❶ 计算机网络——TCP/UDP协议
计算机网络七层模型中,传输层有两个重要的协议:
(1)用户数据报协议UDP (User Datagram Protocol)
(2)传输控制协议TCP (Transmission Control Protocol)
UDP 在传送数据之前不需要先建立连接。远地主机的运输层在收到UDP 报文后,不需要给出任何确认。虽然UDP 不提供可靠交付,但在某些情况下UDP 却是一种最有效的工作方式。
TCP 则提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP 不提供广播或多播服务。由于TCP 要提供可靠的、面向连接的运输服务,因此不可避免地增加了许多的开销,如确认、流量控制、计时器以及连接管理等。
UDP 的主要特点是:
首部手段很简单,只有8 个字节,由四个字段组成,每个字段的长度都是两个字节。
前面已经讲过,每条TCP 连接有两个端点,TCP 连接的端点叫做套接字(socket)或插口。套接字格式如下:
套接宁socket= (IP 地址:端口号’)
每一条TCP 连接唯一地被通信两端的两个端点(即两个套接宇)所确定。即:
TCP 连接= {socket1, socket2} = {(IP1: port1), (IP2: port2)}
3次握手链接
4次握手释放链接
断开连接请求可以由客户端发出,也可以由服务器端发出,在这里我们称A端向B端请求断开连接。
各个状态节点解释如下:
下面为了讨论问题的万便,我们仅考虑A发送数据而B 接收数据并发送确认。因此A 叫做发送方,而B 叫做接收方。
“停止等待”就是每发送完一个分组就停止发送,等待对方的确认。在收到确认后再发送下一个分组。
使用上述的确认和重传机制,我们就可以在不可靠的传输网络上实现可靠的通信。像上述的这种可靠传输协议常称为自动重传请求ARQ (Automatic Repeat reQuest)。意思是重传的请求是自动进行的。接收方不需要请求发送方重传某个出错的分组。
滑动窗口协议比较复杂,是TCP 协议的精髓所在。这里先给出连续ARQ 协议最基本的概念,但不涉提到许多细节问题。详细的滑动窗口协议将在后面讨论。
下图表示发送方维持的发送窗口,它的意义是:位于发送窗口内的5 个分组都可连续发送出去,而不需要等待对方的确认。这样,信道利用率就提高了。
连续ARQ 协议规定,发送方每收到一个确认,就把发送窗口向前滑动一个分组的位置。
接收方一般都是采用 累积确认 的方式。这就是说,接收方不必对收到的分组逐个发送确认,而是可以在收到几个分组后,对按序到达的最后一个分组发送确认,这样就表示:到这个分组为止的所有分组都己正确收到了。
累积确认 的优点是容易实现,即使确认丢失也不必重传。但缺点是不能向发送方反映出接收方己经正确收到的所有分组的信息。
例如,如果发送方发送了前5 个分组,而中间的第3 个分组丢失了。这时接收方只能对前两个分组发出确认。发送方无法知道后面三个分组的下落,而只好把后面的三个分组都再重传一次。这就叫做Go-back-N (回退N ),表示需要再退回来重传己发送过的N 个分组。可见当通信线路质量不好时,连续ARQ 协议会带来负面的影响。
TCP 的滑动窗口是以字节为单位的。现假定A 收到了B 发来的确认报文段,其中窗口是20 (字节),而确认号是31 (这表明B 期望收到的下一个序号是31 ,而序号30 为止的数据己经收到了)。根据这两个数据, A 就构造出自己的发送窗口,其位置如图所示。
发送窗口表示:在没有收到B 的确认的情况下, A可以连续把窗口内的数据都发送出去。凡是己经发送过的数据,在未收到确认之前都必须暂时保留,以便在超时重传时使用。
发送窗口后沿的后面部分表示己发送且己收到了确认。这些数据显然不需要再保留了。而发送窗口前沿的前面部分表示不允许发送的,因为接收方都没有为这部分数据保留临时存放的缓存空间。
现在假定A 发送了序号为31 ~ 41 的数据。这时发送窗口位置并未改变,但发送窗口内靠后面有11个字节(灰色小方框表示)表示己发送但未收到确认。而发送窗口内靠前面的9 个字节( 42 ~ 50 )是允许发送但尚未发送的。】
再看一下B 的接收窗口。B 的接收窗口大小是20,在接收窗口外面,到30 号为止的数据是已经发送过确认,并且己经交付给主机了。因此在B 可以不再保留这些数据。接收窗口内的序号(31~50)足允许接收的。B 收到了序号为32 和33 的数据,这些数据没有按序到达,因为序号为31 的数据没有收到(也许丢失了,也许滞留在网络中的某处)。 请注意, B 只能对按序收到的数据中的最高序号给出确认,因此B 发送的确认报文段中的确认号仍然是31 (即期望收到的序号)。
现在假定B 收到了序号为31 的数据,并把序号为31~33的数据交付给主机,然后B删除这些数据。接着把接收窗口向前移动3个序号,同时给A 发送确认,其中窗口值仍为20,但确认号是34,这表明B 已经收到了到序号33 为止的数据。我们注意到,B还收到了序号为37, 38 和40 的数据,但这些都没有按序到达,只能先存在接收窗口。A收到B的确认后,就可以把发送窗口向前滑动3个序号,指针P2 不动。可以看出,现在A 的可用窗口增大了,可发送的序号范围是42~53。整个过程如下图:
A 在继续发送完序号42-53的数据后,指针P2向前移动和P3重合。发送窗口内的序号都已用完,但还没有再收到确认。由于A 的发送窗口己满,可用窗口己减小到0,因此必须停止发送。
上面已经讲到, TCP 的发送方在规定的时间内没有收到确认就要重传已发送的报文段。这种重传的概念是很简单的,但重传时间的选择却是TCP 最复杂的问题之一。
TCP采用了一种自适应算法 ,它记录一个报文段发出的时间,以及收到相应的确认的时间。这两个时间之差就是报文段的往返时间RTT,TCP 保留了RTT的一个加权平均往返时间RTTs (这又称为平滑的往返时间, S 表示Smoothed 。因为进行的是加权平均,因此得出的结果更加平滑)。每当第一次测量到RTT样本时, RTTs值就取为所测量到的RTT样本值。但以后每测量到一个新的RTT样本,就按下式重新计算一次RTTs:
新的RTTs = (1 - α)×(旧的RTTs) + α ×(新的RTT样本)
α 越大表示新的RTTs受新的RTT样本的影响越大。推荐的α 值为0.125,用这种方法得出的加权平均往返时间RTTs 就比测量出的RTT值更加平滑。
显然,超时计时器设置的超时重传时间RTO (RetransmissionTime-Out)应略大于上面得出的加权平均往返时间RTTs。RFC 2988 建议使用下式计算RTO:
RTO = RTTs + 4 × RTTd
RTTd是RTT 的偏差的加权平均值,它与RTTs和新的RTT样本之差有关。计算公式如下:
新的RTTd= (1- β)×(旧的RTTd) + β × |RTTs-新的RTT样本|
发现问题: 如图所示,发送出一个报文段。设定的重传时间到了,还没有收到确认。于是重
传报文段。经过了一段时间后,收到了确认报文段。现在的问题是:如何判定此确认报文段是对先发送的报文段的确认,还是对后来重传的报文段的确认?
若收到的确认是对重传报文段的确认,但却被源主机当成是对原来的报文段的确认,则这样计算出的RTTs 和超时重传时间RTO 就会偏大。若后面再发送的报文段又是经过重传后才收到确认报文段,则按此方法得出的超时重传时间RTO 就越来越长。
若收到的确认是对原来的报文段的确认,但被当成是对重传报文段的确认,则由此计算出的RTTs 和RTO 都会偏小。这就必然导致报文段过多地重传。这样就有可能使RTO 越来越短。
Kam 提出了一个算法:在计算加权平均RTTs 时,只要报文段重传了就不采用其往返时间样本。这样得出的加权平均RTTs 和RTO 就较准确。
新问题: 设想出现这样的情况:报文段的时延突然增大了很多。因此在原来得出的重传时间内,不会收到确认报文段。于是就重传报文段。但根据Kam 算法,不考虑重传的报文段的往返时间样本。这样,超时重传时间就无法更新。
解决方案: 对Kam 算法进行修正,方法是z报文段每重传一次,就把超时重传时间RTO 增大一些。典型的做法是取新的重传时间为2 倍的旧的重传时间。当不再发生报文段的重传时,才根据上面给出的公式计算超时重传时间。
流量控制(flow control)就是让发送方的发送速率不要太快,要让接收方来得及接收。
利用滑动窗口机制可以很方便地在TCP 连接上实现对发送方的流量控制。
接收方的主机B 进行了三次流量控制。第一次把窗口减小到rwnd =300,第二次又减到rwnd = 100 ,最后减到rwnd = 0 ,即不允许发送方再发送数据了。这种使发送方暂停发送的状态将持续到主机B 重新发出一个新的窗口值为止。我们还应注意到,B 向A 发送的三个报文段都设置了ACK=1,只有在ACK=1 时确认号字段才有意义。
发生死锁: 现在我们考虑一种情况。上图中, B 向A 发送了零窗口的报文段后不久, B 的接收缓存又有了一些存储空间。于是B 向A 发送了rwnd = 400 的报文段。然而这个报文段在传送过程中丢失了。A 一直等待收到B 发送的非零窗口的通知,而B 也一直等待A 发送的数据。如果没有其他措施,这种互相等待的死锁局面将一直延续下去。
解决方案: TCP 为每一个连接设有一个 持续计时器(persistence timer) 。只要TCP 连接的一方收到对方的零窗口通知,就启动持续计时器。若持续计时器设置的时间到期,就发送一个 零窗口探测报文段 (仅携带1 宇节的数据),而对方就在确认这个探测报文段时给出了现在的窗口值。
1 TCP连接时是三次握手,那么两次握手可行吗?
在《计算机网络》中是这样解释的:已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送ACK包。这样就会白白浪费资源。而经过三次握手,客户端和服务器都有应有答,这样可以确保TCP正确连接。
2 为什么TCP连接是三次,挥手确是四次?
在TCP连接中,服务器端的SYN和ACK向客户端发送是一次性发送的,而在断开连接的过程中,B端向A端发送的ACK和FIN是是分两次发送的。因为在B端接收到A端的FIN后,B端可能还有数据要传输,所以先发送ACK,等B端处理完自己的事情后就可以发送FIN断开连接了。
3 为什么在第四次挥手后会有2个MSL的延时?
MSL是Maximum Segment Lifetime,最大报文段生存时间,2个MSL是报文段发送和接收的最长时间。假定网络不可靠,那么第四次发送的ACK可能丢失,即B端无法收到这个ACK,如果B端收不到这个确认ACK,B端会定时向A端重复发送FIN,直到B端收到A的确认ACK。所以这个2MSL就是用来处理这个可能丢失的ACK的。
1 文件传送协议
文件传送协议FTP (File Transfer Protocol) [RFC 959]是因特网上使用得最广泛的文件传送协议,底层采用TCP协议。
盯P 使用客户服务器方式。一个FTP 服务器进程可同时为多个客户进程提供服务。FTP的服务器进程由两大部分组成:一个主进程,负责接受新的请求:另外有若干个从属进程,负责处理单个请求。
在进行文件传输时,客户和服务器之间要建立两个并行的TCP 连接:“控制连接”(21端口)和“数据连接”(22端口)。控制连接在整个会话期间一直保持打开, FTP 客户所发出的传送请求,通过控制连接发送给服务器端的控制进程,但控制连接并不用来传送文件。实际用于传输文件的是“数据连接”。服务器端的控制进程在接收到FTP 客户发送来的文件传输请求后就创建“数据传送进程”和“数据连接”,用来连接客户端和服务器端的数据传送进程。
2 简单文件传送协议TFTP
TCP/IP 协议族中还有一个简单文件传送协议TFfP (Trivial File Transfer Protocol),它是一个很小且易于实现的文件传送协议,端口号69。
TFfP 也使用客户服务器方式,但它使用UDP 数据报,因此TFfP 需要有自己的差错改正措施。TFfP 只支持文件传输而不支持交耳。
3 TELNET
TELNET 是一个简单的远程终端协议,底层采用TCP协议。TELNET 也使用客户服务器方式。在本地系统运行TELNET 客户进程,而在远地主机则运行TELNET 服务器进程,占用端口23。
4 邮件传输协议
一个电子邮件系统应具如图所示的三个主要组成构件,这就是用户代理、邮件服务器,以及邮件发送协议(如SMTP )和邮件读取协议(如POP3), POP3 是邮局协议(Post Office Protocol)的版本3 。
SMTP 和POP3 (或IMAP )都是在TCP 连接的上面传送邮件,使用TCP 的目的是为了使邮件的传送成为可靠的。
❷ 简要说明计算机网络术语RFC是什么
RFC(远程函数调用 Remote Function Call)是一个 SAP 的接口协议。它基于 CPI-C,很大程度上简化了系统间通讯的编程工作。RFC 允许调用和执行一个远程系统,或者是相同系统上的预定义函数。
❸ 谁能通俗的说一下网络中的RFC是什么意思
RFC(Request
For
Comments)-意即“请求评议”
RFC是因特网上一类文件的统称:
通俗的说,某家机构或团体,开发出一套网络标准或对标准的构想,想征询因特网上的意见,就会在网上发一份RFC,对这一问题感兴趣的人可以阅读该RFC并提出自己的意见;绝大部分网络标准的指定都是以RFC的形式开始,经过大量的论证和修改过程,由主要的标准化组织所指定的。
❹ 计算机网络原理rfc是什么意思
Request For Comments(RFC),是一系列以编号排定的文件。文件收集了有关互联网相关信息,以及UNIX和互联网社区的软件文件。目前RFC文件是由Internet Society(ISOC)赞助发行。基本的互联网通信协议都有在RFC文件内详细说明。RFC文件还额外加入许多的论题在标准内,例如对于互联网新开发的协议及发展中所有的记录。因此几乎所有的互联网标准都有收录在RFC文件之中。
❺ RFC是什么
RFC是英文“RequestForComments”的缩写,意思是指一系列以编号排定的文件。RFC文件是由InternetSociety(ISOC)赞助发行,收集了有关互联网相关信息,以及UNIX和互联网社区的软件文件。RFC由一系列草案组成,起始于1969年。
RFC文档是一系列关于Internet(早期为ARPANET)的技术资料汇编。这些文档详细讨论了计算机网络的方方面面,重点在网络协议,进程,程序,概念以及一些会议纪要,意见,各种观点等。
“RFC编辑者”是RFC文档的出版者,它负责RFC最终文档的编辑审判键租订。“RFC编辑者”也掘兆保留有RFC的主文件,称为RFC索引,用户可以在线检索。在RFC近30年的历史中,“RFC编辑者”一直由约翰·普斯特尔(JonPostel)来担任,而“RFC编辑者”则由一个工作小组来担任,这个小组受到“互联网协会”(InternetSociety)的支持和帮助。
RFC编辑者负亮喊责RFC以及RFC的整体结构文档,并维护RFC的索引。Internet协议族的文档部分(由Internet工程委员会“因特网工程师任务组”IETF以及IETF下属的“因特网工程师指导组”IESG定义),也做为RFC文档出版。因此,RFC在Internet相关标准中有着重要的地位。
❻ 什么叫RFC哦``越详细越好
RFC(Request For Comments)-意即“请求评议”,包含了关于Internet的几乎所有重要的文字资料。如果你想成为网络方面的专家,那么RFC无疑是最重要也是最经常需要用到的资料之一,所以RFC享有网络知识圣经之美誉。通常,当某家机构或团体开发出了一套标准或提出对某种标准的设想,想要征询外界的意见时,就会在Internet上发放一份RFC,对这一问题感兴趣的人可以阅读该RFC并提出自己的意见;绝大部分网络标准的制定都是以RFC的形式开始,经过大量的论证和修改过程,由主要的标准化组织所制定的,但在RFC中所收录的文件并不都是正在使用或为大家所公认的,也有很大一部分只在某个局部领域被使用或并没有被采用,一份RFC具体处于什么状态都在文件中作了明确的标识。截至2001年中期,公布的RFC大约有3000余篇,以下是几个较为稳定的RFC链接,以及几个重要的标准化组织的网站链接 >>> http://www.rfc.net RFC的官方站点,可以检查RFC最及时的更新情况 http://www.ietf.org 最重要的Internet组织之一 http://sunsite.dk RFC查询非常强大(可以以FTP登录下载全部RFC文档) http://www.iso.ch ISO-国际标准化组织 http://standards.ieee.org IEEE-电气与电子工程师协会 http://web.ansi.org ANSI-美国国家标准化组织 http://www.itu.int ITU-国际电信同盟 中文网站: http://www.cnpaf.net/ 中国协议分析网 RFC发展历程 1969年,S·Crocker首先建立了RFC机制,其目的是建立一种快速共享Internet网络研究思想的方式,最初RFC是以书面形式分发的,后来有了FTP、Email,RFC就以在线电子文本的形式提供,当然现在通过WWW在很多站点可以很方便地访问RFC文档。 RFC一直以来主要是用于Internet的标准化,RFC是Internet开放性的产物,任何人都可以访问RFC,Internet这一致力于信息共享的网络首先共享的就是以RFC形式出现的涉及其自身研究、设计和使用的信息。这一独特的方式对于Internet的发展、完善具有相当关键的作用。发展到现在,RFC文档已不仅仅是关于差猜世Internet标准的文档了,而且也不局限于TCP/IP范围,它几乎包含了与计算机通信有关的任何内容,全面反映Internet研究、发展的过程。 RFC主要是IAB、IETF、IESG、ISOC的工作成果,主要由IETF起草,由IAB指导下的RFC 编辑(Editor)直接负责RFC的发表。每一个RFC文档有一个编号,这个编号永不重复,也就是说,由于技术进步等原因,即使是关于同一问题的RFC,也要使用新的编号,而不会使用原来的编号,时至今日,RFC编号已经排到2200多,在查找RFC时,一定要注意最新的RFC。 RFC的分类 RFC文档大致可以分为以下几类。 1.STD RFC 按照RFC1311的定义,STD RFC是指那些已经或者致力于成为Internet标准的RFC。只有经过完全Internet标准化过程的RFC才可以有STD编号,STD编号是不变的,而其涉及兆轮到的 RFC文档可能不只一个,其RFC编号也会更新。如STD13(Domain Name System)就涉及RFC1 034和RFC1035。 STD的标准化过程要经过几个步骤,首先由IETF起草标准(也可能是其他组织和个人, 但一般都是和IETF共同完成的),形成Internet Draft(ID),ID没有RFC编号。如果ID在6个月内IESG没有建议成为RFC,则取消此ID。成为RFC后,还要经过一系列的审查、修订、测试等才能最终成为Internet标准。 2.BCP RFC 由于Internet应用领域广泛,各种不同的组织有不同的使用目的和使用规则,IETF除了建议STD以外,也有必要对于Internet的使用和管理提供一虚肢些一般性的指导,同时也为I ETF、IAB、IESG提供一种渠道,以便推动某一方面的工作,反映其技术趋向,反映这些组织本身的工作进展。于是,1995年以RFC1818定义了BCP,即Best Current Practice。BCP同时有一个BCP编号和一个RFC编号,一旦约定了一个BCP编号,就不会再变,而其RFC编号则可能会经过修订不断更新。例如反映Internet标准化工作程序的BCP9的RFC编号就从RFC16 02上升到RFC2026,相应地就废弃了RFC1602。 BCP在发表以前,以电子邮件的形式广泛征求IETF的意见,经过IESG的审查,通过后即正式发表。但是BCP本身不是Internet标准。 3.FYI RFC FYI是For Your Information的简写,1990年发表的RFC1150(FYI1)定义了FYI,FYI也同时有一个FYI编号和一个RFC编号,FYI编号是固定的。FYI主要是提供有关Internet的知识性内容。如FYI4(RFC1594),"Answers to Commonly asked New Internet User Quest ions"。所有的FYI在提交到RFC编辑以前,必须先经过IETF的User Services WorkingGro up审查。 4.其他RFC 除了STD、BCP、FYI以外还有其他一些RFC。从RFC899开始,所有以99结尾的RFC都是对此前99个RFC的一个概括。如RFC1999就是对RFC1900到RFC1999的一个简单概括。除了上述分类以外,还有一些描述RFC的方法。与Internet标准化过程(Internet Standards Process)有关的规范可以分为两类,即 Technical Specification(TS),Applicability Statement(AS)。TS是对协议、规则、格式、实用程序的描述。AS是描述在何种环境,以及怎样在Internet中使用TS;AS所涉及的并不一定全是Internet标准,比如IEEE、ITU、ISO组织的一些标准,大家所熟悉的ASCII标准就是一例。AS应该对其涉及的TS规定相应的级别"Requirement Level",这些"Require ment Level"如下: ·Required(Req),相当于必须实现,如IP、ICMP; ·Recommended(Rec),鼓励使用,如TELNET; ·Elective(Elc),可选择的; ·Limited Use,只限于特定的用户,一般说来用于对一些新的协议做试验; ·Not Recommended,不要使用,很可能是过时的。 "Maturity Level"也是用来描述TS和AS的一种方式,它反映这些标准是否成熟。对于致力于成为STD的TS和AS有三种"Maturity Level"。·Proposed Standard,基本成熟,但还需要进一步的试验证实其可行性。除非是用来验证该协议的可行性,不要将其视为标准实现。 ·Draft Standard,需要两个独立的,而且具有相互操作性的实例验证该协议的每一个方面。可以将其视为最终的标准草案; ·Internet Standard,最终的Internet标准,同时赋予一个STD编号。除此之外的TS和AS分为以下几种"Maturity Level"。·Experimental,一般是反映一些研究和开发的成果,只应将此看作是一般性的信息。 ·Informational,反映与Internet标准有关的一般性信息。有些也是有关非Intern et组织开发的一些协议,但必须得到协议开发者的许可。 ·Historic,是一些被新的标准取代或者是已经过时废弃不用的标准。 STD1(RFC2200)——Internet Official Protocol Standards,定期更新,反映最新的 Internet标准。另外,对于关注Internet的人来说,应该经常注意查阅BCP9的最新内容。
❼ 什么是IETF什么是RFC他们是什么关系
国际互联网工程任务组(,简称IETF)为一个公开性质的大型民间国际团体,汇集了与互联网架构和互联网顺利运作相关的网络设计者、运营者、投资人和研究人员。
RFC,RequestForComments,文件收集了有关互联网相关信息,以及UNIX和互联网社群的软件文件,以编号排定。
RFC由互联网工程任务组(IETF)发布。
(7)计算机网络rfc扩展阅读
IETF的主要任务为负责互联网相关技术标准的研发和制定,是国际互联网业界具有一定权威的网络相关技术研究团体。IETF大量的技术性工作均由其内部的各种工作组(WorkingGroup,简称WG)承担和完成。这些工作组依据各项不数薯绝同类别的研究课题而组建。
在成立工作组之前,先由一些研究人员通过邮件组自发地对某个专题展开研究,当研究较为成熟后,可以向IETF申请成手汪立兴趣小组(birdsofafeather,简称BOF)开展工作组筹备工作。筹备工作完成后,经过IETF上层研究认可后,即可成立工作组。
工作组在IETF框架中展开专项研究,如路由、传输、安全等专项工作组,任何对此技术感兴趣的人都可以自由参加讨论,并提出自己的观点。各工作组有独立的邮件组,工作组成员内部通过邮件互通信息。IETF每年举行三次会议,规模均在千人以上。
RFC文件只有新增,不会有取消或中途停止发行的情形。但是对于同一主题而言,新的RFC文件可以声明取代旧的RFC文件。RFC文件是纯ASCII文字档格式,可由计算机程序自动转换成其他文件格式。RFC文件有封面、目录及页眉页脚和页码。
RFC的章节为数字标示,但数字的小数点后不补零,例如4.9的顺序就在4.10前面,但9的前面并不补零。RFC1000这份文件就是RFC的薯姿指南。
❽ 计算机网络第三章(数据链路层)
3.1、数据链路层概述
概述
链路 是从一个结点到相邻结点的一段物理线路, 数据链路 则是在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现)
网络中的主机、路由器等都必须实现数据链路层
局域网中的主机、交换机等都必须实现数据链路层
从层次上来看数据的流动
仅从数据链路层观察帧的流动
主机H1 到主机H2 所经过的网络可以是多种不同类型的
注意:不同的链路层可能采用不同的数据链路层协议
数据链路层使用的信道
数据链路层属于计算机网路的低层。 数据链路层使用的信道主要有以下两种类型:
点对点信道
广播信道
局域网属于数据链路层
局域网虽然是个网络。但我们并不把局域网放在网络层中讨论。这是因为在网络层要讨论的是多个网络互连的问题,是讨论分组怎么从一个网络,通过路由器,转发到另一个网络。
而在同一个局域网中,分组怎么从一台主机传送到另一台主机,但并不经过路由器转发。从整个互联网来看, 局域网仍属于数据链路层 的范围
三个重要问题
数据链路层传送的协议数据单元是 帧
封装成帧
封装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。
首部和尾部的一个重要作用就是进行 帧定界 。
差错控制
在传输过程中可能会产生 比特差错 :1 可能会变成 0, 而 0 也可能变成 1。
可靠传输
接收方主机收到有误码的帧后,是不会接受该帧的,会将它丢弃
如果数据链路层向其上层提供的是不可靠服务,那么丢弃就丢弃了,不会再有更多措施
如果数据链路层向其上层提供的是可靠服务,那就还需要其他措施,来确保接收方主机还可以重新收到被丢弃的这个帧的正确副本
以上三个问题都是使用 点对点信道的数据链路层 来举例的
如果使用广播信道的数据链路层除了包含上面三个问题外,还有一些问题要解决
如图所示,主机A,B,C,D,E通过一根总线进行互连,主机A要给主机C发送数据,代表帧的信号会通过总线传输到总线上的其他各主机,那么主机B,D,E如何知道所收到的帧不是发送给她们的,主机C如何知道发送的帧是发送给自己的
可以用编址(地址)的来解决
将帧的目的地址添加在帧中一起传输
还有数据碰撞问题
随着技术的发展,交换技术的成熟,
在 有线(局域网)领域 使用 点对点链路 和 链路层交换机 的 交换式局域网 取代了 共享式局域网
在无线局域网中仍然使用的是共享信道技术
3.2、封装成帧
介绍
封装成帧是指数据链路层给上层交付的协议数据单元添加帧头和帧尾使之成为帧
帧头和帧尾中包含有重要的控制信息
发送方的数据链路层将上层交付下来的协议数据单元封装成帧后,还要通过物理层,将构成帧的各比特,转换成电信号交给传输媒体,那么接收方的数据链路层如何从物理层交付的比特流中提取出一个个的帧?
答:需要帧头和帧尾来做 帧定界
但比不是每一种数据链路层协议的帧都包含有帧定界标志,例如下面例子
前导码
前同步码:作用是使接收方的时钟同步
帧开始定界符:表明其后面紧跟着的就是MAC帧
另外以太网还规定了帧间间隔为96比特时间,因此,MAC帧不需要帧结束定界符
透明传输
透明
指某一个实际存在的事物看起来却好像不存在一样。
透明传输是指 数据链路层对上层交付的传输数据没有任何限制 ,好像数据链路层不存在一样
帧界定标志也就是个特定数据值,如果在上层交付的协议数据单元中, 恰好也包含这个特定数值,接收方就不能正确接收
所以数据链路层应该对上层交付的数据有限制,其内容不能包含帧定界符的值
解决透明传输问题
解决方法 :面向字节的物理链路使用 字节填充 (byte stuffing) 或 字符填充 (character stuffing),面向比特的物理链路使用比特填充的方法实现透明传输
发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面 插入一个转义字符“ESC” (其十六进制编码是1B)。
接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。
如果转义字符也出现在数据当中,那么应在转义字符前面插入一个转义字符 ESC。当接收端收到连续的两个转义字符时,就删除其中前面的一个。
帧的数据部分长度
总结
3.3、差错检测
介绍
奇偶校验
循环冗余校验CRC(Cyclic Rendancy Check)
例题
总结
循环冗余校验 CRC 是一种检错方法,而帧校验序列 FCS 是添加在数据后面的冗余码
3.4、可靠传输
基本概念
下面是比特差错
其他传输差错
分组丢失
路由器输入队列快满了,主动丢弃收到的分组
分组失序
数据并未按照发送顺序依次到达接收端
分组重复
由于某些原因,有些分组在网络中滞留了,没有及时到达接收端,这可能会造成发送端对该分组的重发,重发的分组到达接收端,但一段时间后,滞留在网络的分组也到达了接收端,这就造成 分组重复 的传输差错
三种可靠协议
停止-等待协议SW
回退N帧协议GBN
选择重传协议SR
这三种可靠传输实现机制的基本原理并不仅限于数据链路层,可以应用到计算机网络体系结构的各层协议中
停止-等待协议
停止-等待协议可能遇到的四个问题
确认与否认
超时重传
确认丢失
既然数据分组需要编号,确认分组是否需要编号?
要。如下图所示
确认迟到
注意,图中最下面那个数据分组与之前序号为0的那个数据分组不是同一个数据分组
注意事项
停止-等待协议的信道利用率
假设收发双方之间是一条直通的信道
TD :是发送方发送数据分组所耗费的发送时延
RTT :是收发双方之间的往返时间
TA :是接收方发送确认分组所耗费的发送时延
TA一般都远小于TD,可以忽略,当RTT远大于TD时,信道利用率会非常低
像停止-等待协议这样通过确认和重传机制实现的可靠传输协议,常称为自动请求重传协议ARQ( A utomatic R epeat re Q uest),意思是重传的请求是自动进行,因为不需要接收方显式地请求,发送方重传某个发送的分组
回退N帧协议GBN
为什么用回退N帧协议
在相同的时间内,使用停止-等待协议的发送方只能发送一个数据分组,而采用流水线传输的发送方,可以发送多个数据分组
回退N帧协议在流水线传输的基础上,利用发送窗口来限制发送方可连续发送数据分组的个数
无差错情况流程
发送方将序号落在发送窗口内的0~4号数据分组,依次连续发送出去
他们经过互联网传输正确到达接收方,就是没有乱序和误码,接收方按序接收它们,每接收一个,接收窗口就向前滑动一个位置,并给发送方发送针对所接收分组的确认分组,在通过互联网的传输正确到达了发送方
发送方每接收一个、发送窗口就向前滑动一个位置,这样就有新的序号落入发送窗口,发送方可以将收到确认的数据分组从缓存中删除了,而接收方可以择机将已接收的数据分组交付上层处理
累计确认
累计确认
优点:
即使确认分组丢失,发送方也可能不必重传
减小接收方的开销
减小对网络资源的占用
缺点:
不能向发送方及时反映出接收方已经正确接收的数据分组信息
有差错情况
例如
在传输数据分组时,5号数据分组出现误码,接收方通过数据分组中的检错码发现了错误
于是丢弃该分组,而后续到达的这剩下四个分组与接收窗口的序号不匹配
接收同样也不能接收它们,讲它们丢弃,并对之前按序接收的最后一个数据分组进行确认,发送ACK4, 每丢弃一个数据分组,就发送一个ACK4
当收到重复的ACK4时,就知道之前所发送的数据分组出现了差错,于是可以不等超时计时器超时就立刻开始重传,具体收到几个重复确认就立刻重传,根据具体实现决定
如果收到这4个重复的确认并不会触发发送立刻重传,一段时间后。超时计时器超时,也会将发送窗口内以发送过的这些数据分组全部重传
若WT超过取值范围,例如WT=8,会出现什么情况?
习题
总结
回退N帧协议在流水线传输的基础上利用发送窗口来限制发送方连续发送数据分组的数量,是一种连续ARQ协议
在协议的工作过程中发送窗口和接收窗口不断向前滑动,因此这类协议又称为滑动窗口协议
由于回退N帧协议的特性,当通信线路质量不好时,其信道利用率并不比停止-等待协议高
选择重传协议SR
具体流程请看视频
习题
总结
3.5、点对点协议PPP
点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的点对点数据链路层协议
PPP协议是因特网工程任务组IEIF在1992年制定的。经过1993年和1994年的修订,现在的PPP协议已成为因特网的正式标准[RFC1661,RFC1662]
数据链路层使用的一种协议,它的特点是:简单;只检测差错,而不是纠正差错;不使用序号,也不进行流量控制;可同时支持多种网络层协议
PPPoE 是为宽带上网的主机使用的链路层协议
帧格式
必须规定特殊的字符作为帧定界符
透明传输
必须保证数据传输的透明性
实现透明传输的方法
面向字节的异步链路:字节填充法(插入“转义字符”)
面向比特的同步链路:比特填充法(插入“比特0”)
差错检测
能够对接收端收到的帧进行检测,并立即丢弃有差错的帧。
工作状态
当用户拨号接入 ISP 时,路由器的调制解调器对拨号做出确认,并建立一条物理连接。
PC 机向路由器发送一系列的 LCP 分组(封装成多个 PPP 帧)。
这些分组及其响应选择一些 PPP 参数,并进行网络层配置,NCP 给新接入的 PC 机
分配一个临时的 IP 地址,使 PC 机成为因特网上的一个主机。
通信完毕时,NCP 释放网络层连接,收回原来分配出去的 IP 地址。接着,LCP 释放数据链路层连接。最后释放的是物理层的连接。
可见,PPP 协议已不是纯粹的数据链路层的协议,它还包含了物理层和网络层的内容。
3.6、媒体接入控制(介质访问控制)——广播信道
媒体接入控制(介质访问控制)使用一对多的广播通信方式
Medium Access Control 翻译成媒体接入控制,有些翻译成介质访问控制
局域网的数据链路层
局域网最主要的 特点 是:
网络为一个单位所拥有;
地理范围和站点数目均有限。
局域网具有如下 主要优点 :
具有广播功能,从一个站点可很方便地访问全网。局域网上的主机可共享连接在局域网上的各种硬件和软件资源。
便于系统的扩展和逐渐地演变,各设备的位置可灵活调整和改变。
提高了系统的可靠性、可用性和残存性。
数据链路层的两个子层
为了使数据链路层能更好地适应多种局域网标准,IEEE 802 委员会就将局域网的数据链路层拆成 两个子层 :
逻辑链路控制 LLC (Logical Link Control)子层;
媒体接入控制 MAC (Medium Access Control)子层。
与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关。 不管采用何种协议的局域网,对 LLC 子层来说都是透明的。
基本概念
为什么要媒体接入控制(介质访问控制)?
共享信道带来的问题
若多个设备在共享信道上同时发送数据,则会造成彼此干扰,导致发送失败。
随着技术的发展,交换技术的成熟和成本的降低,具有更高性能的使用点对点链路和链路层交换机的交换式局域网在有线领域已完全取代了共享式局域网,但由于无线信道的广播天性,无线局域网仍然使用的是共享媒体技术
静态划分信道
信道复用
频分复用FDM (Frequency Division Multiplexing)
将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。
频分复用 的所有用户在同样的时间 占用不同的带宽资源 (请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。
❾ 计算机网络协议有哪些
应用层
·DHCP(动态主机分配协议) · DNS (域名解析) · FTP(File Transfer Protocol)文件传输协议 · Gopher (英文原义:The Internet Gopher Protocol 中文释义:(RFC-1436)网际Gopher协议) · HTTP (Hypertext Transfer Protocol)超文本传输协议 · IMAP4 (Internet Message Access Protocol 4) 即 Internet信息访问协议的第4版本 · IRC (Internet Relay Chat )网络聊天协议 · NNTP (Network News Transport Protocol)RFC-977)网络新闻传输协议 · XMPP 可扩展消息处理现场协议 · POP3 (Post Office Protocol 3)即邮局协议的第3个版本 · SIP 信令控制协议 · SMTP (Simple Mail Transfer Protocol)即简单邮件传输协议 · SNMP (Simple Network Management Protocol,简单网络管理协议) · SSH (Secure Shell)安全外壳协议 · TELNET 远程登录协议 · RPC (Remote Procere Call Protocol)(RFC-1831)远程过程调用协议 · RTCP (RTP Control Protocol)RTP 控制协议 · RTSP (Real Time Streaming Protocol)实时流传输协议 · TLS (Transport Layer Security Protocol)安全传输层协议 · SDP( Session Description Protocol)会话描述协议 · SOAP (Simple Object Access Protocol)简单对象访问协议 · GTP 通用数据传输平台 · STUN (Simple Traversal of UDP over NATs,NAT 的UDP简单穿越)是一种网络协议 · NTP (Network Time Protocol)网络校时协议
传输层
·TCP(Transmission Control Protocol) 传输控制协议 · UDP (User Datagram Protocol) 用户数据报协议 · DCCP (Datagram Congestion Control Protocol)数据报拥塞控制协议 · SCTP(STREAM CONTROL TRANSMISSION PROTOCOL)流控制传输协议 · RTPReal-time Transport Protocol或简写RTP)实时传送协议 · RSVP (Resource ReSer Vation Protocol)资源预留协议 · PPTP ( Point to Point Tunneling Protocol)点对点隧道协议
网络层
IP (IPv4 · IPv6) · ARP · RARP · ICMP · ICMPv6 · IGMP · RIP · OSPF · BGP · IS-IS · IPsec
数据链路层
802.11 · 802.16 · Wi-Fi · WiMAX · ATM · DTM · 令牌环 · 以太网 · FDDI · 帧中继 · GPRS · EVDO · HSPA · HDLC · PPP · L2TP · ISDN
物理层
以太网物理层 · 调制解调器 · PLC · SONET/SDH · G.709 · 光导纤维 · 同轴电缆 · 双绞线
❿ RFC规范标准
Request For Comments(RFC),是一系列以编号排定的文件。文件收集了有关互联网相关信息,以及UNIX和互联网社区的软件文件。目前RFC文件是由Internet Society(ISOC)赞助发行。基本的互联网通信协议都有在RFC文件内详细说明。RFC文件还额外加入许多的论题在标准内,例如对于互联网新开发的协议及发展中所有的记录。因此几乎所有的互联网标准都有收录在RFC文件之中。
Request For Comments (RFC),是一系列以编号排定的文件。文件收集了有关因特网相关资讯,以及UNIX和因特网社群的软件文件。目前RFC文件是由Internet Society(ISOC)所赞助发行。
基本的因特网通讯协定都有在RFC文件内详细说明。RFC文件还在标准内额外加入了许多的论题,例如对于因特网轮迅宴新开发的协定及发展中所有的记录。因此几乎所有的因特网标准都收录在RFC文件昌皮之中。
RFC(Request For Comments)-意即“请求协议”,包含了关于Internet的几乎所有重要的文字资料。如果你想成为网络方面的专家,那么RFC无疑是最重要也是最经常需要用到的资料之一,所以RFC享有网络知识圣经之美誉。通常,当某家机构或团体开发出了一套标准或提出对某种标准的设想,想要征询外界的意见时,就会在Internet上发放一份RFC,对这一问题感兴趣的人可以阅读该RFC并提出自己的意见;绝大部分网络标准的指定都是以RFC的形式开始,经过大量的论证和修改过程,由主要的标准化组织所指定的,但在RFC中所收录的文件并不都是正在使用或为大家所公认的,也有很大一部分只在某个局部领域被使用或并没有被采用,一份RFC具体处于什么状态都在文件中作了明确的标识
RFC由一系列草案组成,起始于1969年(第一个RFC文档发布于1969年4月7日,参见“RFC30年”,RFC2555”),RFC文档是一系列关于Internet(早期为ARPANET)的技术资料汇编。这些文档详细讨论了计算机网络的方方面面,重点在网络协议,进程,程序,概念以及一些会议纪要,意见,各种观点等。
“RFC编辑者”是RFC文档的出版者,它负责RFC最终文档的编辑审订。“RFC编辑者”也保留有RFC的主文件,称为RFC索引,用户可以在线检索。在RFC近30年的 历史 中,“RFC编辑者”一直由约翰·普斯特尔(Jon Postel)来担任,而现在“RFC编辑者”则由一个工作小组来担任,这个小组受到“互联网协会”(Internet Society)的支持和帮助。
RFC编辑者负责RFC以及RFC的整体结构文档,并维护RFC的索引。Internet协议族的文档部分(由Internet工程委员会“因特网工程师任务组”IETF以及IETF 下属的“因特网工程师指导组”IESG 定义),也做为RFC文档出版。因此,RFC在Internet相关标准中有着重要的地位。
RFC编辑者的职责是由Internet 中的大家提议形成的,所出版的语言也就和Internet一样。IETF和ISOC是代表了世界各地的国际性组织,英语是IETF的第一工作语言,也是IETF的正式出版语言。RFC 2026 "The Internet Standards Process -- Revision 3" 允许RFC翻译成其他不同的语言。但是不能保证其翻译版本是完全正确的。因此,RFC编辑不对非英语的版本负责,而只是指明了哪里有非英语的版本,将这些信息列在WEB页上。
一个RFC文件在成为官方标准前一般至少要经历4个阶段【RFC2026】:因特网草案、建议标准、草案标准、因特网标准。
第一步RFC的出版是作为一个Internet 草案发布,可以阅读并对其进行注释。准备一个RFC草案,我们要求作者先阅读IETF的一个文档"Considerations for Internet Drafts". 它包括了许多关于RFC以及Internet草案格式的有用信息。作者还应阅读另外一个相关的文档RFC 2223 "Instructions to Authors"。
一旦文档有了一个ID号后,你就可以向rfc-editor @rfc-editor. org发送e-mail ,说你觉得这个文档还腊银可以,能够作为一个有价值或有经验的RFC文档。RFC编辑将会向IESG请求查阅该文档并给其加上评论和注释。你可以通过RFC队列来了解你的文档的进度。一旦你的文档获得通过,RFC编辑就会将其编辑并出版。如果该文档不能出版,则会有email通知作者不能出版的原因。作者有48个小时的时间来校对RFC编辑的意见。我们强烈建议作者要检测拼写错误和丢字的错误,应该确保有引用,联系和更新相关的信息。如你的文档是一个MIB,我们则要你对你的代码作最后一次检测。一旦RFC文档出版,我们就不会对其进行更改,因此你应该对你的文档仔细的检查。
有时个别的文档会被正从事同一个项目的IETF工作组收回,如是这种情况,则该作者会被要求和IETF进行该文档的开发。在IETF中,Area Directors (ADs) 负责相关的几个工作组。这些工作者所开发的文档将由ADs 进行校阅,然后才作为RFC的出版物。
如要获得关于如何写RFC文档和关于RFC的Internet标准制定过程的更多详细信息,请各位参见:
RFC 2223 "Instructions to RFC Authors"。
RFC 2026 "The Internet Standards Process -- Revision 3"。
实际上,在Internet上,任何一个用户都可以对Internet某一领域的问题提出自己的解决方案或规范,作为Internet草案(Internet Draffs,ID)提交给Internet工程任务组(IETF)。草案存放在美国、欧洲和亚太地区的工作文件站点上,供世界多国自愿参加的IETF成员进行讨论、测试和审查。最后,由Internet工程指导组(IESG)确定该草案是否能成为Internet的标准。
如果一个Internet草案在IETF的相关站点上存在6个月后仍未被IESG建议作为标准发布,则它将被从上述站点中删除。事实上,在任何时候,一个Internet 草案都有可能被新的草案版本所替换掉,并重新开始6个月的存放期。
如果一个Internet草案被IESG确定为Internet的正式工作文件,则被提交给Internet体系结构委员会(IAB),并形成具有顺序编号的RFC文档,由Internet协会(ISOC)通过Internet向全世界颁布。每个Internet标准文件在被批准后都会分配一个独立于RFC的永久编号,这就是STD编号。有一个不断被更新的文件RFC-INDEX.TXT按照RFC的编号来索引所有的文件,对于因特网标准文件还列出了其相应的STD编号。
RFC文档必须被分配RFC编号后才能在网络上发布。例如,RFC2026的内容是“Internet标准进程-修订版3”、RFC1543的内容为“RFC作者指导”等等。需要时,可以复制或打印这些联机文档。用户也可以通过遍布全世界的数个联机资料数据库中获得RFC文档。
作为标准的RFC又分为几种,第一种是提议性的,就是说建议采用这个作为一个方案摆出来,Draft是已经有一部分在用了,希望被采用为正式的标准,还有一种就是完全被认可的标准,这种是大家都在用,而且是不应该改变的。还有一种就是现在的最佳实践法,它相当于一种介绍。这些文件产生的过程是一种从下往上的过程,而不是从上往下,也就是说不是一个由主席,或者由工作组负责人的给一个指令,说是要做什么,要做什么,而是有下边自发的提出,然后在工作组里边讨论,讨论了以后再交给刚才说的工程指导委员会进行审查。但是工程指导委员会只做审查不做修改,修改还是要打回到工作组来做。IETF工作组文件的产生就是任何人都可以来参加会议,任何人都可以提议,然后他和别人进行讨论,大家形成了一个共识就可以产出这样的文件。
RFC文件格式最初作为ARPA网计划的基础起源于1969年。如今,它已经成为IETF、Internet Architecture Board (IAB)还有其他一些主要的公共网络研究社区的正式出版物发布途径。
最初的RFC作者使用打字机撰写文档,并在美国国防部国防前沿研究项目署(ARPA)研究成员之间传阅。1969年12月,他们开始通过ARPANET途径来发布新的RFC文档。第一份RFC文档由洛杉矶加利福尼亚大学(UCLA)的Steve Crocker撰写,在1969年4月7日公开发表的RFC 1。当初Crocker为了避免打扰他的室友,是在浴室里完成这篇文档的。
在1970年代,很多后来的RFC文档同样来自UCLA,这不仅得益于UCLA的学术质量,同时也因为UCLA是ARPANET第一批Interface Message Processors (IMPs)成员之一。
由Douglas Engelbart领导的,位于Stanford Research Institute的Augmentation Research Center (ARC)是四个最初的ARPANET结点之一,也是最初的Network Information Centre,同时被 社会 学家Thierry Bardini记录为早期大量RFC文档的发源地。
从1969年到1998年,Jon Postel一直担任RFC文档的编辑职务。随着美国政府赞助合同的到期,Internet Society(代表IETF),和南加州大学(USC)Information Sciences Institute的网络部门合作,(在IAB领导下)负责RFT文档的起草和发布工作。Jon Postel继续担任RFC编辑直到去世。随后,由Bob Braden接任整个项目的领导职务,同时Joyce Reynolds继续在团队中的担任职务。
庆祝RFC的30周年的RFC文件是RFC 2555。
RFC文件是由Internet Society审核后给定编号并发行。虽然经过审核,但RFC也并非全部严肃而生硬的技术文件,偶有恶搞之作出现,尤其是4月1日愚人节所发行的,例如RFC 1606: A Historical Perspective On The Usage Of IP Version 9 (参见IPv9)、RFC 2324: “超文本咖啡壶控制协议”(Hyper Text Coffee Pot Control Protocol,乍有其事的写了HTCPCP这样看起来很专业的术语缩写字)。以及如前面所提到纪念RFC的30周年庆的RFC文件。
在Internet从诞生到不断发展壮大的过程中,出现过各种各样的协议和思想讨论,从最初的NCP协议到现代Internet的基石TCP/IP协议族,无一不闪耀着研究人员的智慧光芒,正是这些成百上千各种协议的发明、讨论和完善,才使得人类 社会 逐步进入到互联网时代。而这些闪耀着人类智慧结晶的思想成果大都以一种称为RFC的文档格式记录起来。
1969年,S·Crocker首先建立了RFC机制,其目的是建立一种快速共享Internet网络研究思想的方式,最初RFC是以书面形式分发的,后来有了FTP、Email,RFC就以在线电子文本的形式提供,当然现在通过WWW在很多站点可以很方便地访问RFC文档。RFC一直以来主要是用于Internet的标准化,RFC是Internet开放性的产物,任何人都可以访问RFC,Internet这一致力于信息共享的网络首先共享的就是以RFC形式出现的涉及其自身研究、设计和使用的信息。这一独特的方式对于Internet的发展、完善具有相当关键的作用。发展到现在,RFC文档已不仅仅是关于Internet标准的文档了,而且也不局限于TCP/IP范围,它几乎包含了与计算机通信有关的任何内容,全面反映Internet研究、发展的过程。RFC主要是IAB、IETF、IESG、ISOC的工作成果,主要由IETF起草,由IAB指导下的RFC 编辑(Editor)直接负责RFC的发表。每一个RFC文档有一个编号,这个编号永不重复,也就是说,由于技术进步等原因,即使是关于同一问题的RFC,也要使用新的编号,而不会使用原来的编号,时至今日[2015/2/2],RFC编号已经排到7443,在查找RFC时,一定要注意最新的RFC。
RFC文档大致可以分为以下几类。
1.STD RFC
按照RFC1311的定义,STD RFC是指那些已经或者致力于成为Internet标准的RFC。只有经过完全Internet标准化过程的RFC才可以有STD编号,STD编号是不变的,而其涉及到的 RFC文档可能不只一个,其RFC编号也会更新。如STD13(Domain Name System)就涉及RFC1 034和RFC1035。STD的标准化过程要经过几个步骤,首先由IETF起草标准(也可能是其他组织和个人,但一般都是和IETF共同完成的),形成Internet Draft(ID),ID没有RFC编号。如果ID在6个月内IESG没有建议成为RFC,则取消此ID。成为RFC后,还要经过一系列的审查、修订、测试等才能最终成为Internet标准。
2.BCP RFC
由于Internet应用领域广泛,各种不同的组织有不同的使用目的和使用规则,IETF除了建议STD以外,也有必要对于Internet的使用和管理提供一些一般性的指导,同时也为I ETF、IAB、IESG提供一种渠道,以便推动某一方面的工作,反映其技术趋向,反映这些组织本身的工作进展。于是,1995年以RFC1818定义了BCP,即Best Current Practice。BCP同时有一个BCP编号和一个RFC编号,一旦约定了一个BCP编号,就不会再变,而其RFC编号则可能会经过修订不断更新。例如反映Internet标准化工作程序的BCP9的RFC编号就从RFC16 02上升到RFC2026,相应地就废弃了RFC1602。BCP在发表以前,以电子邮件的形式广泛征求IETF的意见,经过IESG的审查,通过后即正式发表。但是BCP本身不是Internet标准。
3.FYI RFC
FYI是For Your Information的简写,1990年发表的RFC1150(FYI1)定义了FYI,FYI也同时有一个FYI编号和一个RFC编号,FYI编号是固定的。FYI主要是提供有关Internet的知识性内容。如FYI4(RFC1594),"Answers to Commonly asked New Internet User Quest ions"。所有的FYI在提交到RFC编辑以前,必须先经过IETF的User Services WorkingGro up审查。
4.其他RFC
除了STD、BCP、FYI以外还有其他一些RFC。从RFC899开始,所有以99结尾的RFC都是对此前99个RFC的一个概括。如RFC1999就是对RFC1900到RFC1999的一个简单概括。除了上述分类以外,还有一些描述RFC的方法。与Internet标准化过程(Internet Standards Process)有关的规范可以分为两类,即 Technical Specification(TS),Applicability Statement(AS)。TS是对协议、规则、格式、实用程序的描述。AS是描述在何种环境,以及怎样在Internet中使用TS;AS所涉及的并不一定全是Internet标准,比如IEEE、ITU、ISO组织的一些标准,大家所熟悉的ASCII标准就是一例。AS应该对其涉及的TS规定相应的级别"Requirement Level",这些"Require ment Level"如下: ·Required(Req),相当于必须实现,如IP、ICMP; ·Recommended(Rec),鼓励使用,如TELNET; ·Elective(Elc),可选择的; ·Limited Use,只限于特定的用户,一般说来用于对一些新的协议做试验; ·Not Recommended,不要使用,很可能是过时的。"Maturity Level"也是用来描述TS和AS的一种方式,它反映这些标准是否成熟。对于致力于成为STD的TS和AS有三种"Maturity Level"。·Proposed Standard,基本成熟,但还需要进一步的试验证实其可行性。除非是用来验证该协议的可行性,不要将其视为标准实现。·Draft Standard,需要两个独立的,而且具有相互操作性的实例验证该协议的每一个方面。可以将其视为最终的标准草案; ·Internet Standard,最终的Internet标准,同时赋予一个STD编号。除此之外的TS和AS分为以下几种"Maturity Level"。·Experimental,一般是反映一些研究和开发的成果,只应将此看作是一般性的信息。·Informational,反映与Internet标准有关的一般性信息。有些也是有关非Intern et组织开发的一些协议,但必须得到协议开发者的许可。·Historic,是一些被新的标准取代或者是已经过时废弃不用的标准。STD1(RFC2200)——Internet Official Protocol Standards,定期更新,反映最新的 Internet标准。另外,对于关注Internet的人来说,应该经常注意查阅BCP9的最新内容。
一是需要确定它是最新的文档,二是需要注意RFC文档的类别;
所有的RFC文档都要经历评论和反馈过程,并且在这一段时间内它们会被划分为不同的类别;
RFC文档一旦被提交,IETF和IAB组织将审查RFC文档,通过后可以成为一项标准;
RFC文档按照它发展与成熟的过程可以分为标准、草案标准、提案标准、实验性的、信息性或 历史 性的;
RFC文档又可以分为被要求、被推荐、被选择、受限制使用或不被推荐;
RFC文档是什么。