Ⅰ 计算机网络-3-5-MAC层与交换机
在局域网中, 硬件地址 又称为 物理地址 或者 MAC地址 (因为这种地址用在MAC帧中)
IEEE 802标准为局域网规定了一种48位(6字节)的全球地址,固化在适配器的ROM中。
如果计算机中或者路由器有多个适配器,那么这样的主机或者路由器就有多个“地址”,更准确的说,这种48位“地址”应当是某个接口的标识符。
IEEE的注册管理结构RA是局域网全球地址的法定管理机构,它负责分配地址字段6个字节中的前三个字节。 世界上凡是要生产局域网适配器的厂家都必须向IEEE注册管理结构购买由这三个字节构成的号(地址块) ,这个号的正式名称为 组织唯一标识符OUI ,通常也叫公司标标识符。
以太网适配器还可以设置为一种特殊的工作方式,即 混杂模式 ,工作在混杂模式的适配器只要“听到”有帧在以太网上就可以悄悄传输接收下来,而不管帧发送到哪里。
常用的以太网MAC帧格式有两种,一种是DIX Ethernet V2标准(以太网V2标准),另一种是IEEE的802.3标准。这里介绍使用最多的以太网V2的MAC帧格式(图3-22)。图中假定网络层使用的是IP协议。
以太网V2的MAC帧比较简单,由5个字段组成。前两个字段分别为6字节长的 目的地址 和 源地址 字段。第三个字段为2字节的 类型字段 ,用来标识上一层(例如网络层)使用的是什么协议,以便把收到的MAC帧的数据上交给上一层的这个协议。例如,当协议字段为0x0800代表上层网络层使用的是IP数据报;若类型为0x8137表示的是上层是从Novell IPX发过来的。第四个字段是 数据字段 ,其长度脊升察为46-1500字节之间(最小长度64字节减去首部和尾部以及类型的长度18)。第五个字段为4字节的 帧检验序列FCS(使用CRC校验) 。
MAC层怎么知道从从接收到的以太网帧取出多少字节交付给上一次层呢?这时候我们需要说一下曼彻斯特编码,曼彻斯特编码的重要一个特点是:在曼彻斯特编码的每一个码元的正中间一定有一次电压转换(由高到低或者由低到高)。当发送方把一个以太网帧发送完毕后,就不再发送其它码元了(既不发送0,也不发送1)。因此,发送方的网络适配器上的接口上的电压就不会发生变化了。这样,接收方就可以很容易找到以太网帧的结束位置。在这个位置上往前移4字节(FCS校验4字节),就能确定数据字段的结束位置。
当数据字段的长度小于46字节时候,MAC子层就会在数据字段加入一个整数字段进行填充,以保证以太网的帧不小于64字节。
从图3-22还可以看出,在传输媒体上实际传送的要比MAC帧还多8个字节,这是因为当一个站在刚开始接收MAC帧时,由于适配器的时钟尚未与到达的比特流达成同步,因此MAC帧的最前面的若干位就无法接收,结果使得整个MAC帧成为无用的帧。为了接收端迅速的实现位同步,从MAC层向下物理层还要帧的前面插入8字节(由硬件生成),它由两个字段构成。第一个字段时7字节的 前同步码(1和0交替码) ,它的作用是使接收端的适配器在接收MAC帧的时候能够迅速调整其时钟频率,使它和发送端的时钟同步,也就是 实现位同步 ,第二个字段是 帧开始定界符 ,定义为10101011,它的前6位作用和前同步码一样,最后两个连续的1就是告诉接收端适配器:“MAC帧信息就要来了,请适配器注意接收”。
在以太网上传送数据时是以 帧 位单位传送的。以太网在传送帧时,各帧之间还必须有一定的间隙。因此,接收端只要找到帧开始定界符,其后面的连续到达的比特流就属于同一个MAC帧。可见以太网不需要使用帧结束定界符。
扩展的以太网再网络层看起来仍然是一个网络
以太网上的主机之间的距离不能太远,否则主机发送的信号经过铜线传输就会衰减到CSMA/CD协议笑嫌无法正常工作。
现在,扩展主机和集线器之间的距离的一种办法就是使用光纤和一堆光纤调制解调器。如图3-23:所示:
光纤调制解调器的作用是进行电信号与光信号的转换。由于光纤带来的时延很小,并且带宽很宽,因此使用这种方法可以很容易的使主机从几千公里以外的集线器相连。
扩展樱茄以太网更常用的方法是在数据链路层上进行。最初人们使用的是 网桥 ,网桥对接收到的帧根据其目的MCA地址进行 转发 和 过滤 。
在1990年出现了 以太网交换机
以太网交换机实质上就是一个 多接口的网桥 ,以太网交换机的每个接口都直接与一台计算机或者另一台以太网交换机相连。并且一般都是工作在 全双工方式 ,以太网交换机还具有 并行性 ,即能同时联通多对接口,使多对主机能同时通信(而网桥只能一次分析和转发一个帧),相互通信的主机都是 独占传输媒体,无碰撞的传输数据 。
以太网的接口还有存储器,能在输出端口繁忙时把到来的帧进行缓存。因此,如果以太网交换机上的两台主机,同时向另一台主机发送帧,那么当这台主机上的接口繁忙时,发送帧的这两台主机的接口会把收到的帧暂存一下,以后再发送出去。
以太网交换机是一种即插即用的设备,其内部的帧交换表(又称地址表)是通过 自学习 算法自动逐渐建立起来的。以太网交换机由于使用了专门的交换结构芯片,用硬件转发,其转发速率往往比要使用软件转发快得多。
使用一个简单的例子说明交换机是怎样进行学习的。
假定在图3-25中以太网有4个接口,各连接一台计算机,其MAC地址分别为A,B,C,D。一开始交换机里面的交换表使空的。(图3-25(a))
A向B发送一帧,从端口1进入到交换机,交换机在接收到帧后,先查找交换表,没有查到应从哪个接口转发这个帧(在MAC地址这列中,找不到目的地址为B的主机)。接着,交换机把这个帧的源地址A和接口2写入到交换表中,并向除接口1以外的所有接口广播这个帧。
C,D丢弃掉这个帧,因为目的地址不对,只有B收下这个帧,这也称之为 过滤 。
从新写入交换表的项目(A,1)可以看出,以后不管从哪一个接口收到帧,只要其目的地址是A,就应当把收到的帧从接口1转发出去。这样做的依据是: 既然A发出的帧是从接口1进入到交换机的,那么从交换机的接口1转发出去的帧也应当可以到达A 。经过一段时间后,交换表中的项目就齐全了。
有时候交换机上的接口更换主机,或者主机更换了网络适配器,这就需要更改交换表中的项目。为此,在交换表中每个项目都设有一定的有效时间,过期的项目就会被自动删除,用这样的方法保证交换表中的数据都符合当前网络的实际情况。
以太网交换机的这种自学方法不需要人工进行配置,非常的方便。
但有时候为了增加网络的可靠性,在使用以太网交换机组件网络的时候,往往会增加一些冗余的链路。在这种情况下,自学习的过程就可能导致以太网帧在网络的某一个环路中无限制的兜圈子,白白消耗了网络资源,如图3-26:
为了解决兜圈子问题,IEEE的802.1D标准制定了一个 生成树协议STP ,其要点的协议是不改变网络的实际拓扑,但在逻辑上切断某些链路。使得从一台主机到其他主机的路径是无环路的树状结构,从而避免广播风暴大量占用交换机的资源。
生成树STP协议原理:任意一交换机中如果到达根网桥有两条或者两条以上的链路,生成树协议都根据算法把其中一条切断,仅保留一条,从而保证任意两个交换机之间只有一条单一的活动链路。因为这种生成的拓扑结构,很像是以根交换机为树干的树形结构,故为生成树协议。
总线以太网使用了CSMA/CD协议,以半双工进行通信,但是以太网交换机采用的是全双工通信,并不是使用CSMA/CD协议,为什么还叫以太网?原因是它的 帧结构未发生变化,仍然采用以太网的帧结构 。
利用以太网交换机可以很方便的实现 虚拟局域网(VLAN) ,在IEEE802.1Q标准中,对虚拟局域网是这样定义的:虚拟局域网是由一些局域网网段构成的与物理位置无关的逻辑组,而这些网络具有某些共同的需求,每一个VLAN帧都有一个明确的标识符,指明发送这个帧的计算机属于哪一个VLAN。
Ⅱ 计算机网络问题12题,高分悬赏`快快快
[第一题]:,中继器是物理层上的网络互连设备,它的作用是重新生成信号(即对原信号进行放大和整形)。
中继器(Repeater)又称重发器,是一种最为简单但也是用得最多的互连设备。中继器仅适用于以太网,可将两段或两段以上以太网互连起来。中继器只对电缆上传输的数据信号再生放大,再重发到其它电缆段上。对链路层以上的协议来说,用中继器互连起来的若干段电缆与单根电缆并无区别(除了中断器本身会引起一定的时间延迟外)。
网桥(BRIDGE)工作在数据链路层,将两个局域网(LAN)连起来,根据MAC地址(物理地址)来转发帧,可以看作一个“低层的路由器”(路由器工作在网络层,根据网络地址如IP地址进行转发)。它可以有效地联接两个LAN,使本地通信限制在本网段内,并转发相岁枝此应的信号至另一网段,网桥通常用于联接数量不多的、同一类型的网段。网桥通常有透明网桥和源路由选择网桥两大类
路由就是指通过相互连接的网络把信息从源地点移动到目标地点的活动。一般来说,在路由过程中,信息至少会经过一个或多个中间节点。通常,人们会把路由和交换进行对比,这主要是因为在普通用户看来两者所实现的功能是完全一样的。其实,路由和交换之间的主要区别就是交换发生在OSI参考模型的第二层(数据链路层),而路由发生在第三层,即网络层。这一区别决定了路由和交换在移动信息的过程中需要使用不同的控制信息,所以两者实现各自功能的方式是不同的
他们分别工作在物理层、数据链路层、网络层
[第二题]: TCP和UDP是TCP/IP协议中的两个传输层协议,它们使用IP路由功能把数据包发送到目的地,从而为应用程序及应用层协议(包括:HTTP、SMTP、SNMP、FTP和Telnet)提供网络服务。TCP提供的是面向连接的、可靠的数据流传输,而UDP提供的是非面向连接的、不可靠的数据流传输。面向连接的协议在任何数据传输前就建立好了点到点的连接。ATM和帧中继是 面向连接的协议,但它们工作在数据链路层,而不是在传输层。普通的音频电话也是面向连接的。
[第三题]:为保证公用网的高可靠性,X.25采用三层协议,以虚电路技术构造了一个可靠的确认型的面向连接的公用网络。在X.25网内每两个节点之间的数据传送都要经过校验和确认,实现出错重发机制,并在网络层和数据链路层都采用了可搭袭靠性措施。
缺点是X.25由于要对分组层进行层间操作,对报文进行分组和重组,对相邻节点间都要有确认和重发,因而消耗大量网络资源,增加了时延。
(习题答案,绝对正确,我这样答得满分)
[第四题]:为什么以太网与令牌环网不适用于广域网?
因为以太网与令牌环网属于局域网技术,而局域网技术是为一个地点的计算机之间的联网而设计的,它提供了少量的计算机之间的网络通信,其最致命的限制是它的规模,即一个LAN不能处理任意多的计算机,也不能连接分布在任意多地点的计算机。
而广域网的特点是可以不断扩展,以满足跨越广阔地域的多个地点、每个地点都有多个计算机之间联网的需要。不仅如此,广域网还应有足够的能力,使得联向的多个计算机能同时通信。
[第五题]:什么是网络管理,网络管理的主要功能又是什么。
网络管理是关于规划、监督、设计和控制网络资源的使用和网络的各种活动。网络管理的基本目标是将所有的管理子系统集成在一起,向管理员提供单一的控制方式。
网络管理的五大功能是:配置管理、故障管理、性能管理、安全管理及计费管理。
[第六题]:1)由物理层、链路层,网络层、运输层、应用层组成
(2)物理层主要是为链路层提供一个物理连接,以便“透明”的传送比特流。
(3)链路层主要是实现与“相邻节点”的无差错通信。
(4)网络层主要是在端节点和端节点之间实现正确无误的信息传送。
(5)运输层主要是完成从终端端点到另一终端端点的可靠传输服务。
(6)应用层是向网络使用者提供一个方便有效的网络应用环境。
[第七题]:服务和协议的概念,及其相乎迅互之间的关系
答:服务,本层向上一层提供的一组功能支持,它定义本层准备好代表其用户执行什么操作,但不管它们的具体实现。
协议,定义同层对等实体之间数据包交换格式和含义的一组规则,实体根据协议实现服务
[第八题]:为什么以太网与令牌环网不适用于广域网?
因为以太网与令牌环网属于局域网技术,而局域网技术是为一个地点的计算机之间的联网而设计的,它提供了少量的计算机之间的网络通信,其最致命的限制是它的规模,即一个LAN不能处理任意多的计算机,也不能连接分布在任意多地点的计算机。
而广域网的特点是可以不断扩展,以满足跨越广阔地域的多个地点、每个地点都有多个计算机之间联网的需要。不仅如此,广域网还应有足够的能力,使得联向的多个计算机能同时通信。
(楼主这题重复了)
[第九题]:什么是网络管理,网络管理的主要功能又是什么。
网络管理是关于规划、监督、设计和控制网络资源的使用和网络的各种活动。网络管理的基本目标是将所有的管理子系统集成在一起,向管理员提供单一的控制方式。
网络管理的五大功能是:配置管理、故障管理、性能管理、安全管理及计费管理。
(楼主你太急了,这个和第5题重复了,不要着急)
[第十题]:为什么TCP/IP协议对Internet很重要?
因为Internet具有的特点,需要解决网络传输中数据报丢失和延迟问题,而在TCP/IP协议系列中,传输控制协议TCP比其他通用的传输协议提供了可靠的传输服务。具体说TCP提供一个完全可靠的(没有数据重复或丢失)、面向连接的、全双工的流传输服务。允许两个应用程序建立一个连接,并在任何一个方向上发送数据,然后终止连接。每一TCP连接可靠地建立,完美地终止,在终止发生之前的所有数据都会被可靠地传递。而可靠性是因特网很多应用的基础,所以TCP/IP协议对Internet的重要性是不言而喻的。
[第十一题]:简述计算机网络的主要特点是什么,以及由哪些部分构成计算机网络的组成结构
(1)计算机网络的主要特点是:用通信信道把拥有信息、硬件资源的计算机相互连接起来,共享网上的各种资源。
(2)由计算机网络的通信子网、计算机网络的高层服务、计算机网络的应用服务三部分组成。
[第十二题]:简述什么是单工通信、双工通信、半双工通信,并各举一个实际应用的例子
答:所谓单双工通信是指信息始终是一个方向的通信。听广播和看电视就是单双工通信的典型例子。
所谓半双工通信是指信息流可以在两个方向传输,但同一时刻只限于一个方向的传输。对讲机记得通信就是半双工通信
所谓全双工通信是指同时可以作双向的通信,即通信的一方在发送信息的同时也能接受信息。计算机和计算机之间的通信多为全双工通信,QQ聊天、打电话都是典型的例子
(先发给你了,我做了好久,怕你等不及了,一会再补充,除了第二题可能有点多外,其他的都是习题答案,找个1个小时才做完,很汗)
Ⅲ 计算机网络技术基础课后习题答案
CH1 答案 一.填空题 1.通信 2.实现资源共享 3.局域网 广域网 4.资源子网 通信子网 二.选择题 DDBBCCA 三.简答题 1.答:所谓计算机网络,就是指以能够相互共享资源的方式互连起来的自治计算机系统的集合。 2.答:计算机网络技术的发展大致可以分为四个阶段。 第一阶段计算机网络的发展是从20世纪50年代中期至20世纪60年代末期,计算机技术与通信技术初步结合,形成了计算机网络的雏形。此时的计算机网络,是指以单台计算机为中心的远程联机系统。 第二阶段是从20世纪60年代末期至20世纪70年代中后期,计算机网络完成了计算机网络体系结构与协议的研究,形成了初级计算机网络。 第三阶段是从20世纪70年代初期至20世纪90年代中期。国际标准化组织(ISO)提出了开放系统互联(OSI)参考模型,从而促进了符合国际标准化的计算机网络技术的发展。 第四阶段是从20世纪90年代开始。这个阶段最富有挑战性的话题是互联网应用技术、无线网络技术、对等网技术与网络安全技术。 3.网络的拓扑结构主要主要有:星型拓扑、总线型拓扑、环型拓扑、树型拓扑结构、网状型拓扑结构。 (1)星型拓扑优点:控制简单、故障诊断和隔离容易、服务方便;缺点:电缆需量大和安装工作量大;中心结点的负担较重,容易形成瓶颈;各结点的分布处理能力较低。 (2)树型拓扑优点:易于扩展、故障隔离较容易;缺点是各个结点对根的依赖性太大,如果根结点发生故障,则整个网络都不能正常工作。 (3)总线型拓扑的优点如下:总线结构所需要的电缆数量少;总线结构简单,又是无源工作,有较高的可靠性;易于扩充,增加或减少用户比较方便。总线型拓扑的缺点如下:总线的传输距离有限,通信范围受到限制。故障诊断和隔离较困难。总线型网络中所有设备共享总线这一条传输信道,因此存在信道争用问题, (4)环型拓扑的优点如下:拓扑结构简单,传输延时确定。电缆长度短。环型拓扑网络所需的电缆长度和总线型拓扑网络相似,比星型拓扑网络所需的电缆短。可使用光纤。光纤的传输速率很高,十分适合于环型拓扑的单方向传输。环型拓扑的缺点如下:结点的故障会引起全网的故障;故障检测困难;信道利用率低。 (5)网状型拓扑优点是:可靠性好,结点的独立处理能力强,信息传输容量大。 缺点是:结构复杂,管理难度大,投资费用高。 4.计算机网络的主要功能:资源共享、数据通信、实时控制、均衡负载和分布式处理、其他综合服务。举例说明(略)。 CH2 答案 一.填空题 1.信号
2.串行通信 并行通信 并行通信 3.调制 解调 调制解调器 4.幅度调制(ASK) 频率调制(FSK) 相位调制(PSK) 5.电路交换 报文交换 分组交换 6.奇偶校验 循环冗余校验 7.非屏蔽双绞线 屏蔽双绞线 二.选择题 BDAABDABCCB 三.简答题 1.答:信息是指有用的知识或消息,计算机网络通信的目的就是为了交换信息。数据是信息的表达方式,是把事件的某些属性规范化后的表现形式,它能够被识别,可以被描述。数据与信息的主要区别在于:数据涉及的是事物的表示形式,信息涉及的是这些数据的内容和解释。在计算机系统中,数据是以统一的二进制代码表示,而这些二进制代码表示的数据要通过物理介质和器件进行传输时,还需要将其转变成物理信号。信号是数据在传输过程中的电磁波表现形式,是表达信息的一种载体,如电信号、光信号等。在计算机中,信息是用数据表示的并转换成信号进行传送。 2.答:当发送端以某一速率在一定的起始时间内发送数据时,接收端也必须以同一速率在相同的起始时间内接收数据。否则,接收端与发送端就会产生微小误差,随着时间的增加,误差将逐渐积累,并造成收发的不同步,从而出现错误。为了避免接收端与发送端的不同步,接收端与发送端的动作必须采取严格的同步措施。 同步技术有两种类型: (1)位同步:只有保证接收端接收的每一个比特都与发送端保持一致,接收方才能正确地接收数据。 (2)字符或帧数据的同步:通信双方在解决了比特位的同步问题之后,应当解决的是数据的同步问题。例如,字符数据或帧数据的同步。 3、4.略 5.传输出错,目的结点接收到的比特序列除以G(x)有余数。 CH3 答案 一.填空题 1.物理层 数据链路层 网络层 传输层 会话层 表示层 应用层 2.物理 3.比特流 差错 4.比特 数据帧 数据包(分组) 报文 5.物理层 网络层 传输层 二、选择题 DBACB BCABB CDACA 三、简答题 1.所谓网络体系结构就是为了完成主机之间的通信,把网络结构划分为有明确功能的层次,并规定了同层次虚通信的协议以及相邻层之间的接口和服务。因此,网络的层次模型与各层协议和层间接口的集合统称为网络体系结构。 2.网络体系结构分层的原则: 1)各层之间是独立的。某一层并不需要知道它的下层是如何实现的,而仅仅需要知道下层能提供什么样的服务就可以了。
2)灵活性好。当任何一层发生变化时,只要层间接口关系保持不变,则在这层以上或以下各层均不受影响。 3)结构上可独立分割。由于各层独立划分,因此,每层都可以选择最为合适的实现技术。 4)易于实现和维护。这种结构使得实现和调试一个庞大而又复杂的系统变得易于处理,因为整个系统已被分解为若干个相对独立的子系统。 3.帧同步(定界)就是标识帧的开始与结束,即接收方从收到的比特流中准确地区分出一帧的开始于结束。常见有4中帧定界方法,即字符计数法、带字符填充的首尾界符法、带位填充的首尾标志法和物理层编码违例法。 4.数据链路层使用的地址是MAC地址,也称为物理地址;网络层使用的地址是IP地址,也称为逻辑地址;传输层使用的地址是IP地址+端口号。 5.网络层的主要功能是提供不相邻结点间数据包的透明传输,为传输层提供端到端的数据传送任务。网络层的主要功能有:1)为传输层提供服务;2)组包与拆包;3)路由选择;4)流量控制。 6.传输层是计算机网络体系结构中非常重要的一层,其主要功能是在源主机与目的主机进程之间负责端到端的可靠数据传输,而网络层只负责找到目的主机,网络层是通信子网的最高层,传输层是资源子网的最低层,所以说传输层在网络体系结构中是承上启下的一层。在计算机网络通信中,数据包到达指定的主机后,还必须将它交给这个主机的某个应用进程(端口号),这由传输层按端口号寻址加以实现。 7.流量控制就是使发送方所发出的数据流量速率不要超过接收方所能接收的数据流量速率。流量控制的关键是需要一种信息反馈机制,使发送方能了解接收方是否具备足够的接收及处理能力,使得接收方来得及接收发送方发送的数据帧。 流量控制的作用就是控制“拥塞”或“拥挤”现象,避免死锁。 流量在计算机网络中就是指通信量或分组流。拥塞是指到达通信子网中某一部分的分组数量过多,使得该部分网络来不及处理,以致引起这部分乃至整个网络性能下降的现象。若通信量再增大,就会使得某些结点因无缓冲区来接收新到的分组,使网络的性能明显变差,此时网络的吞吐量(单位时间内从网络输出的分组数目)将随着输入负载(单位时间内输入给网络的分组数目)的增加而下降,这种情况称为拥塞。在网络中,应尽量避免拥塞现象的发生,即要进行拥塞控制。 网络层和传输层与流量控制和拥塞控制有关。 8.传输层的主要功能有:1)分段与重组数据2)按端口号寻址3)连接管理4)差错处理和流量控制。 分段与重组数据的意思如下: 在发送方,传输层将会话层来的数据分割成较小的数据单元,并在这些数据单元头部加上一些相关控制信息后形成报文,报文的头部包含源端口号和目标端口号。在接收方,数据经通信子网到达传输层后,要将各报文原来加上的报文头部控制信息去掉(拆包),然后按照正确的顺序进行重组,还原为原来的数据,送给会话层。 9.TCP/IP参考模型先于OSI参考模型开发,所以并不符合OSI标准。TCP/IP参考模型划分为4个层次:1)应用层(Application Layer);2)传输层(Transport Layer);3)网际层(Internet Layer);4)网络接口层(Host-to-Network Layer)。 10.OSI参考模型与TCP/IP参考模型的共同点是它们都采用了层次结构的概念,在传输层中二者都定义了相似的功能。但是,它们在层次划分与使用的协议上有很大区别。 OSI参考模型与协议缺乏市场与商业动力,结构复杂,实现周期长,运行效率低,这是它没有能够达到预想目标的重要原因。 TCP/IP参考模型与协议也有自身的缺陷,主要表现在以下方面:
1)TCP/IP参考模型在服务、接口与协议的区别上不很清楚;2)TCP/IP参考模型的网 络接口层本身并不是实际的一层,它定义了网络层与数据链路层的接口。物理层与数据链路层的划分是必要合理的,一个好的参考模型应该将它们区分开来,而TCP/IP参考模型却没有做到这点。 CH4 答案 一.填空题 1.光纤 2.IEEE802.4 3.介质访问控制子层(MAC) 逻辑链路子层(LLC) 4.CSMA/CD 令牌环介质访问控制方法 令牌总线介质访问控制方法 5.星型结构 总线型结构 环型结构 6.MAC地址 48 厂商 该厂商网卡产品的序列号 二.选择题 ADCBCDAB 二.简答题 1.答:局域网是在有限的地理范围内,利用各种网络连接设备和通信线路将计算机互联在一起,实现数据传输和资源共享的计算机网络。局域网特点:地理范围有限;一般不对外提供服务,保密性较好,且便于管理;网速较快;误码率低;局域网投资较少,组建方便,使用灵活等。 2.答:局域网有硬件和软件组成。局域网的软件系统主要包括:网络操作系统、工作站系统、网卡驱动系统、网络应用软件、网络管理软件和网络诊断软件。局域网的硬件系统一般由服务器、用户工作站、网卡、传输介质和数据交换设备五部分组成。 3.答:目前,局域网常用的共享式访问控制方式有三种,分别用于不同的拓扑结构:带有冲突检测的载波侦听多路访问法(CSMA/CD),令牌环访问控制法(Token Ring),令牌总线访问控制法(token bus)。 CSMA/CD协议主要用于物理拓扑结构为总线型、星型或树型的以太网中。CSMA/CD采用了争用型介质访问控制方法,原理比较简单,技术上易实现,网络中各工作站处于平等地位,不需集中控制,不提供优先级控制。在低负荷时,响应较快,具有较高的工作效率;在高负荷(节点激增)时,随着冲突的急剧增加,传输延时剧增,导致网络性能的急剧下降。此外,有冲突型的网络,时间不确定,因此,不适合控制型网络。 令牌环(Token Ring)介质访问控制多用于环型拓扑结构的网络,属于有序的竞争协议。令牌环网络的主要特点:无冲突;时间确定;适合光纤;控制性能好;在低负荷时,也要等待令牌的顺序传递,因此,低负荷时响应一般,在高负荷时,由于没有冲突,因此有较好的响应特性。 令牌总线访问控制技术应用于物理结构是总线的而逻辑结构却是环型的网络。特点类似令牌环介质访问控制技术。 4.答:CSMA/CD方法的工作原理可以简单地概括为以下4句话:先听后发、边听边发、冲突停止、随机延迟后重发。 5.答:由于局域网不需要路由选择,因此它并不需要网络层,而只需要最低的两层:物理层和数据链路层。IEEE802标准,又将数据链路层分为两个子层:介质访问控制子层MAC和逻辑链路子层LLC。
CH5 答案 一.填空题 1.交换机 路由器 2.电路交换(拨号)服务 分组交换服务 租用线路或专业服务 3.计算机主机 局域网 4.640kbps-1Mbps 1.5Mbps-8Mbps 二.选择题 BCADAA 三.简答题 1.答:①拨号上Internet/Intranet/LAN; ②两个或多个LAN之间的网络互连; ③和其它广域网技术的互连。 2.答:(1)多种业务的兼容性 (2)数字传输:ISDN能够提供端到端的数字连接。 (3)标准化的接口: (4)使用方便 (5)终端移动性 (6)费用低廉 3.答:① 采用TDMA、CDMA数字蜂窝技术,频段为450/800/900MHz,主要技术又GSM、IS-54TDMA(DAMPS)等; ② 微蜂窝技术,频段为1.8/1.9GHz,主要技术基于GSM的GSC1800/1900,或IS-95的CDMA等; ③ 通用分组无线业务(Gerneral Packet Radio Service,GPRS)可在GSM移动电话网上收、发话费增值业务,支持数据接入速率最高达171.2Kbps,可完全支持浏览Internet的 Web站点。 CH6答案 一.填空题 1.unix 、linux、Netware、Windows Server系列 2.打印服务 通信服务 网络管理 二.选择题 DBCAC 三.问答题 1.答:①从体系结构的角度看,当今的网络操作系统可能不同于一般网络协议所需的完整的协议通信传输功能。 ②从操作系统的观点看,网络操作系统大多是围绕核心调度的多用户共享资源的操作系统。 ③从网络的观点看,可以将网络操作系统与标准的网络层次模型作以比较。 2.答:网络操作系统除了应具有通常操作系统应具有的处理机管理、存储器管理、设备管理和文件管理外,还应具有以下两大功能: ①提供高效、可靠的网络通信能力; ②提供多种网络服务功能,如远程作业录入并进行处理的服务功能;文件传输服务功能;电子邮件服务功能;远程打印服务功能等。
Ⅳ 继续教育《计算机网络基础》作业,求高手解答!
1、网络协议2、面向连接服务无连接服务3、源路径选择网桥的基本原理是采用源路径选择算法。该算法假定每个发送站知道所发送的帧是送往本地局域网还是送往别的局域网。当送往不同的局域网时,则将目的地址的高位置1,且在帧格式的头内包括该帧传递的确切路径。该算法的一个关键问题是如何确定这个路径。其基本思想是采用探知法,如果源站不知道目的站接在哪一个局域网上,则先发一个广播帧,询问该目的站所在局域网,广播的帧被么个网桥所接收并转发到每个局域网。当目的站收到广播帧后,发一个回答帧给源站,源站记录它的标识,并获得确切的路径信息。和透明网桥相比,透明网桥的优点是安装容易犹如一个黑盒子,对网上主机完全透明;缺点是不能选择最佳路径,无法利用荣誉的网桥来分担负载。源路径选择网桥能寻找最佳路径,因而可以充分利用冗余的网桥来分担负载;其缺点是存在帧爆发现象,特别当互连网络规模很大,包含很多网桥和局域网时,广播帧的数目在网内剧增,会产生拥挤现象。从路径选择优化角度看,源路径选择网桥更优,但在规模不大的网络中,透明网桥的缺点并不严重,而其它优点却很明显。IEEE802.3和802.4小组选用透明网桥方案,802.5选用源路径选择网桥方案。4、传统的局域网一般是共享总线带宽,若是共享10M的局域网,有5个用户,则每个用户平均分得的带宽最多为2M。这样,对于带宽要求比较高的多媒体应用,如视频会议、视频点播等,这种网络将难以胜任。交换式局域网则改变了这种状况,它利用中央交换器,使得每个接入的链路都能得到带宽保证,典型的交换器总频带可达千兆位,比现有的共享介质局域网的速度提高2个数量级,可充分保证达数据量多媒体应用的带宽要求。5、:(1)电路交换;(2)报文交换;(3)分组交换6、IEEE802是在1980年2月成立了LAN标准化委员会(简称为IEEE802委员会)后,由专门从事LAN的协议制订,形成的一系列标准,这些称为IEEE802系列标准。IEEE802.3是载波监听多路访问/冲突检查访问方法和物理层协议,IEEE802.4是令牌总线访问方法和物理层协议,IEEE802.5是令牌环访问方法和物理层协议,IEEE802.6是关于城市区域网的标准,IEEE802.7是时隙环访问方法和物理层协议。7、LAN的多个设备共享公共传输介质。在设备之间传输数据之前,首先要解决由哪个设备占用介质的问题,所以数据链路层必须由介质访问控制功能。为了使数据帧的传送独立于所采用的物理介质和介质访问控制方法,IEEE802标准特意把LLC独立出来,形成一个单独子层,使LLC子层与介质无关。MAC子层则以来于物理介质和拓扑结构。8、(1)如果介质是空闲的,则可以发送。(2)如果介质是忙的,则继续监听,直至检测到介质空闲,立即发送。(3)如果由冲突,则等待一随机量的时间,重复第一步。(4)这种方法的优点是只要介质空闲,站就立即发送;缺点是假如由两个或来年各个以上的站同时有数据要发送,冲突就不可避免。因为多个站同时检测到了空闲。9、全双工以太网可以双向传输数据,不需要冲突检查功能,允许同时发送和接收,由全双工以太网开关实施网络通信管理,比传统的10BASE-T的吞吐量大一倍。10、1)发送站发送时首先侦听载波(载波检测)。(2)如果网络(总线)空闲,发送站开始发送它的帧。(3)如果网络(总线)被占用,发送站继续侦听载波并推迟发送直至网络空闲。(4)发送站在发送过程中侦听碰撞(碰撞检测)。(5)如果检测到碰撞,发送站立即停止发送,这意味着所有卷入碰撞的站都停止发送。(6)每个卷入碰撞的站都进入退避周期,即按照一定的退避算法等一段随机时间后进行重发,亦即重复上述1-6步骤,直至发送成功。11、集线器是一种特殊的中继器,又称HUB。它通常作为网络中心并以星型拓扑结构方式,使用非屏蔽双绞线将网上各个结点连接起来。自90年代开始,10BASE-T标准已经商量使用,使得总线型网络逐步向集线器方式靠近。采用集线器的优点是:如果网上某条线路或结点出现故障,它不会印象网络上其它结点的正常工作。集线器作为一种中继器,它的基本功能是将网络中的各个介质连在一起。但今天的集线器发展很快,可以分成三类:无源集线器、有源集线器和智能集线器。无源集线器只负责将多段介质连在一起,不对信号做任何处理,这样它对每一介质段,只允许扩展到最大有效距离的一半。有源和无源集线器相似,但它能对信号起再生与放大作用,有扩展介质长度的功能。智能集线器除具有有源集线器的全部功能外,还将网络的很多功能(如网管功线路交换功能、选择网路路径功能等)集成到集线器中。12、透明网桥具有学习、过滤和帧转发等功能,每个透明网桥皆设有自己的路径选择表。当网桥刚接入时,所有路径选择表都为空,此时尚不直到如何选择路径。若要转发帧,就按照扩散法转发,即除了接收该帧的输入通道以外,还将帧送到所有通道,这在网桥刚启动时,可能会造成广播风暴(BroadcastStorm)。透明网桥按照向后学习算法来建立路径选择表,网桥观察和记录每次到达帧的源地址和表示,以及从哪一个局域网入桥,并将记录登入路径选择表。当表建立好以后,网桥则按照路径选择表转发帧。例如某一帧到达时,需要查找路径选择表中的目地地址。如果查到,则按制订的通道将该帧转发;如其目地地址就在网桥所在的同段局域网中,则将该帧过滤掉;如未查到目地地址,就按照扩散法处理。路径选择表有时效性,以使用网络可能的变动。透明网桥的路径选择算法可归纳如下:(1)若目的局域网和源局域网一样,则网桥将该帧删除。(2)若源局域网和目的局域网是不同的网,则将该帧转发到目的局域网。(3)若目的局域网不知道,则采用扩散法处理。三、1、
Ⅳ 计算机网络——4.网络层
将网络互连并能够互相通信,会遇到许多问题,例如:不同的寻址方案(不同的网络可能地址的表示位数不同),不同的最大分组长度(最大帧长),不同的网络接入机制,不同的超时控制,不同的差错恢复方法......
如何 将异构的网络互相连接起来 :使用一些 中间设备(中间系统)(中继系统) :
1.IP地址及其表示方法
IP地址就是给每个连接在互联网上的 主机(或路由器) 分配一个在全世界范围内是 唯一的32位 的标识符。IP地址由互联网名字和数字分配机构(ICANN)进行分配。分配给ISP,然后用户再通过ISP申请到一个IP地址。
2.IP地址的编址方式
后续还有 NAT 和 IPv6 这些方法
正常使用ABC三类,DE两类用作科研或者其他一般不开放使用。D类地址还是多播地址
A类地址:
B类地址:
C类地址:
3.特殊IP地址
4.IP地址的一些重要特点
IP地址与硬件地址是不同的地址
通信时使用的两个地址:
每个接口都有两个地址,网络层及以上的使用IP地址,数据链路层和物理层使用MAC地址(物理地址)
1.地址解析协议ARP的作用
3.ARP分组的传输
4.ARP高速缓存的作用
5.ARP欺骗
网络上的任意一台主机,在 没有接收到ARP请求 的情况下,可以 主动发送ARP响应 。
6.应当注意的问题
7.使用ARP的四种典型情况
假设现在有四个A类网络通过三个路由器连接在一起,而每个网络上都有成千上万台主机,如果按照目的主机的主机号来制作路由表,那么一个路由表就有 成千上万行 ,这样路由表的内存会过于庞大,因此我们按照 目的主机所在网络地址 来制作路由表,相当于 归类纪录 ,这样的话每个路由表只需要几行就可以,会大大简化。如下图:
2.特定主机路由 :虽然互联网所有的分组转发都是基于 目的主机所在的网络 ,但是在大多数情况下,都允许有一个特例,即 指定某个网络中的某一台主机填入路由表 ,采用特定主机路由可以使网络管理人员 更方便地控制网络和测试网络 ,同时也考虑到某种 安全问题 。
3.默认路由 :假如现在有一个分组的地址为1.2.3.4那么它的网络地址就是1.0.0.0,但是在路由表中没有记录,那么路由器就不知道该转发给谁,怎么转发,就会将这个分组丢弃,为了避免这种情况,有了默认路由,一旦出现 找不到目的地址的分组 ,就 由默认路由转发 (或者说 默认路由能够匹配所有的地址 )。但同时 默认路由的优先级是最小的 ,也就是 只有在找不到的情况下才会使用 ,找到了的话就不会用默认路由。采用默认路由可以 减少路由表所占用的空间和搜索路由表所用的时间 ,如果主机连接在一个 小网络 上,并且这个网络只用一个路由器与互联网连接,那么这种情况非常适合使用默认路由。例如下图:
1.从两级IP地址到三级IP地址
早期IP地址的不合理设计:IP地址浪费极大,因此对分类的IP地址做了一个改进,划分子网:在IP地址中增加一个"子网号字段",使原本的两级地址(网络号,主机号)变成三级地址(网络号,主机号,子网号),如下图所示:
例如:
3.子网掩码
规则:
(6).报告转发分组出错
1.网络前缀
划分子网虽然在一定程度上解决了困难,但是并 没有从根本上解决 ,仍然有几个问题:
2.CIDR的特点
CIDR是在 变长子网掩码(VLSM) 的基础上进一步提出的,它的全称为 无分类域间选择(CIDR) 。
主要特点:
3.路由聚合
4.CIDR记法的其它形式
5.CIDR地址块划分
Ⅵ 计算机网络(3)| 数据链路层
数据链路层属于计算机网络的低层。数据链路层使用的信道主要是两种类型:
(1)点对点信道 。即信道使用的是一对一点对点通信方式。
(2)广播信道 。这种信道使用的是一对多的光播通信方式,相对复杂。在广播信道上连接的主机很多,因此必须使用专用的共享信道协议来协调这些主机的数据发送。
首先我们应该了解一些有关点对点信道的一点基本概念。
(1)数据链路 。值得是当我们需要在一条线路上传送数据时,除了有一条物理线路外(链路),还必须有一些必要的通信协议来控制这些数据的传输,若把实现这些协议的硬件和软件加到链路上就构成了数据链路。
(2)帧 。帧指的是点对点信道的数据链路层的协议数据单元,即数据链路层把网络层交下来的数据构成帧发送到链路上以及把接收到的帧中的数据取出并上交给网络层。
点对点信道的数据链路层在进行通信时的主要步骤如下:
(1)结点A的数据链路层把网络层交下来的IP数据报添加首部和尾部封装成帧。
(2)结点A把封装好的帧发送给结点B的数据链路层。
(3)若B接收的帧无差错,则从接收的帧中提取出IP数据报上交给上面的网络层;否则丢弃这个帧。
接下来是来介绍数据链路层的三个基本问题,而这三个问题对于各种数据链路层的协议都是通用的。
(1)封装成帧 。指的是在一段数据的前后分别添加首部和尾部,这样就构成了一个帧,从而能够作为数据链路层的基本单位进行数据传输。在发送帧时,是从帧的首部开始发送的。各种数据链路层协议都对帧首部和帧尾部的格式有着明确的规定,且都规定了所能传送的 帧的数据部分 长度上限—— 最大传送单元MTU 。首部和尾部的作用是进行帧定界,帧定界可以使用特殊的 帧定界符 ,当数据在传输中出现差错时,通过帧的帧定界符就可以知道收到的数据是一个不完整的帧(即只有首部开始符而没有结束符)。
(2)透明传输 。从上面的介绍中知道帧的开始和结束标记使用了专门的控制字符,因此所传输的数据中任何与帧定界符相同的比特编码是不允许出现的,否则就会出现帧定界错误。当传送的帧是用文本文件组成的帧时,它的数据部分一定不会出现和帧定界符相同的字符,这样的传输就叫做 透明传输 。为了解决其他类型文件传输时产生的透明传输问题,就将帧定界符的前面插入一个 转义字符ESC ,这种方法称为 字节填充 。如果转义字符也出现在数据中,就在转义字符前面加上一个转义字符,当接收端收到两个转义字符时,就删除前面的那一个。
(3)差错检测 。在现实中,通信链路都不会是完美的,在传输比特的过程当中都是会产生差错的,1变成0或者0变成1都是可能发生的,我们把这样的错误叫做差错检测。在数据链路层中,为了保证数据传输的可靠性,减少差错出现的数量,就会采用各种差错检测措施,目前最常使用的检错技术是 循环冗余校验 。它的原理简单来说就是在被传输的数据M后面添加供错检测用的n为冗余码,构成一个帧数据发送出去。关于n位冗余码的得出方式与检验方式,可以 点击这里进一步了解 。
对于点对点链路,点对点协议PPP是目前使用得最广泛的数据链路层协议。由于因特网的用户通常都要连接到某个ISP才能接入到因特网,PPP协议就是用户计算机和ISP进行通信所使用的数据链路层协议。
在设计PPP协议时必须要考虑以下多方面的需求:
(1)简单 。简单的设计可使协议在实现时不容易出错,这样使得不同厂商对协议的不同实现的互操作性提高了。
(2)封装成帧 。PPP协议必须规定特殊的字符作为帧定界符(即标志一个帧的开始和结束的字符),以便使接收端从收到的比特流中能准确的找出帧的开始和结束的位置。
(3)透明性 。PPP协议必须保证数据传输的透明性。如果说是数据中碰巧出现和帧定界符一样的比特组合时,就要采用必要的措施来解决。
(4)多种网络层协议 。PPP协议必须能够在同一条物理链路上同时支持多种网络层协议(IP和IPX等)的运行。
(5)多种类型链路 。除了要支持多种网络层的协议外,PPP还必须能够在多种链路上运行(串行与并行链路)。
(6)差错检测 。PPP协议必须能够对接收端收到的帧进行检测,并舍弃有差错的帧。
(7)检测连接状态 。必须具有一种机制能够及时(不超过几分钟)自动检测出链路是否处于正常工作状态。
(8)最大传送单元 。协议对每一种类型的点对点链路设置最大传送单元MTU。
(9)网络层地址协商 。协议必须提供一种机制使通信的两个网络层(如两个IP层)的实体能够通过协商知道或能够配置彼此的网络层地址。
(10)数据压缩协商 。协议必须能够提供方法来协商使用数据压缩算法。但PPP协议不要求将数据压缩算法进行标准化。
PPP协议主要是由三个方面组成的:
(1) 一个将IP数据报封装到串行链路的方法。
(2) 一个用来建立、配置和测试数据链路连接的链路控制协议LCP(Link Control Protocol)。
(3) 一套网络控制协议NCP(Network Control Protocol),其中的每一个协议支持不同的网络层协议,如IP、OSI的网络层、DECnet,以及AppleTalk等。
最后来介绍PPP协议帧的格式:
首先是各个字段的意义。首部中的地址字段A规定为0xFF,控制字段C规定为0x03,这两个字段并没有携带PPP帧的信息。首部的第一个字段和尾部的第二个字段都是标识字段F(Flag)。首部的第四个字段是2字节的协议字段。当协议字段为0x0021时,PPP帧的信息部分字段就是IP数据报。若为0xC021,则信息字段是PPP链路控制协议LCP的数据,而 0x8021表示这是网络层的控制数据。尾部中的第一个字段(2字节)是使用CRC的帧检验序列FCS。
接着是关于PPP协议的差错检测的方法,主要分为字节填充和零比特填充。当是PPP异步传输时,采用的是字节填充的方法。字节填充是指当信息字段中出现和标志字段一样的比特(0x7E)组合时,就必须采取一些措施使这种形式上和标志字段一样的比特组合不出现在信息字段中。而当PPP协议使用的是同步传输时,就会采用零比特填充方法来实现透明传输,即只要发现有5个连续1,则立即填入一个0的方法。
广播信道可以进行一对多的通信。由于局域网采用的就是广播通信,因此下面有关广播通信的讨论就是基于局域网来进行的。
首先我们要知道局域网的主要 特点 ,即网络为一个单位所拥有,且地理范围和站点数目均有限。在局域网才出现时,局域网比广域网有着较高的数据率、较低的时延和较小的误码率。
局域网的 优点 主要有一下几个方面:
(1) 具有广播功能,从一个站点可方便地访问全网。
(2) 便于系统的扩展和逐渐地演变,各设备的位置可灵活地调整和改变。
(3) 提高了系统的可靠性(reliability)、可用性(availibility)、生存性(survivability)。
关于局域网的分类,我们一般是对局域网按照网络拓扑进行分类:
1.星状网: 由于集线器的出现和双绞线大量用于局域网中,星形以太网和多级星形结构的以太网获得了非常广泛的应用。
2.环形网: 顾名思义,就是将各个主机像环一样串起来的拓扑结构,最典型的就是令牌环形网。
3.总线网: 各站直接连在总线上。总线两端的匹配电阻吸收在总线上传播的电磁波信号的能量,避免在总线上产生有害的电磁波反射。
以太网主要有两个标准,即DIX Ethernet V2和IEEE 802.3标准,这两种标准的差别很小,可以不是很严格的区分它们。
但是由于有关厂商的商业上的激烈竞争,导致IEEE 802委员会未能形成一个最佳的局域网标准而制定了几个不同的局域网标准,所以为了数据链路层能够更好的适应各种不同的标准,委员会就把局域网的数据链路层拆成两个子层: 逻辑链路控制LLC子层 和 媒体接入控制MAC子层 。
计算机与外界局域网的连接是通过通信适配器(adapter)来进行的。适配器本来是在电脑主机箱内插入的一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡),这种接口板又称为网络接口卡NIC(Network Interface Card)或简称为网卡。适配器和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的,而适配器和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行的,因此适配器的一个重要功能就是要进行数据串行传输和并行传输的转换。由于网络上的数据率和计算机总线上的数据率并不相同,所以在适配器中必须装有对数据进行缓存的存储芯片。若在主板上插入适配器时,还必须把管理该适配器的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉适配器,应当从存储器的什么位置上把多长的数据块发送到局域网,或应当在存储器的什么位置上把局域网传送过来的数据块存储下来。适配器还要能够实现以太网协议。
要注意的是,适配器在接收和发送各种帧时是不使用计算机的CPU的,所以这时计算机中的CPU可以处理其他的任务。当适配器收到有差错的帧时,就把这个帧丢弃而不必通知计算机,而当适配器收到正确的帧时,它就使用中断来通知该计算机并交付给协议栈中的网络层。当计算机要发送IP数据报时,就由协议栈把IP数据报向下交给适配器,组装成帧后发送到局域网。特别注意: 计算机的硬件地址—MAC地址,就在适配器的ROM中。计算机的软件地址—IP地址,就在计算机的存储器中。
CSMA/CD协议主要有以下3个要点:
1.多点接入 :指的是这是总线型网络,许多计算机以多点接入的方式连接在一根总线上。
2.载波监听 :就是用电子技术检测总线上有没有其他的计算机也在发送。载波监听也称为检测信道,也就是说,为了获得发送权,不管在发送前,还是在发送中,每一个站都必须不停的检测信道。如果检测出已经有其他站在发送,则自己就暂时不发送数据,等到信道空闲时才发送数据。而在发送中检测信道是为了及时发现有没有其他站的发送和本站发送的碰撞。
3.碰撞检测 :也就是边发送边监听。适配器一边发送数据一边检测信道上的信号电压的变化情况,以便判断自己在发送数据时其他站是否也在发送数据。所谓碰撞就是信号之间产生了冲突,这时总线上传输的信号严重失真,无法从中恢复出有用的信息来。
集线器的一些特点如下:
(1)使用集线器的以太网在逻辑上仍然是一个总线网,各个站点共享逻辑上的总线,使用的还是CSMA/CD协议。
(2)一个集线器是有多个接口。一个集线器就像一个多接口的转发器。
(3)集线器工作在物理层,所以它的每一个接口仅仅是简单的转发比特。它不会进行碰撞检测,所以当两个接口同时有信号的输入,那么所有的接口都将收不到正确的帧。
(4)集线器自身采用了专门的芯片来进行自适应串音回波抵消。这样可使接口转发出去的较强的信号不致对该接口收到的较弱信号产生干扰。
(5)集线器一般都有少量的容错能力和网络管理能力,也就是说如果在以太网中有一个适配器出现了故障,不停地发送以太网帧,这是集线器可以检测到这个问题从而断开与故障适配器的连线。
在局域网中,硬件地址又称为物理地址或者MAC地址,这种地址是用在MAC帧中的。由于6字节的地址字段可以使全世界所有的局域网适配器具有不同的地址,所以现在的局域网适配器都是使用6字节MAC地址。
主要负责分配地址字段的6个字节中的前3个字节。世界上凡事要生产局域适配器的厂家都必须向IEEE购买这3个字节构成的地址号,这个地址号我们通常叫做 公司标识符 ,而地址字段的后3个字节则由厂家自行指派,称为 扩展标识符 。
IEEE规定地址字段的第一字节的最低位为I/G位。当I/G位为0时,地址字段表示一个单个站地址,而当I/G位为1时表示组地址,用来进行多播。所以IEEE只分配地址字段前三个字节中的23位,当I/G位分别为0和1时,一个地址块可分别生 2^24 个单个站地址和2^24个组地址。IEEE还把地址字段第1个字节的最低第二位规定为G/L位。当G/L位为0时是全球管理,来保证在全球没有相同的地址,厂商向IEEE购买的都属于全球管理。当地址段G/L位为1时是本地管理,这时用户可以任意分配网络上的地址,但是以太网几乎不会理会这个G/L位的。
适配器对MAC帧是具有的过滤功能的,当适配器从网络上每收到一个MAC帧就先用硬件检查MAC帧中的目的地址。如果是发往本站的帧则收下,然后再进行其他的处理,否则就将此帧丢弃。这样做就可以不浪费主机的处理机和内存资源这里发往本站的帧包括以下三种帧:
(1)单播帧:即收到的帧的MAC地址与本站的硬件地址相同。
(2)广播帧:即发送给本局域网上所有站点的帧。
(3)多播帧:即发送给本局域网上一部分站点的帧。
常用的以太网MAC帧格式是以太网V2的MAC帧格式。如下图:
可以看到以太网V2的MAC帧比较的简单,有五个字段组成。前两个字段分别为6字节长的目的地址和源地址字段。第三个字段是2字节的类型字段,用来标志上一层使用的是什么协议,以便把收到的MAC帧的数据上交给上一层的这个协议。下一个字段是数据字段,其长度在46到1500字节之间。最后一个字段是4字节的帧检验序列FCS(使用CRC检验)。
从图中可以看出,采用以太网V2的MAC帧并没有一个结构来存储一个数据的帧长度。这是由于在曼彻斯特编码中每一个码元的正中间一定有一次电压的转换,如果当发送方在发送完一个MAC帧后就不再发送了,则发送方适配器的电压一定是不会在变化的。这样接收方就可以知道以太网帧结束的位置,在这个位置减去FCS序列的4个字节,就可以知道帧的长度了。
当数据字段的长度小于42字节时,MAC子层就会在MAC帧后面加入一个整数字节来填充字段,来保证以太网的MAC帧的长度不小于64字节。当MAC帧传送给上层协议后,上层协议必须具有能够识别填充字段的功能。当上层使用的是IP协议时,其首部就有一个总长度字段,因此总长度加上填充字段的长度,就是MAC帧的数据字段的长度。
从图中还可以看出,在传输MAC帧时传输媒体上实际是多发送了8个字节,这是因为当MAC帧开始接收时,由于适配器的时钟尚未与比特流达成同步,因此MAC帧的最开始的部分是无法接收的,结果就是会使整个MAC成为无用帧。所以为了接收端能够迅速的与比特流形成同步,就需要在前面插入这8个字节。这8个字节是由两个部分组成的,第一个部分是由前7个字节构成的前同步码,它的主要作用就是就是实现同步。第二个部分是帧开始界定符,它的作用就是告诉接收方MAC帧马上就要来了。需要注意的是,帧与帧之间的传输是需要一定的间隔的,否则接收端在收到了帧开始界定符后就会认为后面的都是MAC帧而会造成错误。
以太网上的主机之间的距离不能太远,否则主机发送的信号经过铜线的传输就会衰减到使CSMA/CD协议无法正常工作,所以在过去常常使用工作在物理层的转发器来拓展以太网的地理覆盖范围。但是现在随着双绞线以太网成为以太网的主流类型,拓展以太网的覆盖范围已经很少使用转发器,而是使用光纤和一对光纤调制解调器来拓展主机和集线器之间的距离。
光纤解调器的作用是进行电信号与光信号的转换。由于光纤带来的时延很小,并且带宽很宽,所以才用这种方法可以很容易地使主机和几公里外的集线器相连接。
如果是使用多个集线器,就可以连接成覆盖更大范围的多级星形结构的以太网:
使用多级星形结构的以太网不仅能够让连接在不同的以太网的计算机能够进行通信,还可以扩大以太网的地理覆盖范围。但是这样的多级结构也带来了一些缺点,首先这样的结构会增大它们的碰撞域,这样做会导致图中的某个系的两个站在通信时所传送的数据会通过所有的集线器进行转发,使得其他系的内部在这时都不能进行通信。其次如果不同的以太网采用的是不同的技术,那么就不可能用集线器将它们互相连接起来。
拓展以太网的更常用的方法是在数据链路层中进行的,在开始时人们使用的是网桥。但是现在人们更常用的是 以太网交换机 。
以太网交换机实质上是一个多接口的网桥,通常是有十几个或者更多的接口,而每一个接口都是直接与一个单台主机或者另一个以太网交换机相连。同时以太网交换机还具有并行性,即能同时连通多对接口,使多对主机能同时通信,对于相互通信的主机来说都是独占传输媒体且无碰撞的传输数据。
以太网交换机的接口还有存储器,能够在输出端口繁忙时把到来的帧进行缓存,等到接口不再繁忙时再将缓存的帧发送出去。
以太网交换机还是一种即插即用的设备,它的内部的地址表是通过自学习算法自动的建立起来的。以太网交换机由于使用了专用的交换结构芯片,用硬件转发,它的转发速率是要比使用软件转发的网桥快很多。
如下图中带有4个接口的以太网交换机,它的4个接口各连接一台计算机,其MAC地址分别为A、B、C、D。在开始时,以太网交换机里面的交换表是空的。
首先,A先向B发送一帧,从接口1进入到交换机。交换机收到帧后,先查找交换表,但是没有查到应从哪个接口转发这个帧,接着交换机把这个帧的源地址A和接口1写入交换表中,并向除接口1以外的所有接口广播这个帧。C和D因为目的地址不对会将这个帧丢弃,只有B才收下这个目的地址正确的帧。从新写入的交换表(A,1)可以得出,以后不管从哪一个接口收到帧,只要其目的地址是A,就应当把收到的帧从接口1转发出去。以此类推,只要主机A、B、C也向其他主机发送帧,以太网交换机中的交换表就会把转发到A或B或C应当经过的借口号写入到交换表中,这样交换表中的项目就齐全了,以后要转发给任何一台主机的帧,就都能够很快的在交换表中找到相应的转发接口。
考虑到有时可能要在交换机的接口更换主机或者主机要更换其网络适配器,这就需要更改交换表中的项目,所以交换表中每个项目都设有一定的有效时间。
但是这样的自学习有时也会在某个环路中无限制的兜圈子,如下图:
假设一开始主机A通过接口交换机#1向主机B发送一帧。交换机#1收到这个帧后就向所有其他接口进行广播发送。其中一个帧的走向:离开#1的3->交换机#2的接口1->接口2->交换机#1的接口4->接口3->交换机#2的接口1......一直循环下去,白白消耗网络资源。所以为了解决这样的问题,IEEE制定了一个生成树协议STP,其要点就是不改变网络的实际拓扑,但在逻辑上切断某些链路,从而防止出现环路。
虚拟局域网VLAN是由一些局域网网段构成的与物理位置无关的逻辑组,而这些网段具有某些共同的需求。每一个VLAN的帧都有一个明确的标识符,指明发送这个帧的计算机属于VLAN。要注意虚拟局域网其实只是局域网给用户提供的一种服务,而不是一种新型局域网。
现在已经有标准定义了以太网的帧格式的扩展,以便支持虚拟局域网。虚拟局域网协议允许在以太网的帧格式中插入一个4字节的标识符,称为VLAN标记,它是用来指明发送该帧的计算机属于哪一个虚拟局域网。VLAN标记字段的长度是4字节,插入在以太网MAC帧的源地址字段和类型字段之间。VLAN标记的前两个字节总是设置为0x8100,称为IEEE802.1Q标记类型。当数据链路层检测到MAC帧的源地址字段后面的两个字节的值是0x8100时,就知道现在插入了4字节的VLAN标记。于是就接着检查后面两个字节的内容,在后面的两个字节中,前3位是用户优先级字段,接着的一位是规范格式指示符CFI,最后的12位是该虚拟局域网VLAN标识符VID,它唯一的标志了这个以台网属于哪一个VLAN。
高速以太网主要是分为三种,即100BASE-T以太网、吉比特以太网和10吉比特以太网:
Ⅶ 计算机网络第四章(网络层)
4.1、网络层概述
简介
网络层的主要任务是 实现网络互连 ,进而 实现数据包在各网络之间的传输
这些异构型网络N1~N7如果只是需要各自内部通信,他们只要实现各自的物理层和数据链路层即可
但是如果要将这些异构型网络互连起来,形成一个更大的互联网,就需要实现网络层设备路由器
有时为了简单起见,可以不用画出这些网络,图中N1~N7,而将他们看做是一条链路即可
要实现网络层任务,需要解决一下主要问题:
网络层向运输层提供怎样的服务(“可靠传输”还是“不可靠传输”)
在数据链路层那课讲过的可靠传输,详情可以看那边的笔记:网络层对以下的 分组丢失 、 分组失序 、 分组重复 的传输错误采取措施,使得接收方能正确接受发送方发送的数据,就是 可靠传输 ,反之,如果什么措施也不采取,则是 不可靠传输
网络层寻址问题
路由选择问题
路由器收到数据后,是依据什么来决定将数据包从自己的哪个接口转发出去?
依据数据包的目的地址和路由器中的路由表
但在实际当中,路由器是怎样知道这些路由记录?
由用户或网络管理员进行人工配置,这种方法只适用于规模较小且网络拓扑不改变的小型互联网
另一种是实现各种路由选择协议,由路由器执行路由选择协议中所规定的路由选择算法,而自动得出路由表中的路有记录,这种方法更适合规模较大且网络拓扑经常改变的大型互联网
补充 网络层(网际层) 除了 IP协议 外,还有之前介绍过的 地址解析协议ARP ,还有 网际控制报文协议ICMP , 网际组管理协议IGMP
总结
4.2、网络层提供的两种服务
在计算机网络领域,网络层应该向运输层提供怎样的服务(“ 面向连接 ”还是“ 无连接 ”)曾引起了长期的争论。
争论焦点的实质就是: 在计算机通信中,可靠交付应当由谁来负责 ?是 网络 还是 端系统 ?
面向连接的虚电路服务
一种观点:让网络负责可靠交付
这种观点认为,应借助于电信网的成功经验,让网络负责可靠交付,计算机网络应模仿电信网络,使用 面向连接 的通信方式。
通信之前先建立 虚电路 (Virtual Circuit),以保证双方通信所需的一切网络资源。
如果再使用可靠传输的网络协议,就可使所发送的分组无差错按序到达终点,不丢失、不重复。
发送方 发送给 接收方 的所有分组都沿着同一条虚电路传送
虚电路表示这只是一条逻辑上的连接,分组都沿着这条逻辑连接按照存储转发方式传送,而并不是真正建立了一条物理连接。
请注意,电路交换的电话通信是先建立了一条真正的连接。
因此分组交换的虚连接和电路交换的连接只是类似,但并不完全一样
无连接的数据报服务
另一种观点:网络提供数据报服务
互联网的先驱者提出了一种崭新的网络设计思路。
网络层向上只提供简单灵活的、 无连接的 、 尽最大努力交付 的 数据报服务 。
网络在发送分组时不需要先建立连接。每一个分组(即 IP 数据报)独立发送,与其前后的分组无关(不进行编号)。
网络层不提供服务质量的承诺 。即所传送的分组可能出错、丢失、重复和失序(不按序到达终点),当然也不保证分组传送的时限。
发送方 发送给 接收方 的分组可能沿着不同路径传送
尽最大努力交付
如果主机(即端系统)中的进程之间的通信需要是可靠的,那么就由网络的 主机中的运输层负责可靠交付(包括差错处理、流量控制等) 。
采用这种设计思路的好处是 :网络的造价大大降低,运行方式灵活,能够适应多种应用。
互连网能够发展到今日的规模,充分证明了当初采用这种设计思路的正确性。
虚电路服务与数据报服务的对比
对比的方面 虚电路服务 数据报服务
思路 可靠通信应当由网络来保证 可靠通信应当由用户主机来保证
连接的建立 必须有 不需要
终点地址 仅在连接建立阶段使用,每个分组使用短的虚电路号 每个分组都有终点的完整地址
分组的转发 属于同一条虚电路的分组均按照同一路由进行转发 每个分组独立选择路由进行转发
当结点出故障时 所有通过出故障的结点的虚电路均不能工作 出故障的结点可能会丢失分组,一些路由可能会发生变化
分组的顺序 总是按发送顺序到达终点 到达终点时不一定按发送顺序
端到端的差错处理和流量控制 可以由网络负责,也可以由用户主机负责 由用户主机负责
4.3、IPv4
概述
分类编制的IPv4地址
简介
每一类地址都由两个固定长度的字段组成,其中一个字段是 网络号 net-id ,它标志主机(或路由器)所连接到的网络,而另一个字段则是 主机号 host-id ,它标志该主机(或路由器)。
主机号在它前面的网络号所指明的网络范围内必须是唯一的。
由此可见, 一个 IP 地址在整个互联网范围内是唯一的 。
A类地址
B类地址
C类地址
练习
总结
IP 地址的指派范围
一般不使用的特殊的 IP 地址
IP 地址的一些重要特点
(1) IP 地址是一种分等级的地址结构 。分两个等级的好处是:
第一 ,IP 地址管理机构在分配 IP 地址时只分配网络号,而剩下的主机号则由得到该网络号的单位自行分配。这样就方便了 IP 地址的管理。
第二 ,路由器仅根据目的主机所连接的网络号来转发分组(而不考虑目的主机号),这样就可以使路由表中的项目数大幅度减少,从而减小了路由表所占的存储空间。
(2) 实际上 IP 地址是标志一个主机(或路由器)和一条链路的接口 。
当一个主机同时连接到两个网络上时,该主机就必须同时具有两个相应的 IP 地址,其网络号 net-id 必须是不同的。这种主机称为 多归属主机 (multihomed host)。
由于一个路由器至少应当连接到两个网络(这样它才能将 IP 数据报从一个网络转发到另一个网络),因此 一个路由器至少应当有两个不同的 IP 地址 。
(3) 用转发器或网桥连接起来的若干个局域网仍为一个网络 ,因此这些局域网都具有同样的网络号 net-id。
(4) 所有分配到网络号 net-id 的网络,无论是范围很小的局域网,还是可能覆盖很大地理范围的广域网,都是平等的。
划分子网的IPv4地址
为什么要划分子网
在 ARPANET 的早期,IP 地址的设计确实不够合理:
IP 地址空间的利用率有时很低。
给每一个物理网络分配一个网络号会使路由表变得太大因而使网络性能变坏。
两级的 IP 地址不够灵活。
如果想要将原来的网络划分成三个独立的网路
所以是否可以从主机号部分借用一部分作为子网号
但是如果未在图中标记子网号部分,那么我们和计算机又如何知道分类地址中主机号有多少比特被用作子网号了呢?
所以就有了划分子网的工具: 子网掩码
从 1985 年起在 IP 地址中又增加了一个“ 子网号字段 ”,使两级的 IP 地址变成为 三级的 IP 地址 。
这种做法叫做 划分子网 (subnetting) 。
划分子网已成为互联网的正式标准协议。
如何划分子网
基本思路
划分子网纯属一个 单位内部的事情 。单位对外仍然表现为没有划分子网的网络。
从主机号 借用 若干个位作为 子网号 subnet-id,而主机号 host-id 也就相应减少了若干个位。
凡是从其他网络发送给本单位某个主机的 IP 数据报,仍然是根据 IP 数据报的 目的网络号 net-id,先找到连接在本单位网络上的路由器。
然后 此路由器 在收到 IP 数据报后,再按 目的网络号 net-id 和 子网号 subnet-id 找到目的子网。
最后就将 IP 数据报直接交付目的主机。
划分为三个子网后对外仍是一个网络
优点
1. 减少了 IP 地址的浪费 2. 使网络的组织更加灵活 3. 更便于维护和管理
划分子网纯属一个单位内部的事情,对外部网络透明 ,对外仍然表现为没有划分子网的一个网络。
子网掩码
(IP 地址) AND (子网掩码) = 网络地址 重要,下面很多相关知识都会用到
举例
例子1
例子2
默认子网掩码
总结
子网掩码是一个网络或一个子网的重要属性。
路由器在和相邻路由器交换路由信息时,必须把自己所在网络(或子网)的子网掩码告诉相邻路由器。
路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。
若一个路由器连接在两个子网上,就拥有两个网络地址和两个子网掩码。
无分类编址的IPv4地址
为什么使用无分类编址
无分类域间路由选择 CIDR (Classless Inter-Domain Routing)。
CIDR 最主要的特点
CIDR使用各种长度的“ 网络前缀 ”(network-prefix)来代替分类地址中的网络号和子网号。
IP 地址从三级编址(使用子网掩码)又回到了两级编址 。
如何使用无分类编址
举例
路由聚合(构造超网)
总结
IPv4地址的应用规划
给定一个IPv4地址快,如何将其划分成几个更小的地址块,并将这些地址块分配给互联网中不同网络,进而可以给各网络中的主机和路由器接口分配IPv4地址
定长的子网掩码FLSM(Fixed Length Subnet Mask)
划分子网的IPv4就是定长的子网掩码
举例
通过上面步骤分析,就可以从子网1 ~ 8中任选5个分配给左图中的N1 ~ N5
采用定长的子网掩码划分,只能划分出2^n个子网,其中n是从主机号部分借用的用来作为子网号的比特数量,每个子网所分配的IP地址数量相同
但是也因为每个子网所分配的IP地址数量相同,不够灵活,容易造成IP地址的浪费
变长的子网掩码VLSM(Variable Length Subnet Mask)
无分类编址的IPv4就是变长的子网掩码
举例
4.4、IP数据报的发送和转发过程
举例
源主机如何知道目的主机是否与自己在同一个网络中,是直接交付,还是间接交付?
可以通过 目的地址IP 和 源地址的子网掩码 进行 逻辑与运算 得到 目的网络地址
如果 目的网络地址 和 源网络地址 相同 ,就是 在同一个网络 中,属于 直接交付
如果 目的网络地址 和 源网络地址 不相同 ,就 不在同一个网络 中,属于 间接交付 ,传输给主机所在网络的 默认网关 (路由器——下图会讲解),由默认网关帮忙转发
主机C如何知道路由器R的存在?
用户为了让本网络中的主机能和其他网络中的主机进行通信,就必须给其指定本网络的一个路由器的接口,由该路由器帮忙进行转发,所指定的路由器,也被称为 默认网关
例如。路由器的接口0的IP地址192.168.0.128做为左边网络的默认网关
主机A会将该IP数据报传输给自己的默认网关,也就是图中所示的路由器接口0
路由器收到IP数据报后如何转发?
检查IP数据报首部是否出错:
若出错,则直接丢弃该IP数据报并通告源主机
若没有出错,则进行转发
根据IP数据报的目的地址在路由表中查找匹配的条目:
若找到匹配的条目,则转发给条目中指示的吓一跳
若找不到,则丢弃该数据报并通告源主机
假设IP数据报首部没有出错,路由器取出IP数据报首部各地址字段的值
接下来路由器对该IP数据报进行查表转发
逐条检查路由条目,将目的地址与路由条目中的地址掩码进行逻辑与运算得到目的网络地址,然后与路由条目中的目的网络进行比较,如果相同,则这条路由条目就是匹配的路由条目,按照它的下一条指示,图中所示的也就是接口1转发该IP数据报
路由器是隔离广播域的
4.5、静态路由配置及其可能产生的路由环路问题
概念
多种情况举例
静态路由配置
举例
默认路由
举例
默认路由可以被所有网络匹配,但路由匹配有优先级,默认路由是优先级最低的
特定主机路由
举例
有时候,我们可以给路由器添加针对某个主机的特定主机路由条目
一般用于网络管理人员对网络的管理和测试
多条路由可选,匹配路由最具体的
静态路由配置错误导致路由环路
举例
假设将R2的路由表中第三条目录配置错了下一跳
这导致R2和R3之间产生了路由环路
聚合了不存在的网络而导致路由环路
举例
正常情况
错误情况
解决方法
黑洞路由的下一跳为null0,这是路由器内部的虚拟接口,IP数据报进入它后就被丢弃
网络故障而导致路由环路
举例
解决方法
添加故障的网络为黑洞路由
假设。一段时间后故障网络恢复了
R1又自动地得出了其接口0的直连网络的路由条目
针对该网络的黑洞网络会自动失效
如果又故障
则生效该网络的黑洞网络
总结
4.6、路由选择协议
概述
因特网所采用的路由选择协议的主要特点
因特网采用分层次的路由选择协议
自治系统 AS :在单一的技术管理下的一组路由器,而这些路由器使用一种 AS 内部的路由选择协议和共同的度量以确定分组在该 AS 内的路由,同时还使用一种 AS 之间的路由选择协议用以确定分组在 AS之间的路由。
自治系统之间的路由选择简称为域间路由选择,自治系统内部的路由选择简称为域内路由选择
域间路由选择使用外部网关协议EGP这个类别的路由选择协议
域内路由选择使用内部网关协议IGP这个类别的路由选择协议
网关协议 的名称可称为 路由协议
常见的路由选择协议
Ⅷ 求计算机网络选择题答案
ABBCB
CCBCB
DBBDA
ACDCA
Ⅸ 计算机网络第三章(数据链路层)
3.1、数据链路层概述
概述
链路 是从一个结点到相邻结点的一段物理线路, 数据链路 则是在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现)
网络中的主机、路由器等都必须实现数据链路层
局域网中的主机、交换机等都必须实现数据链路层
从层次上来看数据的流动
仅从数据链路层观察帧的流动
主机H1 到主机H2 所经过的网络可以是多种不同类型的
注意:不同的链路层可能采用不同的数据链路层协议
数据链路层使用的信道
数据链路层属于计算机网路的低层。 数据链路层使用的信道主要有以下两种类型:
点对点信道
广播信道
局域网属于数据链路层
局域网虽然是个网络。但我们并不把局域网放在网络层中讨论。这是因为在网络层要讨论的是多个网络互连的问题,是讨论分组怎么从一个网络,通过路由器,转发到另一个网络。
而在同一个局域网中,分组怎么从一台主机传送到另一台主机,但并不经过路由器转发。从整个互联网来看, 局域网仍属于数据链路层 的范围
三个重要问题
数据链路层传送的协议数据单元是 帧
封装成帧
封装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。
首部和尾部的一个重要作用就是进行 帧定界 。
差错控制
在传输过程中可能会产生 比特差错 :1 可能会变成 0, 而 0 也可能变成 1。
可靠传输
接收方主机收到有误码的帧后,是不会接受该帧的,会将它丢弃
如果数据链路层向其上层提供的是不可靠服务,那么丢弃就丢弃了,不会再有更多措施
如果数据链路层向其上层提供的是可靠服务,那就还需要其他措施,来确保接收方主机还可以重新收到被丢弃的这个帧的正确副本
以上三个问题都是使用 点对点信道的数据链路层 来举例的
如果使用广播信道的数据链路层除了包含上面三个问题外,还有一些问题要解决
如图所示,主机A,B,C,D,E通过一根总线进行互连,主机A要给主机C发送数据,代表帧的信号会通过总线传输到总线上的其他各主机,那么主机B,D,E如何知道所收到的帧不是发送给她们的,主机C如何知道发送的帧是发送给自己的
可以用编址(地址)的来解决
将帧的目的地址添加在帧中一起传输
还有数据碰撞问题
随着技术的发展,交换技术的成熟,
在 有线(局域网)领域 使用 点对点链路 和 链路层交换机 的 交换式局域网 取代了 共享式局域网
在无线局域网中仍然使用的是共享信道技术
3.2、封装成帧
介绍
封装成帧是指数据链路层给上层交付的协议数据单元添加帧头和帧尾使之成为帧
帧头和帧尾中包含有重要的控制信息
发送方的数据链路层将上层交付下来的协议数据单元封装成帧后,还要通过物理层,将构成帧的各比特,转换成电信号交给传输媒体,那么接收方的数据链路层如何从物理层交付的比特流中提取出一个个的帧?
答:需要帧头和帧尾来做 帧定界
但比不是每一种数据链路层协议的帧都包含有帧定界标志,例如下面例子
前导码
前同步码:作用是使接收方的时钟同步
帧开始定界符:表明其后面紧跟着的就是MAC帧
另外以太网还规定了帧间间隔为96比特时间,因此,MAC帧不需要帧结束定界符
透明传输
透明
指某一个实际存在的事物看起来却好像不存在一样。
透明传输是指 数据链路层对上层交付的传输数据没有任何限制 ,好像数据链路层不存在一样
帧界定标志也就是个特定数据值,如果在上层交付的协议数据单元中, 恰好也包含这个特定数值,接收方就不能正确接收
所以数据链路层应该对上层交付的数据有限制,其内容不能包含帧定界符的值
解决透明传输问题
解决方法 :面向字节的物理链路使用 字节填充 (byte stuffing) 或 字符填充 (character stuffing),面向比特的物理链路使用比特填充的方法实现透明传输
发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面 插入一个转义字符“ESC” (其十六进制编码是1B)。
接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。
如果转义字符也出现在数据当中,那么应在转义字符前面插入一个转义字符 ESC。当接收端收到连续的两个转义字符时,就删除其中前面的一个。
帧的数据部分长度
总结
3.3、差错检测
介绍
奇偶校验
循环冗余校验CRC(Cyclic Rendancy Check)
例题
总结
循环冗余校验 CRC 是一种检错方法,而帧校验序列 FCS 是添加在数据后面的冗余码
3.4、可靠传输
基本概念
下面是比特差错
其他传输差错
分组丢失
路由器输入队列快满了,主动丢弃收到的分组
分组失序
数据并未按照发送顺序依次到达接收端
分组重复
由于某些原因,有些分组在网络中滞留了,没有及时到达接收端,这可能会造成发送端对该分组的重发,重发的分组到达接收端,但一段时间后,滞留在网络的分组也到达了接收端,这就造成 分组重复 的传输差错
三种可靠协议
停止-等待协议SW
回退N帧协议GBN
选择重传协议SR
这三种可靠传输实现机制的基本原理并不仅限于数据链路层,可以应用到计算机网络体系结构的各层协议中
停止-等待协议
停止-等待协议可能遇到的四个问题
确认与否认
超时重传
确认丢失
既然数据分组需要编号,确认分组是否需要编号?
要。如下图所示
确认迟到
注意,图中最下面那个数据分组与之前序号为0的那个数据分组不是同一个数据分组
注意事项
停止-等待协议的信道利用率
假设收发双方之间是一条直通的信道
TD :是发送方发送数据分组所耗费的发送时延
RTT :是收发双方之间的往返时间
TA :是接收方发送确认分组所耗费的发送时延
TA一般都远小于TD,可以忽略,当RTT远大于TD时,信道利用率会非常低
像停止-等待协议这样通过确认和重传机制实现的可靠传输协议,常称为自动请求重传协议ARQ( A utomatic R epeat re Q uest),意思是重传的请求是自动进行,因为不需要接收方显式地请求,发送方重传某个发送的分组
回退N帧协议GBN
为什么用回退N帧协议
在相同的时间内,使用停止-等待协议的发送方只能发送一个数据分组,而采用流水线传输的发送方,可以发送多个数据分组
回退N帧协议在流水线传输的基础上,利用发送窗口来限制发送方可连续发送数据分组的个数
无差错情况流程
发送方将序号落在发送窗口内的0~4号数据分组,依次连续发送出去
他们经过互联网传输正确到达接收方,就是没有乱序和误码,接收方按序接收它们,每接收一个,接收窗口就向前滑动一个位置,并给发送方发送针对所接收分组的确认分组,在通过互联网的传输正确到达了发送方
发送方每接收一个、发送窗口就向前滑动一个位置,这样就有新的序号落入发送窗口,发送方可以将收到确认的数据分组从缓存中删除了,而接收方可以择机将已接收的数据分组交付上层处理
累计确认
累计确认
优点:
即使确认分组丢失,发送方也可能不必重传
减小接收方的开销
减小对网络资源的占用
缺点:
不能向发送方及时反映出接收方已经正确接收的数据分组信息
有差错情况
例如
在传输数据分组时,5号数据分组出现误码,接收方通过数据分组中的检错码发现了错误
于是丢弃该分组,而后续到达的这剩下四个分组与接收窗口的序号不匹配
接收同样也不能接收它们,讲它们丢弃,并对之前按序接收的最后一个数据分组进行确认,发送ACK4, 每丢弃一个数据分组,就发送一个ACK4
当收到重复的ACK4时,就知道之前所发送的数据分组出现了差错,于是可以不等超时计时器超时就立刻开始重传,具体收到几个重复确认就立刻重传,根据具体实现决定
如果收到这4个重复的确认并不会触发发送立刻重传,一段时间后。超时计时器超时,也会将发送窗口内以发送过的这些数据分组全部重传
若WT超过取值范围,例如WT=8,会出现什么情况?
习题
总结
回退N帧协议在流水线传输的基础上利用发送窗口来限制发送方连续发送数据分组的数量,是一种连续ARQ协议
在协议的工作过程中发送窗口和接收窗口不断向前滑动,因此这类协议又称为滑动窗口协议
由于回退N帧协议的特性,当通信线路质量不好时,其信道利用率并不比停止-等待协议高
选择重传协议SR
具体流程请看视频
习题
总结
3.5、点对点协议PPP
点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的点对点数据链路层协议
PPP协议是因特网工程任务组IEIF在1992年制定的。经过1993年和1994年的修订,现在的PPP协议已成为因特网的正式标准[RFC1661,RFC1662]
数据链路层使用的一种协议,它的特点是:简单;只检测差错,而不是纠正差错;不使用序号,也不进行流量控制;可同时支持多种网络层协议
PPPoE 是为宽带上网的主机使用的链路层协议
帧格式
必须规定特殊的字符作为帧定界符
透明传输
必须保证数据传输的透明性
实现透明传输的方法
面向字节的异步链路:字节填充法(插入“转义字符”)
面向比特的同步链路:比特填充法(插入“比特0”)
差错检测
能够对接收端收到的帧进行检测,并立即丢弃有差错的帧。
工作状态
当用户拨号接入 ISP 时,路由器的调制解调器对拨号做出确认,并建立一条物理连接。
PC 机向路由器发送一系列的 LCP 分组(封装成多个 PPP 帧)。
这些分组及其响应选择一些 PPP 参数,并进行网络层配置,NCP 给新接入的 PC 机
分配一个临时的 IP 地址,使 PC 机成为因特网上的一个主机。
通信完毕时,NCP 释放网络层连接,收回原来分配出去的 IP 地址。接着,LCP 释放数据链路层连接。最后释放的是物理层的连接。
可见,PPP 协议已不是纯粹的数据链路层的协议,它还包含了物理层和网络层的内容。
3.6、媒体接入控制(介质访问控制)——广播信道
媒体接入控制(介质访问控制)使用一对多的广播通信方式
Medium Access Control 翻译成媒体接入控制,有些翻译成介质访问控制
局域网的数据链路层
局域网最主要的 特点 是:
网络为一个单位所拥有;
地理范围和站点数目均有限。
局域网具有如下 主要优点 :
具有广播功能,从一个站点可很方便地访问全网。局域网上的主机可共享连接在局域网上的各种硬件和软件资源。
便于系统的扩展和逐渐地演变,各设备的位置可灵活调整和改变。
提高了系统的可靠性、可用性和残存性。
数据链路层的两个子层
为了使数据链路层能更好地适应多种局域网标准,IEEE 802 委员会就将局域网的数据链路层拆成 两个子层 :
逻辑链路控制 LLC (Logical Link Control)子层;
媒体接入控制 MAC (Medium Access Control)子层。
与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关。 不管采用何种协议的局域网,对 LLC 子层来说都是透明的。
基本概念
为什么要媒体接入控制(介质访问控制)?
共享信道带来的问题
若多个设备在共享信道上同时发送数据,则会造成彼此干扰,导致发送失败。
随着技术的发展,交换技术的成熟和成本的降低,具有更高性能的使用点对点链路和链路层交换机的交换式局域网在有线领域已完全取代了共享式局域网,但由于无线信道的广播天性,无线局域网仍然使用的是共享媒体技术
静态划分信道
信道复用
频分复用FDM (Frequency Division Multiplexing)
将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。
频分复用 的所有用户在同样的时间 占用不同的带宽资源 (请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。
Ⅹ 计算机网络技术考试题库附答案(2)
C、总线状拓扑结构 D、以上三种网络拓扑故障诊断和隔离一样容易
102、以下哪种拓扑结构比较适用使用光纤( B)
A、星状拓扑结构 B、环状拓扑结构 C、总线状拓扑结构 D、以上三种网络拓扑都适用使用光纤
103、EIA的中文含义是( D )
A、国际标准化组织 B、美国国家标准协会(ANSI)
C、电气和电子工程师协会(IEEE) D、电工工业协会
104、计算机网络体系结构中,下层的目的是向上一层提供(B)
A、协议 B、服务 C、规则 D、数据包
105、制定OSI的组织是( C )
A、ANSI B、EIA C、ISO D、IEEE
107、计算机网络的体系结构是指(A)
A、计算机网络的分层结构和协议的集合 B、计算机网络的连接形式
C、计算机网络的协议集合 D、由通信线路连接起来的网络系统
108、局域网的硬件组成包括网络服务器、(B)、网络适配器、网络传输介质和网络连接部件。
A、发送设备和接收设备 B、网络工作站 C、配套的插头和插座 D、代码转换设备
109、为实现计算机网络的一个网段的通信电缆长度的延伸,应选择(B)
A、网桥 B、中继器 C、网关 D、路由器
110、TCP/IP协议的IP层是指(C)A、应用层 B、传输层 C、网络层 D、网络接口层
111、Windows NT2000 系统安装时,自动产生的管理员用户名是(C)
A、Guest B、IUSR_NT C、Administrator D、Everyone
113、在网络体系结构中,OSI表示(A)A、Open System Interconnection B、Open System Information
C、Operating System Interconnection D、Operating System Information
115、IP地址127、0、0、1 是一个(D) 地址。A、A类 B、B类 C、C类 D、测试
116、使用缺省的子网掩码,IP地址201、100、200、1 的网络号和主机号分别是(C)
A、201、0、0、0 和 100、200、1 B、201、100、0、0 和 200、1
C、201、100、200、0 和 1 D、201、100、200、1 和 0
117、B类地址的缺省子网掩码是(C)
A、255、255、255、128 B、255、255、255、0 C、255、255、0、0 D、255、255、128、0
118、将域名转换为IP地址是由 (C)服务器完成的A、WINS B、DHCP C、DNS D、IIS
119、中继器的作用是( B)A、分隔网络流量 B、延长网段长度 C、减少网络冲突 D、纠正传输错误
120、调制解调器中的解调器的作用是( C)。a、将数字数据转换为模拟数据 b、将数字数据转换为模拟信号c、将模拟信号转换为数字数据 d、将模拟数据转换为数字信号
121、计算机网络主要使用( A )欧姆的基带同轴电缆 A、50欧姆 B、75欧姆 C、100欧姆 D、120欧姆
122、使用哪种设备能够将网络分隔成多个IP子网( D )A、网桥 B、集线器 C、交换机 D、路由器
123、哪一个不是防火墙提供的功能( B )
A、限制访问内部主机 B、限制访问外部主机 C、防止病毒入侵 D、统计网络流量
124、在计算机网络中,所有的计算机均连接到一条通信传输线路上,在线路两端连有防止信号反射的装置,这种连接结构被称为( A )A、总线结构 B、星型结构 C、环型结构 D、 网状结构
125、用来实现局域网—广域网互联的是B )A、中继器或网桥 B、路由器或网关 C、网桥或路由器D、网桥或网关
126、Token Ring介质访问控制方法遵循的标准是(C)A、IEEE802.3 B、IEEE802.4 C、IEEE802.5 D、IEEE802.6
127、计算机网络的拓扑结构主要取决于它的( C )A、路由器 B、资源子网 C、通信子网 D、 FDDI网
128、在局域网中,MAC指的是( B )。A、逻辑链路控制子层 B、介质访问控制子层C、物理层 D、数据链路层
131、第二代计算机网络的主要特点是 ( A )。 A、计算机-计算机网络 B、以单机为中心的联机系统
C、国际网络体系结构标准化 D、各计算机制造厂商网络结构标准化
132、以下哪一个不是关于千兆位以太网的正确描述( C )。 A、数据传输速率为1000MBit/S
B、支持全双工传送方式 C、只能基于光纤实现 D、帧格式与以太网帧格式相同
133、IP地址为 140、111、0、0 的B类网络,若要切割为9个子网,而且都要连上Internet,请问子网掩码设为( D )。A、255、0、0、0 B、255、255、0、0 C、255、255、128、0 D、255、255、240、0
135、在Internet上浏览时,浏览器和WWW服务器之间传输网页使用的协议是(B )。
A、IP B、HTTP C、FTP D、Telnet
136、以下( A )是集线器(Hub)的功能。
A、放大信号和延长信号传输距离。 B、隔离数据通信量。C、路由选择。 D、进行协议转换。
137、在OSI参考模型的各层次中,( D )的数据传送单位是报文。
A、物理层 B、数据链路层 C、网络层 D、传输层
138.计算机网络通信的一个显着特点是( B )。
A.稳定性 B.间歇性、突发性 C.安全性 D.易用性
139.下列哪一项不是网卡的基本功能( B )。
A.数据转换 B.路由选择 C.网络存取控制 D.数据缓存
140、为网络提供共享资源并对这些资源进行管理的计算机称之为( B)
A、工作站 B、服务器 C、网桥 D、网卡
142、下面关于卫星通信的说法,哪一个是错误的(C)
A、卫星通信通信距离大,覆盖的范围广;B、使用卫星通信易于实现广播通信和多址通信;
C、卫星通信的好处在于不受气候的影响,误码率很低;
D、通信费用高,延时较大是卫星通信的不足之处;
143、在给主机配置IP地址时,哪一个能使用(A)
A、29、9、255、18 B、127、21、19、109 C、192、5、91、255 D、220、103、256、56
144、下面有关网桥的说法,哪一个是错误的( C )
A、网桥工作在数据链路层,对网络进行分段,并将两个物理网络连接成一个逻辑网络;
B、网桥可以通过对不要传递的数据进行过滤,并有效的阻止广播数据;
C、对于不同类型的网络可以通过特殊的转换网桥进行连接;
D、网桥要处理其接收到的数据,增加了时延;
145、对于(C)网络,若网络中的节点大量增加时,网络吞吐率下降、传输延迟时间增加,且无确定的上限值。
A、Token Ring B、Token Bus C、Ethernet D、FDDI
146、在企业内部网与外部网之间,用来检查网络请求分组是否合法,保护网络资源不被非法使用的技术是( B )
A、防病毒技术 B、防火墙技术 C、差错控制技术 D、流量控制技术
147、在Intranet服务器中,( D )作为WWW服务的本地缓冲区,将Intranet用户从Internet中访问过的主页或文件的副本存放其中,用户下一次访问时可以直接从中取出,提高用户访问速度,节省费用。
A、Web服务器 B、数据库服务器 C、电子邮件服务器 D、代理服务器
148、决定局域网特性的主要技术有:传输媒体、拓扑结构和媒体访问控制技术,其中最重要的是( C )
A、传输媒体 B、拓扑结构 C、媒体访问控制技术 D、以上均不是
149、以太网卡的地址是( C )位
A.16 B、32 C、48 D 64
150.网卡的主要功能不包括(D)
A、将计算机连接到通信介质上 B、进行电信号匹配 C、实现数据传输 D、网络互连
151.下列选项中,(B)是将单个计算机连接到网络上的设备
A、显示卡 B、网卡 C、路由器 D、网关
152.下列属于按网络信道带宽把网络分类的是( D )
A、星型网和环型网 B、电路交换网和分组交换网 C、有线网和无线网 D、宽带网和窄带网
153.把网络分为电路交换网、报文交换网、分组交换网属于按( D )进行分类
A、连接距离 B、服务对象 C、拓扑结构 D、数据交换方式
154.网络操作系统最重要最基本的服务是( A )
A、文件服务 B、异步通信服务 C、打印服务 D、数据库服务
156.网络传输中对数据进行统一的标准编码在OSI体系中由( D )实现
A、物理层 B、网络层 C、传输层 D、表示层
157.对于一个主机域名www.hava.gxou.com.cn来说,主机名是( B )
A、WWW B、HAVA C、GXOU D、COM
158.TCP/IP上每台主机都需要用( C )以区分网络号和主机号A、IP地址 B、IP协议 C、子网掩码 D、主机名
159.为了将服务器、工作站连接到网络中去,需要在网络通信介质和智能设备间用网络接口设备进行物理连接,局域网中多由( A )完成这一功能A、网卡 B、调制解调器 C、网关 D、网桥
160、是信息传输的物理通道( D )A、信号 B、编码 C、数据 D、介质
162.在数据传输中,需要建立连接的是 ( A )A、电路交换 B、信元交换 C、报文交换 D、数据报交换
163.具有结构简单灵活,成本低,扩充性强,性能好以及可靠性高等特点,目前局域网广泛采用的网络结构是( B )
A、星型结构 B、总线型结构 C、环型结构 D、以上都不是
165.OSI参考模型的( A )保证一个系统应用层发出的信息能被另一个系统的应用层读出
A、传输层 B、会话层 C、表示层 D、应用层
167.OSI参考模型的( D )为用户的应用程序提供网络服务A、传输层 B、会话层 C、表示层 D、应用层
169.在令牌环网中,令牌的作用是( A )
A、向网络的其余部分指示一个节点有权发送数据 B、向网络的其余部分指示一个节点忙以至不能发送数据
C、向网络的其余部分指示一个广播消息将被发送 D、以上都不是
170.在一种网络中,超过一定长度,传输介质中的数据信号就会衰减、如果需要比较长的传输距离,就需要安装 ( A )设备 A、中继器 B、集线器 C、路由器 D、网桥
171.当两种相同类型但又使用不同通信协议的网络进行互联时,就需要使用 ( C )
A、中继器 B、集线器 C、路由器 D、网桥
172.当连接两个完全不同结构的网络时,必须使用( D )A、中继器 B、集线器 C、路由器 D、网关
173.光缆的光束是在( A )内传输 A、玻璃纤维 B、透明橡胶 C、同轴电缆 D、网卡
176.10BASE-2以太网采用的是 ( A )拓扑结构 A、总线型 B、网状 C、星型 D、环形
177.10BASE-5以太网采用的是 ( A ) 拓扑结构 A、总线型 B、网状 C、星型 D、环形
178.10BASE-T以太网采用的是( C )拓扑结构A、总线型 B、网状 C、星型 D、环形
182.支持NOVELL网络的协议是 ( B )A、TCP/IP B、IPX/SPX C、NetBIOS D、NetBEUI
183.IEEE802工程标准中的802.3协议是( A )
A、局域网的载波侦听多路访问标准 B、局域网的令牌环网标准C、局域网的互联标准 D、以上都不是
184.有关控制令牌操作叙述错误的是( A )
A、用户自己产生控制令牌 B、令牌沿逻辑环从一个站点传递到另一个站点
C、当等待发送报文的站点接收到令牌后,发送报文 D、将控制令牌传递到下一个站点
186.10BASE2中 “2”代表( B )A、第二代10BASE B、传输距离200米 C、2对双绞线 D、无意义
187.Internet主干网采用( D )结构A、总线型 B、环型 C、星型 D、网型
192.令牌总线网络标准是(C) A、IEEE802.2 B、IEEE802.3 C、IEEE802.4 D、IEEE802.5
193.关于网桥下列说法错误的是( A )A、作用于OSI参考模型中数据链路层的LLC子层
B、可以隔离网段间的数据量
C、可以将两个以上的物理网络连接在一起构成单个逻辑局域网 D、可以存储转发数据帧
194.下列说法错误的是( B )
A、Token-Bus是结合了CSMA/CD与Token Ring的优点而形成的一种媒体访问控制方法
B、Token-Bus网络操作简单,管理简单C、Token-Bus网络可靠性高、吞吐量大
D、ARCnet采用的是Token-Bus访问控制方式
195、下列属于交换式局域网的是(A)
A、ATM局域网 B、FDDI网 C、令牌环网 D、以太网
196.数据在传输中产生差错的重要原因是( B )
A、热噪声 B、冲击噪声 C、串扰 D、环境恶劣
197.5类UTP双绞线规定的最高传输特性是( C )
A、20Mbps B、20MHZ C、100Mbps D、100MHZ
198.计算机网络是按(A)相互通信的
A、信息交换方式 B、分类标准 C、网络协议 D、传输装置
199.目前公用电话网广泛使用的交换方式为( A )
A、电路交换 B、分组交换 C、数据报交换 D、报文交换
200.TCP/IP分层模型中,下列哪个协议是传输层的协议之一 ( C )
A、TDC B、TDP C、UDP D、UTP
201.多用于同类局域网间的互联设备为( B )
A、网关 B、网桥 C、中继器 D、路由器
202.进行网络互联,当总线网的网段已超过最大距离时,采用( C )设备来延伸
A、网关 B、网桥 C、中继器 D、路由器
203.在不同的网络间存储并转发分组,必须通过( B )进行网络上的协议转换
A、交换机 B、网关 C、桥接器 D、重发器
204.FlashGet属于( D )(Thunder(迅雷))
A、网络操作系统 B、网络管理软件 C、网络通信协议 D、网络应用软件
205.个人计算机申请了帐号并采用PPP拨号接入Internet网后,该机( B )
A、拥有固定的IP地址 B、拥用独立的IP地址.
C、没有自己的IP地址 D、可以有多个IP地址
206.互联网上的服务都是基于某种协议,WWW服务基于的.协议是( B )
A、SNMP B、HTTP C、SMTP D、TELNET
207.当个人计算机以拨号方式接入Internet网时,必须使用的设备是( A )
A、调制解调器 B、网卡 C、浏览器软件 D、电话机