1、分层结构将应用系统正交地划分为若干层,每一层只解决问题的一部分,通过各层的协作提供整体解决方案。大的问题被分解为一系列相对独立的子问题,局部化在每一层中,这样就有效的降低了单个问题的规模和复杂度,实现了复杂系统的第一步也是最为关键的一步分解。
2、分层结构具有良好的可扩展性,为应用系统的演化增长提供了一个灵活的框架,具有良好的可扩展性。增加新的功能时,无须对现有的代码做修改,业务逻辑可以得到最大限度的重用。同时,层与层之间可以方便地插入新的层来扩展应用。
3、分层架构易于维护。在对系统进行分解后,不同的功能被封装在不同的层中,层与层之间的耦合显着降低。因此在修改某个层的代码时,只要不涉及层与层之间的接口,就不会对其他层造成严重影响。
(1)关于计算机网络分层管理扩展阅读:
体系结构:
计算机网络是一个复杂的具有综合性技术的系统,为了允许不同系统实体互连和互操作,不同系统的实体在通信时都必须遵从相互均能接受的规则,这些规则的集合称为协议(Protocol)。
系统指计算机、终端和各种设备。实体指各种应用程序,文件传输软件,数据库管理系统,电子邮件系统等。互连指不同计算机能够通过通信子网互相连接起来进行数据通信。
互操作指不同的用户能够在通过通信子网连接的计算机上,使用相同的命令或操作,使用其它计算机中的资源与信息,就如同使用本地资源与信息一样。计算机网络体系结构为不同的计算机之间互连和互操作提供相应的规范和标准。
2. 计算机网络体系分为哪四层
1.、应用层
应用层对应于OSI参考模型的高层,为用户提供所需要的各种服务,例如:FTP、Telnet、DNS、SMTP等.
2.、传输层
传输层对应于OSI参考模型的传输层,为应用层实体提供端到端的通信功能,保证了数据包的顺序传送及数据的完整性。该层定义了两个主要的协议:传输控制协议(TCP)和用户数据报协议(UDP).
TCP协议提供的是一种可靠的、通过“三次握手”来连接的数据传输服务;而UDP协议提供的则是不保证可靠的(并不是不可靠)、无连接的数据传输服务.
3.、网际互联层
网际互联层对应于OSI参考模型的网络层,主要解决主机到主机的通信问题。它所包含的协议设计数据包在整个网络上的逻辑传输。注重重新赋予主机一个IP地址来完成对主机的寻址,它还负责数据包在多种网络中的路由。
该层有三个主要协议:网际协议(IP)、互联网组管理协议(IGMP)和互联网控制报文协议(ICMP)。
IP协议是网际互联层最重要的协议,它提供的是一个可靠、无连接的数据报传递服务。
4.、网络接入层(即主机-网络层)
网络接入层与OSI参考模型中的物理层和数据链路层相对应。它负责监视数据在主机和网络之间的交换。事实上,TCP/IP本身并未定义该层的协议,而由参与互连的各网络使用自己的物理层和数据链路层协议,然后与TCP/IP的网络接入层进行连接。地址解析协议(ARP)工作在此层,即OSI参考模型的数据链路层。
(2)关于计算机网络分层管理扩展阅读:
OSI将计算机网络体系结构(architecture)划分为以下七层:
物理层: 将数据转换为可通过物理介质传送的电子信号相当于邮局中的搬运工人。
数据链路层: 决定访问网络介质的方式。
在此层将数据分帧,并处理流控制。本层指定拓扑结构并提供硬件寻址,相当于邮局中的装拆箱工人。
网络层: 使用权数据路由经过大型网络 相当于邮局中的排序工人。
传输层: 提供终端到终端的可靠连接 相当于公司中跑邮局的送信职员。
会话层: 允许用户使用简单易记的名称建立连接 相当于公司中收寄信、写信封与拆信封的秘书。
表示层: 协商数据交换格式 相当公司中简报老板、替老板写信的助理。
应用层: 用户的应用程序和网络之间的接口老板。
3. 计算机网络的分层体系结构
第一层:物理层(PhysicalLayer),规定通信设备的机械的、电气的、功能的和过程的特性,用以建立、维护和拆除物理链路连接。具体地讲,机械特性规定了网络连接时所需接插件的规格尺寸、引脚数量和排列情况等;电气特性规定了在物理连接上传输bit流时线路上信号电平的大小、阻抗匹配、传输速率距离限制等;功能特性是指对各个信号先分配确切的信号含义,即定义了DTE和DCE之间各个线路的功能;规程特性定义了利用信号线进行bit流传输的一组操作规程,是指在物理连接的建立、维护、交换信息是,DTE和DCE双放在各电路上的动作系列。
在这一层,数据的单位称为比特(bit)。
属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。
第二层:数据链路层(DataLinkLayer):在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。
数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。
在这一层,数据的单位称为帧(frame)。
数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。
第三层是网络层(Network layer)
在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。
如果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP是第3层问题的一部分,此外还有一些路由协议和地址解析协议(ARP)。有关路由的一切事情都在第3层处理。地址解析和路由是3层的重要目的。网络层还可以实现拥塞控制、网际互连等功能。
在这一层,数据的单位称为数据包(packet)。
网络层协议的代表包括:IP、IPX、RIP、OSPF等。
第四层是处理信息的传输层(Transport layer)。第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段(segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的数据包和其它在传输过程中可能发生的危险。第4层为上层提供端到端(最终用户到最终用户)的透明的、可靠的数据传输服务。所为透明的传输是指在通信过程中传输层对上层屏蔽了通信传输系统的具体细节。
传输层协议的代表包括:TCP、UDP、SPX等。
第五层是会话层(Session layer)
这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。
第六层是表示层(Presentation layer)
这一层主要解决用户信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩, 加密和解密等工作都由表示层负责。
第七层应用层(Application layer),应用层为操作系统或网络应用程序提供访问网络服务的接口。
应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。
4. 6什么是计算机网络的体系结构为什么要采用分层次的结构
计算机网络体系结构是指计算机网络层次结构模型,它是各层的协议以及层次之间的端口的集合。
目前广泛采用的是国际标准化组织(ISO)1997年提出的开放系统互联(Open
System Interconnection,OSI)参考模型,习惯上称为ISO/OSI参考模型。
在OSI七层参考模型的体系结构中,由低层至高层分别称为物理层、数据链路层、网络层、运输层、会话层、表示层和应用层
原因:为把在一个网络结构下开发的系统与在另一个网络结构下开发的系统互联起来,以实现更高一级的应用,使异种机之间的通信成为可能,便于网络结构标准化;
并且由于全球经济的发展使得处在不同网络体系结构的用户迫切要求能够互相交换信息;
为此,国际标准化组织ISO成立了专门的机构研究该问题,并于1977年提出了一个试图使各种计算机在世界范围内互联成网的标准框架,即着名的开放系统互连基本参考模型OSI/RM (Open System Interconnection Reference Model)。
(4)关于计算机网络分层管理扩展阅读:
OSI模型体系结构:
物理层(Physical,PH)物理层的任务就是为上层提供一个物理的连接,以及该物理连接表现出来的机械、电气、功能和过程特性,实现透明的比特流传输。
数据链路层(Data-link,D)实现的主要功能有:帧的同步、差错控制、流量控制、寻址、帧内定界、透明比特组合传输等。
网络层(Network,N)网络层的主要任务是为要传输的分组选择一条合适的路径,使发送分组能够正确无误地按照给定的目的地址找到目的主机,交付给目的主机的传输层。
传输层(Transport,T)传输层向上一层提供一个可靠的端到端的服务,使会话层不知道传输层以下的数据通信的细节
会话层(Session,S)提供包括访问验证和会话管理在内的建立以及维护应用之间的通信机制。如服务器验证用户登录便是由会话层完成的。
表示层(Presentation,P)数据的压缩和解压缩、加密和解密等工作都由表示层负责。
应用层(Application,A)应用层确定进程之间通信的性质以满足用户的需求,以及提供网络与用户软件之间的接口服务。
5. 计算机网络为什么要采用分层的体系结构
层次清晰,可扩展性能,增强稳定性等。在对网络分层以后可以将问题细化,使得问题更加容易分析。把一个大的系统分拆成小的体系后,便于在各个层次上制定标准,从而实现层与层之间的标准接口,从而实现各类网络硬件和软件的通信。分层以后,某一层的改动不会影响到其他的层,便于开发。
独立性强——上层只需了解下层通过层间接口提供什么服务-黑箱方法;
适应性好——只要服务和接口不变,层内实现方法可任意改变;
使设计人员能专心设计和开发所关心的功能模块,功能易于优化、实现;
结构清晰,易于管理和维护;
良好的标准化;
6. 计算机网络的分层结构
物理层:为数据链路层对等实体之间的信息交换建立物理连接,在物理连接上正确、透明地传送物理层数据单元(物理层的数据单元是比特流)。物理层提供激活、维持、去活物理连接的所需机械特性、电气特性、功能特性、规程特性的手段。
链路层:该层相邻结点的一个或多个物理连接上为网络层建立、维持、释放链路连接,并在链路连接上可靠地、正确地传送链路层协议数据单元(通常称为帧)。纠错和流量控制是链路层的两个主要功能。
网络层:提供网络层对等实体建立、维持、终止网络连接的手段,并在网络连接上交换网络层协议数据单元,即分组。其中,一个重要功能是网络选路和寻址。
传输层:基本功能是为会话层提供可靠地、经济的传输连接的手段,并在传输连接上交换传输层协议数据单元—报文。传输层是端到端,在通信子网中无传输层。流量控制(Flow control)是传输层的一个重要功能。
会话层:为会话连接提供手段,并利用会话连接组织和同步应用进程之间的会话。
表示层:该层主要解决用户数据的语法表示问题。它将要交换数据的抽象语法(适合于某一用户)转换为传送语法(适合于 OSI 内部使用)——公共表示方法。
应用层:为用户应用进程访问 OSI 提供接口,并负责信息的语义表示。
7. 计算机网络分层问题
物理层
数据链路层
网络层
传输层
会话层
表示层
应用层
网卡属于数据链路层
8. 为什么要对计算机网络分层
我个人理解,关于计算机内的数据传输是要占带宽的,网络分层就是更好的节约带宽,在同个层面的计算机相互做数据传输不会影响到上层的网络或其他同层的网络。
除此之外,安全和便于管理也有一定的影响。
9. 网络五层结构
计算机网络五层结构是指应用层、传输层、网络层、数据链路层、物理层。
1、应用层
专门针对某些应用提供服务。
2、传输层
网络层只把数据送到主机,但不会送到进程。传输层负责负责进程与主机间的传输,主机到主机的传输交由网络层负责。传输层也称为端到端送。
3、网络层
把包里面的目的地址拿出来,进行路由选择,决定要往哪个方向传输。
负责从源通过路由选择到目的地的过程,达到从源主机传输数据到目标主机的目的。
4、数据链路层
通过物理网络传送包,这里的包是通过网络层交过来的数据报。
只完成一个节点到另一个节点的传送(单跳)。
5、物理层
通过线路(可以是有形的线也可以是无线链路)传送原始的比特流。
只完成一个节点到另一个节点的传送(单跳)。
(9)关于计算机网络分层管理扩展阅读:
计算机网络是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。
计算机网络也称计算机通信网。关于计算机网络的最简单定义是:一些相互连接的、以共享资源为目的的、自治的计算机的集合。若按此定义,则早期的面向终端的网络都不能算是计算机网络,而只能称为联机系统(因为那时的许多终端不能算是自治的计算机)。但随着硬件价格的下降,许多终端都具有一定的智能,因而“终端”和“自治的计算机”逐渐失去了严格的界限。若用微型计算机作为终端使用,按上述定义,则早期的那种面向终端的网络也可称为计算机网络。