表示。即单位时间内传送的比特数越大,则信息的传输能力也就越大,表示信道容量大。
2.1.3 码元和码字
在数字传输中,有时把一个数字脉冲称为一个码元,是构成信息编码的最小单位。
计算机网络传送中的每一位二进制数字称为“码元”或“码位”,例如二进制数字10000001是由7个码元组成的序列,通常称为“码字”。
2.1.4 数据通信系统主要技术指标
1.比特率:比特率是一种数字信号的传输速率,它表示单位时间内所传送的二进制代码的有效位(bit)数,单位用比特每秒(bps)或千比特每秒(Kbps)表示。
2.波特率:波特率是一种调制速率,也称波形速率。在数据传输过程中,线路上每秒钟传送的波形个数就是波特率,其单位为波特(baud)。
3.误码率:误码率指信息传输的错误率,也称误码率,是数据通信系统在正常工作情况下,衡量传输可靠性的指标。
4.吞吐量:吞吐量是单位时间内整个网络能够处理的信息总量,单位是字节/秒或位/秒。在单信道总线型网络中,吞吐量=信道容量×传输效率。
5.通道的传播延迟:信号在信道中传播,从信源端到达信宿端需要一定的时间,这个时间叫做传播延迟(或时延)。
2.1.5 带宽与数据传输率
1.信道带宽
信道带宽是指信道所能传送的信号频率宽度,它的值为信道上可传送信号的最高频率减去最低频率之差。
带宽越大,所能达到的传输速率就越大,所以通道的带宽是衡量传输系统的一个重要指标。
2.数据传输率
数据传输率是指单位时间信道内传输的信息量,即比特率,单位为比特/秒。
一般来说,数据传输率的高低由传输每一位数据所占时间决定,如果每一位所占时间越小,则速率越高。
2.2 数据传输方式
2.2.1 数据通信系统模型
2.2.2 数据线路的通信方式
根据数据信息在传输线上的传送方向,数据通信方式有:
单工通信
半双工通信
双工通信
2.2.3 数据传输方式
数据传输方式依其数据在传输线原样不变地传输还是调制变样后再传输,可分为基带传输、频带传输和宽带传输等方式。
1.基带传输
2.频带传输
3.宽带传输
课后小结:
1. 什么是信息、数据?
2. 什么是信道?常用的信道分类有几种?
3. 什么是比特率?什么是波特率?
4. 什么是带宽、数据传输率与信道容量?
课后作业:(P20)二1、2、3、4、5、6

第五讲
教学类型:理论课
教学课题:2.2~2.4
教学目标:1.理解数据交换技术;2. 理解差错检验与校正技术
教学重点、难点:数据交换技术、差错检验与校正技术
教学方法:教师讲解、演示、提问;
教学工具:多媒体幻灯片演示
教学内容与过程:
导入:由现在的网络通讯中的一些普通关键词引入新课
讲授新课:(多媒体幻灯片演示或板书)
2.3 数据交换技术
通常使用四种交换技术:
电路交换
报文交换
分组交换
信元交换。
2.3.1 电路交换
电路交换(也称线路交换)
在电路交换方式中,通过网络节点(交换设备)在工作站之间建立专用的通信通道,即在两个工作站之间建立实际的物理连接。一旦通信线路建立,这对端点就独占该条物理通道,直至通信线路被取消。
电路交换的主要优点是实时性好,由于信道专用,通信速率较高;缺点是线路利用率低,不能连接不同类型的线路组成链路,通信的双方必须同时工作。
电路交换必定是面向连接的,电话系统就是这种方式。
电路交换的三个阶段:
电路建立阶段
数据传输阶段
拆除电路阶段
2.3.2 报文交换
报文是一个带有目的端信息和控制信息的数据包。报文交换采取的是“存储—转发”(Store-and-Forward)方式,不需要在通信的两个节点之间建立专用的物理线路。
报文交换的主要缺点是网络的延时较长且变化比较大,因而不宜用于实时通信或交互式的应用场合。
在 20 世纪 40 年代,电报通信也采用了基于存储转发原理的报文交换(message switching)。
报文交换的时延较长,从几分钟到几小时不等。现在,报文交换已经很少有人使用了。
2.3.3 分组交换
分组交换也称包交换,它是报文交换的一种改进,也属于存储-转发交换方式,但它不是以报文为单位,而是以长度受到限制的报文分组(Packet)为单位进行传输交换的。分组也叫做信息包,分组交换有时也称为包交换。
分组在网络中传输,还可以分为两种不同的方式:数据报和虚电路。
分组交换的优点
高效 动态分配传输带宽,对通信链路是逐段占用。
灵活 以分组为传送单位和查找路由。
迅速 必先建立连接就能向其他主机发送分组;充分使用链路的带宽
可靠 完善的网络协议;自适应的路由选择协议使网络有很好的生存性
2.3.4 信元交换技术
(ATM,Asynchronous Transfer Mode,异步传输模式)
ATM是一种面向连接的交换技术,它采用小的固定长度的信息交换单元(一个53Byte的信元),话音、视频和数据都可由信元的信息域传输。
它综合吸取了分组交换高效率和电路交换高速率的优点,针对分组交换速率低的弱点,利用电路交换完全与协议处理几乎无关的特点,通过高性能的硬件设备来提高处理速度,以实现高速化。
ATM是一种广域网主干线的较好选择。
2.4 差错检验与校正
数据传输中出现差错有多种原因,一般分成内部因素和外部因素。
内部因素有噪音脉冲、脉动噪音、衰减、延迟失真等。
外部因素有电磁干扰、太阳噪音、工业噪音等。
为了确保无差错地传输,必须具有检错和纠错的功能。常用的校验方式有奇偶校验和循环冗余码校验。
2.4.1 奇偶校验
采用奇偶校验时,若其中两位同时发生错误,则会发生没有检测出错误的情况。
2.4.2 循环冗余码校验。
这种编码对随机差错和突发差错均能以较低的冗余充进行严格的检查。
课后小结:
1. 数据通信的的一些基本知识
2. 三种交换方式的基本工作原理
3. 两种差错校验方法:奇偶校验和循环冗余校验
课后作业:(P20)二7、8、9

第六讲
教学类型:复习课
教学课题:第一章与第二章
教学目标:通过复习掌握第一、二章的重点
教学重点、难点:第一、二章的重点
教学方法:教师讲解、演示、提问;
教学工具:多媒体幻灯片演示
教学内容:第一、二章的内容

第七讲
教学类型:测验一

第八讲
教学类型:理论课
教学课题:第三章 计算机网络技术基础
教学目标:1. 掌握几种常见网络拓扑结构的原理及其特点;2. 掌握ISO/OSI网络参考模型及各层的主要功能
教学重点、难点:1. 掌握几种常见网络拓扑结构的原理及其特点;2. 掌握ISO/OSI网络参考模型及各层的主要功能
教学方法:教师讲解、演示、学生认真学习并思考、记忆;教师讲授与学生理解协调并重的教学法
教学工具:多媒体幻灯片演示
教学内容与过程
导入:提问学生对OSI的七层模型和TCP/IP四层模型的理解。
引导学生总结重要原理并认真加以研究。
教师总结归纳本章重要原理的应用,进入教学课题。
讲授新课:(多媒体幻灯片演示或板书)
第三章 计算机网络技术基础
3.1 计算机网络的拓扑结构
3.1.1 什么是计算机网络的拓扑结构
网络拓扑是指网络连接的形状,或者是网络在物理上的连通性。
网络拓扑结构能够反映各类结构的基本特征,即不考虑网络节点的具体组成,也不管它们之间通信线路的具体类型,把网络节点画作“点”,把它们之间的通信线路画作“线”,这样画出的图形就是网络的拓扑结构图。
不同的拓扑结构其信道访问技术、网络性能、设备开销等各不相同,分别适应于不同场合。它影响着整个网络的设计、功能、可靠性和通信费用等方面,是研究计算机网络的主要环节之一。
计算机网络的拓扑结构主要是指通信子网的拓扑结构,常见的一般分为以下几种:
1.总线型;2.星型;3.环型;4.树型;5.网状型
3.1.2 总线型拓扑结构
总线结构中,各节点通过一个或多个通信线路与公共总线连接。总线型结构简单、扩展容易。网络中任何节点的故障都不会造成全网的故障,可靠性较高。
总线型结构是从多机系统的总线互联结构演变而来的,又可分为单总线结构和多总线结构,常用CSMA/CD和令牌总线访问控制方式。
总线型结构的缺点:
(1)故障诊断困难;(2)故障隔离困难;(3)中继器等配置;(4)实时性不强
3.1.3 星型拓扑结构
星型的中心节点是主节点,它接收各分散节点的信息再转发给相应节点,具有中继交换和数据处理功能。星型网的结构简单,建网容易,但可靠性差,中心节点是网络的瓶颈,一旦出现故障则全网瘫痪。
星型拓扑结构的访问采用集中式控制策略,采用星型拓扑的交换方式有电路交换和报文交换。
星型拓扑结构的优点:
(1)方便服务;(2)每个连接只接一个设备;(3)集中控制和便于故障诊断;(4)简单的访问协议
星型拓扑结构的缺点:
(1)电缆长度和安装;(2)扩展困难;(3)依赖于中央节点
3.1.4 环型拓扑结构
网络中节点计算机连成环型就成为环型网络。环路上,信息单向从一个节点传送到另一个节点,传送路径固定,没有路径选择问题。环型网络实现简单,适应传输信息量不大的场合。任何节点的故障均导致环路不能正常工作,可靠性较差。
环型网络常使用令牌环来决定哪个节点可以访问通信系统。
环型拓扑结构的优点:
(1)电缆长度短;(2)适用于光纤;(3)网络的实时性好
环型拓扑结构的缺点:
(1)网络扩展配置困难;(2)节点故障引起全网故障;(3)故障诊断困难;(4)拓扑结构影响访问协议
3.1.5 其他类型拓扑结构
1.树型拓扑结构
树型网络是分层结构,适用于分级管理和控制系统。网络中,除叶节点及其联机外,任一节点或联机的故障均只影响其所在支路网络的正常工作。
2.星型环型拓扑结构
3.1.6 拓扑结构的选择原则
拓扑结构的选择往往和传输介质的选择和介质访问控制方法的确定紧密相关。选择拓扑结构时,应该考虑的主要因素有以下几点:
(1)服务可靠性; (2)网络可扩充性; (3)组网费用高低(或性能价格比)。
3.2 ISO/OSI网络参考模型
建立分层结构的原因和意义:
建立计算机网络的根本目的是实现数据通信和资源共享,而通信则是实现所有网络功能的基础和关键。对于网络的广泛实施,国际标准化组织ISO(International Standard Organization),经过多年研究,在1983年提出了开放系统互联参考模型OSI/RM(Reference Model of Open System Interconnection),这是一个定义连接异种计算机的标准主体结构,给网络设计者提供了一个参考规范。
OSI参考模型的层次
OSI参考模型共有七层,由低到高分别是:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
1.OSI参考模型的特性
(1)是一种将异构系统互联的分层结构;
(2)提供了控制互联系统交互规则的标准骨架;
(3)定义了一种抽象结构,而并非具体实现的描述;
(4)不同系统上的相同层的实体称为同等层实体;
(5)同等层实体之间的通信由该层的协议管理;
(6)相邻层间的接口定义了原语操作和低层向上层提供的服务;
(7)所提供的公共服务是面向连接的或无连接的数据服务;
(8)直接的数据传送仅在最低层实现;
(9)每层完成所定义的功能,修改本层的功能并不影响其它层。
2.有关OSI参考模型的技术术语
在OSI参考模型中,每一层的真正功能是为其上一层提供服务。在对这些功能或服务过程以及协议的描述中,经常使用如下一些技术术语:
(1)数据单元
服务数据单元SDU(Service Data Unit)
协议数据单元PDU(Protocol Data Unit)
接口数据单元IDU(Interface Data Unit)
服务访问点SAP(Service Access Point)
服务原语(Primitive)
(2)面向连接和无连接的服务
下层能够向上层提供的服务有两种基本形式:面向连接和无连接的服务。
面向连接的服务是在数据传输之前先建立连接,主要过程是:建立连接、进行数据传送,拆除链路。面向连接的服务,又称为虚电路服务。
无连接服务没有建立和拆除链路的过程,一般也不采用可靠方式传送。不可靠(无确认)的无连接服务又称为数据报服务。
3.2.1 物理层
物理层是OSI模型的最低层,其任务是实现物理上互连系统间的信息传输。
1.物理层必须具备以下功能
(1)物理连接的建立、维持与释放;2)物理层服务数据单元传输;(3)物理层管理。
2.媒体和互联设备
物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等;
通信用的互联设备如各种插头、插座等;局域网中的各种粗、细同轴电缆,T型接/插头,接收器,发送器,中继器等都属物理层的媒体和连接器。
3.2.2 数据链路层
数据链路可以粗略地理解为数据信道。数据链路层的任务是以物理层为基础,为网络层提供透明的、正确的和有效的传输线路,通过数据链路协议,实施对二进制数据正确、可靠的传输。
数据链路的建立、拆除、对数据的检错、纠错是数据链路层的基本任务。
1.链路层的主要功能
(1)链路管理;(2)帧的装配与分解;(3)帧的同步;(4)流量控制与顺序控制;(5)差错控制;(6)使接收端能区分数据和控制信息;(7)透明传输;(8)寻址
2.数据链路层的主要协议
(1)ISO1745-1975;(2)ISO3309-1984;(3)ISO7776
3.链路层产品
独立的链路产品中最常见的是网卡,网桥也是链路产品。
数据链路层将本质上不可靠的传输媒介变成可靠的传输通路提供给网络层。在IEEE802.3情况下,数据链路层分成两个子层:一个是逻辑链路控制,另一个是媒体访问控制。
3.2.3 网络层
网络层是通信子网与资源子网之间的接口,也是高、低层协议之间的接口层。网络层的主要功能是路由选择、流量控制、传输确认、中断、差错及故障的恢复等。当本地端与目的端不处于同一网络中,网络层将处理这些差异。
1.网络层的主要功能
(1)建立和拆除网络连接;
(2)分段和组块;
(3)有序传输和流量控制;
(4)网络连接多路复用;
(5)路由选择和中继;
(6)差错的检测和恢复;
(7)服务选择
2.网络层提供的服务
OSI/RM中规定,网络层中提供无连接和面向连接两种类型的服务,也称为数据报服务和虚电路服务。
3.路由选择
3.2.4 传输层
传输层是资源子网与通信子网的接口和桥梁。传输层下面三层(属于通信子网)面向数据通信,上面三层(属于资源子网)面向数据处理。因此,传输层位于高层和低层中间,起承上启下的作用。它屏蔽了通信子网中的细节,实现通信子网中端到端的透明传输,完成资源子网中两节点间的逻辑通信。它是负责数据传输的最高一层,也是整个七层协议中最重要和最复杂的一层。
1.传输层的特性
(1)连接与传输;(2)传输层服务
2.传输层的主要功能
3.传输层协议
3.2.5 会话层
会话层、表示层和应用层一起构成OSI/RM的高层,会话层位于OSI模型面向信息处理的高三层中的最下层,它利用传输层提供的端到端数据传输服务,具体实施服务请求者与服务提供者之间的通信,属于进程间通信的范畴。
会话层还对会话活动提供组织和同步所必须的手段,对数据传输提供控制和管理。
1.会话层的主要功能;
(1)提供远程会话地址;
(2)会话建立后的管理;
(3)提供把报文分组重新组成报文的功能
2.会话层提供的服务
(1)会话连接的建立和拆除;
(2)与会话管理有关的服务;
(3)隔离;
(4)出错和恢复控制
3.2.6 表示层
表示层为应用层服务,该服务层处理的是通信双方之间的数据表示问题。为使通信的双方能互相理解所传送信息的含义,表示层就需要把发送方具有的内部格式编码为适于传输的比特流,接收方再将其译码为所需要的表示形式。
数据传送包括语义和语法两个方面的问题。OSI模型中,有关语义的处理由应用层负责,表示层仅完成语法的处理。
1.表示层的主要功能
(1)语法转换;(2)传送语法的选择;(3)常规功能
2.表示层提供的服务
(1)数据转换和格式转换;
(2)语法选择;
(3)数据加密与解密;
(4)文本压缩
3.2.7 应用层
OSI的7层协议从功能划分来看,下面6层主要解决支持网络服务功能所需要的通信和表示问题,应用层则提供完成特定网络功能服务所需要的各种应用协议。
应用层是OSI的最高层,直接面向用户,是计算机网络与最终用户的接口。负责两个应用进程(应用程序或操作员)之间的通信,为网络用户之间的通信提供专用程序。
课后小结:
1.计算机网络的拓扑结构的分类
2.OSI参考模型的层次
课后作业:预习P37~P39

第九讲
教学类型:理论课
教学课题:3.3~3.4
教学目标:
1. 掌握共享介质方式的CSMA/CD和令牌传递两种数据传输控制方式的基本原理
2. 了解几种常见的网络类型
教学重点、难点:理解数据传输控制方式
教学方法:教师讲解、演示、提问;
教学工具:多媒体幻灯片演示
教学内容与过程
导入:提问学生对OSI的七层模型和TCP/IP四层模型的理解。
引导学生总结重要原理并认真加以研究。
教师总结归纳本章重要原理的应用,进入教学课题。
讲授新课:(多媒体幻灯片演示或板书
3.3 数据传输控制方式
数据和信息在网络中是通过信道进行传输的,由于各计算机共享网络公共信道,因此如何进行信道分配,避免或解决通道争用就成为重要的问题,就要求网络必须具备网络的访问控制功能。介质访问控制(MAC)方法是在局域网中对数据传输介质进行访问管理的方法。
3.3.1 具有冲突检测的载波侦听多路访问
冲突检测/载波侦听(CSMA/CD法)
CSMA/CD是基于IEEE802.3标准的以太网中采用的MAC方法,也称为“先听后发、边发边听”。它的工作方式是要传输数据的节点先对通道进行侦听,以确定通道中是否有别的站在传输数据,若信道空闲,该节点就可以占用通道进行传输,反之,该节点将按一定算法等待一段时间后再试,并且在发送过程中进行冲突检测,一旦有冲突立即停止发送。通常采用的算法有三种:非坚持CSMA、1-坚持CSMA、P-坚持CSMA。
目前,常见的局域网,一般都是采用CSMA/CD访问控制方法的逻辑总线型网络。用户只要使用Ethernet网卡,就具备此种功能。

‘玖’ 计算机网络(3)

课程笔记,笔记主要来源于《计算机网络(第7版)》,侵删

简述/引言:
信道是链路的一个抽象,并非实际的描述。
数据链路层有两种类型:

链路:一个结点到相邻接待您的一段物理线路(有限或无线),中间没有其他的交换结点。
数据链路:实现协议的硬件和软件 + 链路 = 数据链路
网络适配器:一般都包括了数据链路层和物理层这两层的功能
*规程:早期的数据通信协议
帧:点对点信道的数据链路层的协议数据单元
IP数据报:网路层协议数据单元(数据报、分组、包)

三个基本问题:封装成帧、透明传输、差错检测

目前点对点链路中,使用最广泛的数据链路层协议就是PPP协议
PPP协议:用户计算机和ISP进行通信时所使用的数据链路层协议
PPP协议应满足的需求(主要部分):

PPP协议的三个组成部分:

首部和尾部分别为四个字段和两个字段
首部:

局域网的主要特点:网络为一个单位所拥有,且地理范围和站点数目均有限
*局域网具有的优点:

局域网按网络拓扑进行分类有:星形网、环线网、总线网(现使用最多)

共享信道的方法:

以太网的两个标准:DIX Ethernet V2 和 IEEE的802.3标准
802.3标准把局域网的数据链路层拆成两个子层:逻辑链路控制LLC子层(偏网络层)、媒体接入控制MAC子层(偏物理层)

适配器(网络接口卡/网卡)的作用:连接计算机与外界局域网

早期的以太网是多个计算机连接在一条总线上的
总线的特点:广播通信方式,实现一对一通信

为了通信的简便,以太网采取了两种措施:

CSMA/CD协议(载波监听多点接入/碰撞检测):

CSMA/CD协议特性:

关于碰撞:

集线器:在星型拓扑网络的中心增加的一种可靠性非常高的设备
集线器的特点:

令 , 为单程端到端时延, 为帧的发送时间
则 越小,以太网的信道利用率就越高
极限信道率
只有当参数 远小于1才能得到尽可能的信道利用率

MAC地址:48位(IEEE 802标准),是局域网中的硬件地址/物理地址,是每个站的“名字”或标识符(固化在适配器的ROM中的地址,一般不可更改)
IP地址:32位,代表了一台计算机,是终端地址(可更改)

MAC帧之间传送要有一定的时间间隔
适配器对接收到的MAC帧的处理:先检查MAC帧中的目的地址,若是本站的则收下再进行其它处理,否则直接丢弃
接收到的MAC帧有三种:

MAC帧的格式
两种MAC帧格式标准:DIX Ethernet V2标准(以太网V2标准)、IEEE的802.3标准
MAC帧的类型字段用来标志上一层用的什么协议,以便把接收到的MAC帧的数据上交给上一层的这个协议
IEEE 802.3标准规定的无效MAC帧:

(原理不变,扩大距离)

使用光纤和一对光纤调节器

使用多个集线器
好处:

缺点:

最初使用网桥
网桥的传输不会改变MAC帧的源地址
网桥的作用:对MAC帧的目的地址进行转发和过滤

网桥的优点:

网桥的缺点:

后改用以太网交换机
以太网交换机 / 交换式集线器:工作在数据链路层,实质上就是一个多接口的网桥
以太网交换机特点:是一种透明网桥(一种即插即用设备),其内部的帧交换表(地址表)是通过自学习算法自动转建立起来的

以太网交换机可实现虚拟局域网(VLAN)
虚拟局域网:由一些局域网网段构成的与物理位置无关的逻辑组

阅读全文

与计算机网络课堂作业三相关的资料

热点内容
猫路由怎么连接网络 浏览:599
怎么同一网络手机不同ip 浏览:29
社保查询总是网络异常稍后再试 浏览:970
联通公用网络密码 浏览:361
如何通过网络加盟传统老中医 浏览:151
生产5g网络配件是什么 浏览:33
电脑怎样设置无线网络共用网 浏览:251
win8如何设置无线网络计费 浏览:872
5g网络运营商选哪个 浏览:570
网络激活账号密码错误怎么解决 浏览:971
光纤多少损耗影响网络 浏览:194
网络上有哪些新事物 浏览:961
扛精网络用语什么意思 浏览:412
别人连接家里的网络密码怎么改 浏览:826
计算机网络中端到端时间延迟 浏览:927
k12教育网络直播平台有哪些 浏览:105
中央网络安全和信息化小组成立 浏览:976
网络安全重于泰山的国旗下演讲 浏览:867
iphone手机信号网络不好 浏览:124
共享网络怎么连接oppo 浏览:503

友情链接