导航:首页 > 网络连接 > 卷积神经网络连接训练

卷积神经网络连接训练

发布时间:2023-01-22 11:12:25

❶ 卷积神经网络

一般由卷积层,汇聚层,和全连接层交叉堆叠而成,使用反向传播算法进行训练(反向传播,再重新看一下)
卷积神经网络有三个结构上的特性:局部连接,权重共享以及子采样

滤波器filter 卷积核convolution kernel
局部连接,其实就是根据时间,权重递减 最后为0 参数就传播不到远处了

局部连接 乘以 滤波器 得特征映射

互相关,是一个衡量两个序列相关性的函数,
互相关和卷积的区别在于 卷积核仅仅是否进行翻转,因此互相关也可以称为 不翻转卷积
使用卷积 是为了进行特征抽取,卷积核 是否进行翻转和其特征抽取的能力无关。
当卷积核是可以学习的参数,卷积和互相关是等价的,因此,其实两者差不多。

Tips:P是代表特征映射

❷ 吴恩达 卷积神经网络 CNN

应用计算机视觉时要面临的一个挑战是数据的输入可能会非常大。例如一张 1000x1000x3 的图片,神经网络输入层的维度将高达三百万,使得网络权重 W 非常庞大。这样会造成两个后果:

神经网络结构复杂,数据量相对较少,容易出现过拟合;
所需内存和计算量巨大。
因此,一般的神经网络很难处理蕴含着大量数据的图像。解决这一问题的方法就是使用卷积神经网络

我们之前提到过,神经网络由浅层到深层,分别可以检测出图片的边缘特征、局部特征(例如眼睛、鼻子等),到最后面的一层就可以根据前面检测的特征来识别整体面部轮廓。这些工作都是依托卷积神经网络来实现的。

卷积运算(Convolutional Operation)是卷积神经网络最基本的组成部分。我们以边缘检测为例,来解释卷积是怎样运算的。

图片最常做的边缘检测有两类:垂直边缘(Vertical Edges)检测和水平边缘(Horizontal Edges)检测。

比如检测一张6x6像素的灰度图片的vertical edge,设计一个3x3的矩阵(称之为filter或kernel),让原始图片和filter矩阵做卷积运算(convolution),得到一个4x4的图片。 具体的做法是,将filter矩阵贴到原始矩阵上(从左到右从上到下),依次可以贴出4x4种情况。 让原始矩阵与filter重合的部分做element wise的乘积运算再求和 ,所得的值作为4x4矩阵对应元素的值。如下图是第一个元素的计算方法,以此类推。

可以看到,卷积运算的求解过程是从左到右,由上到下,每次在原始图片矩阵中取与滤波器同等大小的一部分,每一部分中的值与滤波器中的值对应相乘后求和,将结果组成一个矩阵。

下图对应一个垂直边缘检测的例子:

如果将最右边的矩阵当作图像,那么中间一段亮一些的区域对应最左边的图像中间的垂直边缘。

下图3x3滤波器,通常称为垂直 索伯滤波器 (Sobel filter):

看看用它来处理知名的Lena照片会得到什么

现在可以解释卷积操作的用处了:用输出图像中更亮的像素表示原始图像中存在的边缘。

你能看出为什么边缘检测图像可能比原始图像更有用吗?

回想一下MNIST手写数字分类问题。在MNIST上训练的CNN可以找到某个特定的数字。比如发现数字1,可以通过使用边缘检测发现图像上两个突出的垂直边缘。

通常,卷积有助于我们找到特定的局部图像特征(如边缘),用在后面的网络中。

假设输入图片的大小为 n×n,而滤波器的大小为 f×f,则卷积后的输出图片大小为 (n−f+1)×(n−f+1)。

这样就有两个问题:

为了解决这些问题,可以在进行卷积操作前,对原始图片在边界上进行填充(Padding),以增加矩阵的大小。通常将 0 作为填充值。

设每个方向扩展像素点数量为 p,则填充后原始图片的大小为 (n+2p)×(n+2p),滤波器大小保持 f×f不变,则输出图片大小为 (n+2p−f+1)×(n+2p−f+1)。

因此,在进行卷积运算时,我们有两种选择:

在计算机视觉领域,f通常为奇数。原因包括 Same 卷积中 p=(f−1)/ 2 能得到自然数结果,并且滤波器有一个便于表示其所在位置的中心点。

卷积过程中,有时需要通过填充来避免信息损失,有时也需要通过设置 步长(Stride) 来压缩一部分信息。

步长表示滤波器在原始图片的水平方向和垂直方向上每次移动的距离。之前,步长被默认为 1。而如果我们设置步长为 2,则卷积过程如下图所示:

设步长为 s,填充长度为p, 输入图片大小为n x n, 滤波器大小为f x f, 则卷积后图片的尺寸为:

注意公式中有一个向下取整的符号,用于处理商不为整数的情况。向下取整反映着当取原始矩阵的图示蓝框完全包括在图像内部时,才对它进行运算。

如果我们想要对三通道的 RGB 图片进行卷积运算,那么其对应的滤波器组也同样是三通道的。过程是将每个单通道(R,G,B)与对应的滤波器进行卷积运算求和,然后再将三个通道的和相加,将 27 个乘积的和作为输出图片的一个像素值。

如果想同时检测垂直和水平边缘,或者更多的边缘检测,可以增加更多的滤波器组。例如设置第一个滤波器组实现垂直边缘检测,第二个滤波器组实现水平边缘检测。设输入图片的尺寸为 n×n×nc(nc为通道数),滤波器尺寸为 f×f×nc,则卷积后的输出图片尺寸为 (n−f+1)×(n−f+1)×n′c,n′c为滤波器组的个数。

与之前的卷积过程相比较,卷积神经网络的单层结构多了激活函数和偏移量;而与标准神经网络相比,滤波器的数值对应着权重 W[l],卷积运算对应着 W[l]与 A[l−1]的乘积运算,所选的激活函数变为 ReLU。

对于一个 3x3x3 的滤波器,包括偏移量 b(27+1)在内共有 28 个参数。不论输入的图片有多大,用这一个滤波器来提取特征时,参数始终都是 28 个,固定不变。即选定滤波器组后,参数的数目与输入图片的尺寸无关。因此,卷积神经网络的参数相较于标准神经网络来说要少得多。这是 CNN 的优点之一。

图像中的相邻像素倾向于具有相似的值,因此通常卷积层相邻的输出像素也具有相似的值。这意味着,卷积层输出中包含的大部分信息都是冗余的。如果我们使用边缘检测滤波器并在某个位置找到强边缘,那么我们也可能会在距离这个像素1个偏移的位置找到相对较强的边缘。但是它们都一样是边缘,我们并没有找到任何新东西。池化层解决了这个问题。这个网络层所做的就是通过减小输入的大小降低输出值的数量。池化一般通过简单的最大值、最小值或平均值操作完成。以下是池大小为2的最大池层的示例:

在计算神经网络的层数时,通常只统计具有权重和参数的层,因此池化层通常和之前的卷积层共同计为一层。

图中的 FC3 和 FC4 为全连接层,与标准的神经网络结构一致。

个人推荐 一个直观感受卷积神经网络的网站 。

相比标准神经网络,对于大量的输入数据,卷积过程有效地减少了 CNN 的参数数量,原因有以下两点:

-参数共享(Parameter sharing):特征检测如果适用于图片的某个区域,那么它也可能适用于图片的其他区域。即在卷积过程中,不管输入有多大,一个特征探测器(滤波器)就能对整个输入的某一特征进行探测。

-稀疏连接(Sparsity of connections):在每一层中,由于滤波器的尺寸限制,输入和输出之间的连接是稀疏的,每个输出值只取决于输入在局部的一小部分值。

池化过程则在卷积后很好地聚合了特征,通过降维来减少运算量。

由于 CNN 参数数量较小,所需的训练样本就相对较少,因此在一定程度上不容易发生过拟合现象。并且 CNN 比较擅长捕捉区域位置偏移。即进行物体检测时,不太受物体在图片中位置的影响,增加检测的准确性和系统的健壮性。

在神经网络可以收敛的前提下,随着网络深度增加,网络的表现先是逐渐增加至饱和,然后迅速下降

需要注意,网络退化问题不是过拟合导致的,即便在模型训练过程中,同样的训练轮次下,退化的网络也比稍浅层的网络的训练错误更高,如下图所示。

这一点并不符合常理:如果存在某个 K层网络是当前F的最优的网络,我们构造更深的网络。那么K之后的层数可以拟合成恒等映射,就可以取得和F一直的结果。如果K不是最佳层数,那么我们比K深,可以训练出的一定会不差于K的。总而言之,与浅层网络相比,更深的网络的表现不应该更差。因此,一个合理的猜测就是, 对神经网络来说,恒等映射并不容易拟合。

也许我们可以对网络单元进行一定的改造,来改善退化问题?这也就引出了残差网络的基本思路

既然神经网络不容易拟合一个恒等映射,那么一种思路就是构造天然的恒等映射。

实验表明,残差网络 很好地解决了深度神经网络的退化问题 ,并在ImageNet和CIFAR-10等图像任务上取得了非常好的结果,同等层数的前提下残差网络也 收敛得更快 。这使得前馈神经网络可以采用更深的设计。除此之外, 去除个别神经网络层,残差网络的表现不会受到显着影响 ,这与传统的前馈神经网络大相径庭。

2018年的一篇论文,The Shattered Gradients Problem: If resnets are the answer, then what is the question,指出了一个新的观点,尽管残差网络提出是为了解决梯度弥散和网络退化的问题, 它解决的实际上是梯度破碎问题

作者通过可视化的小型实验(构建和训练一个神经网络发现,在浅层神经网络中,梯度呈现为棕色噪声(brown noise),深层神经网络的梯度呈现为白噪声。在标准前馈神经网络中,随着深度增加, 神经元梯度的相关性(corelation)按指数级减少 (1 / 2^L) ;同时, 梯度的空间结构也随着深度增加被逐渐消除 。这也就是梯度破碎现象。

梯度破碎为什么是一个问题呢?这是因为许多优化方法假设梯度在相邻点上是相似的,破碎的梯度会大大减小这类优化方法的有效性。另外,如果梯度表现得像白噪声,那么某个神经元对网络输出的影响将会很不稳定。

相较标准前馈网络, 残差网络中梯度相关性减少的速度从指数级下降到亚线性级 ) (1 / sqrt(L)) ,深度残差网络中,神经元梯度介于棕色噪声与白噪声之间(参见上图中的c,d,e);残差连接可以 极大地保留梯度的空间结构 。残差结构缓解了梯度破碎问题。

1x1 卷积指滤波器的尺寸为 1。当通道数为 1 时,1x1 卷积意味着卷积操作等同于乘积操作。
而当通道数更多时,1x1 卷积的作用实际上类似全连接层的神经网络结构,从而降低(或升高,取决于滤波器组数)数据的维度。

池化能压缩数据的高度(nH)及宽度(nW),而 1×1 卷积能压缩数据的通道数(nC)。在如下图所示的例子中,用 filters个大小为 1×1×32 的滤波器进行卷积,就能使原先数据包含的 32个通道压缩为 filters 个。

在这之前,网络大都是这样子的:

也就是卷积层和池化层的顺序连接。这样的话,要想提高精度,增加网络深度和宽度是一个有效途径,但也面临着参数量过多、过拟合等问题。(当然,改改超参数也可以提高性能)

有没有可能在同一层就可以提取不同(稀疏或不稀疏)的特征呢(使用不同尺寸的卷积核)?于是,2014年,在其他人都还在一味的增加网络深度时(比如vgg),GoogleNet就率先提出了卷积核的并行合并(也称Bottleneck Layer),如下图。

和卷积层、池化层顺序连接的结构(如VGG网络)相比,这样的结构主要有以下改进:

按照这样的结构来增加网络的深度,虽然可以提升性能,但是还面临计算量大(参数多)的问题。为改善这种现象,GooLeNet借鉴Network-in-Network的思想,使用1x1的卷积核实现降维操作(也间接增加了网络的深度),以此来减小网络的参数量(这里就不对两种结构的参数量进行定量比较了),如图所示。

最后实现的inception v1网络是上图结构的顺序连接

由于卷积这门课的其他内容和计算机视觉关系比较密切。对我理解推荐系统帮助不大。所以这个系列就到这里。吴恩达的课还是很好的,作业和课和测验我都认真做啦。

❸ 卷积神经网络可以提取图像的特征进行训练对吗

是的。
根据查询相关公开信息显示,深度学习模型可以轻松地自动完成从卫星图像分析、点云数据数字化,以及提取地理特征等繁琐的工作和任务。
图像特征主要有图像的颜色特征、纹理特征、形状特征和空间关系特征。

如何训练一个简单的分类卷积神经网络

卷积神经网络有以下几种应用可供研究:
1、基于卷积网络的形状识别
物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。
2、基于卷积网络的人脸检测
卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。
3、文字识别系统
在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

❺ 【阅读笔记】改进卷积神经网络的14个小技巧

原文: https://mp.weixin.qq.com/s/Lh_lJNvV9BGhc6no2ln-_g

原题目误导性太大

1)架构要遵循应用

你也许会被 Google Brain 或者 DeepMind 这些奇特的实验室所发明的那些耀眼的新模型所吸引,但是其中许多在你的用例或者业务环境中要么是不可能实现,要么是实现起来非常不现实。你应该使用对你的特定应用最有意义的模型,这种模型或许比较简单,但是仍然很强大,例如 VGG。

2)网络路径的激增

每年的 ImageNet Challenge 的冠军都会使用比上一届冠军更加深层的网络。从 AlexNet 到 Inception,再到 ResNet,Smith 注意到了“网络中路径数量倍增”的趋势,并且“ResNet 可以是不同长度的网络的指数集合”。

3)争取简单

然而,更大的并不一定是更好的。在名为“Bigger is not necessarily better”的论文中,Springenberg 等人演示了如何用更少的单元实现最先进的结果。参考:https://arxiv.org/pdf/1412.6806.pdf

4)增加对称性

无论是在建筑上,还是在生物上,对称性被认为是质量和工艺的标志。Smith 将 FractalNet 的优雅归功于网络的对称性。

5)金字塔式的形状

你也许经常在表征能力和减少冗余或者无用信息之间权衡。卷积神经网络通常会降低激活函数的采样,并会增加从输入层到最终层之间的连接通道。

6)过度训练

另一个权衡是训练准确度和泛化能力。用类似 drop-out 或者 drop-path 的方法进行正则化可以提高泛化能力,这是神经网络的重要优势。请在比你的实际用例更加苛刻的问题下训练你的网络,以提高泛化性能。

7)全面覆盖问题空间

为了扩展你的训练数据和提升泛化能力,请使用噪声和数据增强,例如随机旋转、裁剪和一些图像操作。

8)递增的特征构造

随着网络结构越来越成功,它们进一部简化了每一层的“工作”。在非常深层的神经网络中,每一层仅仅会递增的修改输入。在 ResNets 中,每一层的输出和它的输入时很相似的,这意味着将两层加起来就是递增。实践中,请在 ResNet 中使用较短的跳变长度。

9)标准化层的输入

标准化是另一个可以使计算层的工作变得更加容易的方法,在实践中被证明可以提升训练和准确率。批量标准化(batch normalization)的发明者认为原因在于处理内部的协变量,但是 Smith 认为,“标准化把所有层的输入样本放在了一个平等的基础上(类似于一种单位转换),这允许反向传播可以更有效地训练”。

10)输入变换

研究表明,在 Wide ResNets 中,性能会随着连接通道的增加而增强,但是你需要权衡训练代价与准确度。AlexNet、VGG、Inception 和 ResNets 都在第一层使用了输入变换以让输入数据能够以多种方式被检查。

11)可用的资源决指引着层的宽度

然而,可供选择的输出数量并不是显而易见的,这依赖于你的硬件能力以及期望的准确度。

12)Summation Joining

Summation 是一种常用的合并分支的方式。在 ResNets 中,使用总和作为连接的机制可以让每一个分支都能计算残差和整体近似。如果输入跳跃连接一直存在,那么 summation 会让每一层学到正确地东西(例如与输入的差别)。在任何分支都可以被丢弃的网络(例如 FractalNet)中,你应该使用这种方式类保持输出的平滑。

13)下采样变换

在池化的时候,利用级联连接(concatenation joining)来增加输出的数量。当使用大于 1 的步长时,这会同时处理连接并增加连接通道的数量。

14)用于竞争的 Maxout

Maxout 被用在你只需要选择一个激活函数的局部竞争网络中。使用求和以及平均值会包含所有的激活函数,所以不同之处在于 maxout 只选择一个“胜出者”。Maxout 的一个明显的用例是每个分支具有不同大小的内核,而 Maxout 可以包含尺度不变性。

1)使用调优过的预训练网络

“如果你的视觉数据和 ImageNet 相似,那么使用预训练网络会帮助你学习得更快”,机器学习公司 Diffbot 的 CEO Mike Tung 解释说。低水平的卷积神经网络通常可以被重复使用,因为它们大多能够检测到像线条以及边缘这些模式。将分类层用你自己的层替换,并且用你特定的数据去训练最后的几个层。

2)使用 freeze-drop-path

Drop-path 会在训练的迭代过程中随机地删除一些分支。Smith 测试了一种相反的方法,它被称为 freeze-path,就是一些路径的权重是固定的、不可训练的,而不是整体删除。因为下一个分支比以前的分支包含更多的层,并且正确的内容更加容易近似得到,所以网络应该会得到更好的准确度。

3)使用循环的学习率

关于学习率的实验会消耗大量的时间,并且会让你遇到错误。自适应学习率在计算上可能是非常昂贵的,但是循环学习率不会这样。使用循环学习率(CLR)时,你可以设置一组最大最小边界,在边界范围内改变学习率。Smith 甚至还在论文《Cyclical Learning Rates for Training Neural Networks》中提供了计算学习率的最大值和最小值的方法。参考:https://arxiv.org/pdf/1506.01186.pdf

4)在有噪声的标签中使用 bootstrapping 

在现实中,很多数据都是混乱的,标签都是主观性的或者是缺失的,而且预测的对象可能是训练的时候未曾遇到过的。Reed 等人在文章《TRAINING DEEP NEURAL NETWORKS ON NOISY LABELS WITH BOOTSTRAPPING》中描述了一种给网络预测目标注入一致性的方法。直观地讲,这可以奏效,通过使网络利用对环境的已知表示(隐含在参数中)来过滤可能具有不一致的训练标签的输入数据,并在训练时清理该数据。参考:https://arxiv.org/pdf/1412.6596

5)采用有 Maxout 的 ELU,而不是 ReLU

ELU 是 ReLU 的一个相对平滑的版本,它能加速收敛并提高准确度。与 ReLU 不同,ELU 拥有负值,允许它们以更低的计算复杂度将平均单位激活推向更加接近 0 的值,就像批量标准化一样参考论文《FAST AND ACCURATE DEEP NETWORK LEARNING BY EXPONENTIAL LINEAR UNITS (ELUS)》,https://arxiv.org/pdf/1511.07289.pdf。如果您使用具有全连接层的 Maxout,它们是特别有效的。

❻ 使用python在GPU上构建和训练卷积神经网络

我将对代码进行补充演练,以构建在数据集上训练的任何类型的图像分类器。在这个例子中,我将使用花卉数据集,其中包括102种不同类型的花。需要数据集和代码都可以私信我。

Pytorch是机器学习和Python上的免费软件包,非常易于使用。语法模拟numpy,因此,如果你在python中有一些科学计算经验,那么会相当有用的。只需几行代码,就可以下载预先训练的数据集,使用定义的变换对图像进行标准化,然后运行训练。

创建和扩充数据集

为了增加数据集,我使用' google_images_download'API 从互联网上下载了相关图像。显然,您可以使用此API不仅可以扩充现有数据集,还可以从头开始创建自己的数据集。

确保从图像中挑选出异常值(损坏的文件或偶然出现的无关图像)。

图像标准化

为了使图像具有相同的大小和像素变化,可以使用pytorch的transfors模块:

转移学习

从头开始训练的模型可能不是最明智的选择,因为有许多网络可用于各种数据集。简单地说,像edge-和其他简单形状检测器等低级特征对于不同的模型是相似的,即使clasificators是针对不同目的进行训练的。在本项目中,我使用了一个预训练网络Resnet152,只有最后一个完全连接的层重新用于新任务,即使这样也会产生相当好的效果。

在这里,我将除最后一层之外的所有层都设置为具有固定权重(requires_grad = False),因此只有最后层中的参数将通过梯度下降进行更新。

训练模型

下面介绍一下进行训练的函数:

如何获得GPU?

当然,对CPU的训练太慢了。根据我自己的经验,在GPU仅需要一个小时就可以完成12次训练周期,但是在CPU上相同数量的训练周期可能需要花费大约15个小时。

如果您没有本地可用的GPU,则可以考虑使用云GPU。为了加速CNN的训练,我使用了floydhub(www.floydhub.com)上提供的云GPU 。

这项服务非常指的使用:总有很好的文档和大量的提示,所以你会很清楚的知道下一步需要如何去做。在floydhub上对于使用GPU的收费也是可以接受的。

首先,需要将数据集上传到服务器

然后,需要创建项目。需要在计算机上安装floydhub客户端,将数据集上载到其网站并在终端中运行以下命令:

其中'username'是您的登录名,'i'是数据集所在的文件夹。

这样子在训练网络时就会很轻松了

结果和改进想法

得到的模型在数据集上训练了1.5小时,并在验证数据集上达到了95%的准确度。

❼ 卷积神经网络

卷积神经网络 (Convolutional Neural Networks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。比如在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。

卷积神经网络又是怎样解决这个问题的呢?主要有三个思路:

在使用CNN提取特征时,到底使用哪一层的输出作为最后的特征呢?

答:倒数第二个全连接层的输出才是最后我们要提取的特征,也就是最后一个全连接层的输入才是我们需要的特征。

全连接层会忽视形状。卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。

CNN中,有时将 卷积层的输入输出数据称为特征图(feature map) 。其中, 卷积层的输入数据称为输入特征图(input feature map) 输出数据称为输出特征图(output feature map)。

卷积层进行的处理就是 卷积运算 。卷积运算相当于图像处理中的“滤波器运算”。

滤波器相当于权重或者参数,滤波器数值都是学习出来的。 卷积层实现的是垂直边缘检测

边缘检测实际就是将图像由亮到暗进行区分,即边缘的过渡(edge transitions)。

卷积层对应到全连接层,左上角经过滤波器,得到的3,相当于一个神经元输出为3.然后相当于,我们把输入矩阵拉直为36个数据,但是我们只对其中的9个数据赋予了权重。

步幅为1 ,移动一个,得到一个1,相当于另一个神经单元的输出是1.

并且使用的是同一个滤波器,对应到全连接层,就是权值共享。

在这个例子中,输入数据是有高长方向的形状的数据,滤波器也一样,有高长方向上的维度。假设用(height, width)表示数据和滤波器的形状,则在本例中,输入大小是(4, 4),滤波器大小是(3, 3),输出大小是(2, 2)。另外,有的文献中也会用“核”这个词来表示这里所说的“滤波器”。

对于输入数据,卷积运算以一定间隔滑动滤波器的窗口并应用。这里所说的窗口是指图7-4中灰色的3 × 3的部分。如图7-4所示,将各个位置上滤
波器的元素和输入的对应元素相乘,然后再求和(有时将这个计算称为乘积累加运算)。然后,将这个结果保存到输出的对应位置。将这个过程在所有位置都进行一遍,就可以得到卷积运算的输出。

CNN中,滤波器的参数就对应之前的权重。并且,CNN中也存在偏置。

在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0等),这称为填充(padding),是卷积运算中经常会用到的处理。比如,在图7-6的例子中,对大小为(4, 4)的输入数据应用了幅度为1的填充。“幅度为1的填充”是指用幅度为1像素的0填充周围。

应用滤波器的位置间隔称为 步幅(stride)

假设输入大小为(H, W),滤波器大小为(FH, FW),输出大小为(OH, OW),填充为P,步幅为S。

但是所设定的值必须使式(7.1)中的 和 分别可以除尽。当输出大小无法除尽时(结果是小数时),需要采取报错等对策。顺便说一下,根据深度学习的框架的不同,当值无法除尽时,有时会向最接近的整数四舍五入,不进行报错而继续运行。

之前的卷积运算的例子都是以有高、长方向的2维形状为对象的。但是,图像是3维数据,除了高、长方向之外,还需要处理通道方向。

在3维数据的卷积运算中,输入数据和滤波器的通道数要设为相同的值。

因此,作为4维数据,滤波器的权重数据要按(output_channel, input_channel, height, width)的顺序书写。比如,通道数为3、大小为5 × 5的滤
波器有20个时,可以写成(20, 3, 5, 5)。

对于每个通道,均使用自己的权值矩阵进行处理,输出时将多个通道所输出的值进行加和即可。

卷积运算的批处理,需要将在各层间传递的数据保存为4维数据。具体地讲,就是按(batch_num, channel, height, width)的顺序保存数据。

这里需要注意的是,网络间传递的是4维数据,对这N个数据进行了卷积运算。也就是说,批处理将N次的处理汇总成了1次进行。

池化是缩小高、长方向上的空间的运算。比如,如图7-14所示,进行将2 × 2的区域集约成1个元素的处理,缩小空间大小。

图7-14的例子是按步幅2进行2 × 2的Max池化时的处理顺序。“Max池化”是获取最大值的运算,“2 × 2”表示目标区域的大小。如图所示,从
2 × 2的区域中取出最大的元素。此外,这个例子中将步幅设为了2,所以2 × 2的窗口的移动间隔为2个元素。另外,一般来说,池化的窗口大小会和步幅设定成相同的值。比如,3 × 3的窗口的步幅会设为3,4 × 4的窗口的步幅会设为4等。

除了Max池化之外,还有Average池化等。相对于Max池化是从目标区域中取出最大值,Average池化则是计算目标区域的平均值。 在图像识别领域,主要使用Max池化。 因此,本书中说到“池化层”时,指的是Max池化。

池化层的特征
池化层有以下特征。
没有要学习的参数
池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中取最大值(或者平均值),所以不存在要学习的参数。
通道数不发生变化
经过池化运算,输入数据和输出数据的通道数不会发生变化。如图7-15所示,计算是按通道独立进行的。

对微小的位置变化具有鲁棒性(健壮)
​ 输入数据发生微小偏差时,池化仍会返回相同的结果。因此,池化对输入数据的微小偏差具有鲁棒性。比如,3 × 3的池化的情况下,如图
​ 7-16所示,池化会吸收输入数据的偏差(根据数据的不同,结果有可能不一致)。

经过卷积层和池化层之后,进行Flatten,然后丢到全连接前向传播神经网络。

(找到一张图片使得某个filter响应最大。相当于filter固定,未知的是输入的图片。)未知的是输入的图片???

k是第k个filter,x是我们要找的参数。?这里我不是很明白。我得理解应该是去寻找最具有代表性的特征。

使用im2col来实现卷积层

卷积层的参数是需要学习的,但是池化层没有参数需要学习。全连接层的参数需要训练得到。

池化层不需要训练参数。全连接层的参数最多。卷积核的个数逐渐增多。激活层的size,逐渐减少。

最大池化只是计算神经网络某一层的静态属性,没有什么需要学习的,它只是一个静态属性

像这样展开之后,只需对展开的矩阵求各行的最大值,并转换为合适的形状即可(图7-22)。

参数
• input_dim ― 输入数据的维度:( 通道,高,长 )
• conv_param ― 卷积层的超参数(字典)。字典的关键字如下:
filter_num ― 滤波器的数量
filter_size ― 滤波器的大小
stride ― 步幅
pad ― 填充
• hidden_size ― 隐藏层(全连接)的神经元数量
• output_size ― 输出层(全连接)的神经元数量
• weitght_int_std ― 初始化时权重的标准差

LeNet

LeNet在1998年被提出,是进行手写数字识别的网络。如图7-27所示,它有连续的卷积层和池化层(正确地讲,是只“抽选元素”的子采样层),最后经全连接层输出结果。

和“现在的CNN”相比,LeNet有几个不同点。第一个不同点在于激活函数。LeNet中使用sigmoid函数,而现在的CNN中主要使用ReLU函数。
此外,原始的LeNet中使用子采样(subsampling)缩小中间数据的大小,而现在的CNN中Max池化是主流。

AlexNet

在LeNet问世20多年后,AlexNet被发布出来。AlexNet是引发深度学习热潮的导火线,不过它的网络结构和LeNet基本上没有什么不同,如图7-28所示。

AlexNet叠有多个卷积层和池化层,最后经由全连接层输出结果。虽然结构上AlexNet和LeNet没有大的不同,但有以下几点差异。
• 激活函数使用ReLU。
• 使用进行局部正规化的LRN(Local Response Normalization)层。
• 使用Dropout

TF2.0实现卷积神经网络

valid意味着不填充,same是填充
or the SAME padding, the output height and width are computed as:

out_height = ceil(float(in_height) / float(strides[1]))

out_width = ceil(float(in_width) / float(strides[2]))

And

For the VALID padding, the output height and width are computed as:

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))

out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
因此,我们可以设定 padding 策略。在 tf.keras.layers.Conv2D 中,当我们将 padding 参数设为 same 时,会将周围缺少的部分使用 0 补齐,使得输出的矩阵大小和输入一致。

❽ matlab卷积神经网络的训练过程图如何复制

它分为2种:正向传播和反向传播。正向传播又分为卷积层和降采样层。
反向传播也分为下一层连接降采样层的卷积层的残差计算和下一层连接降采样层的卷积层的梯度计算还有下一层连接卷积层的降采样层的残差计算。

❾ 深度神经网络是如何训练的

Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程 - Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。后来看了Li FeiFei的Stanford University CS231n: Convolutional Neural Networks for Visual Recognition,我的感觉是对CNN的理解有了很大的提升。沉下心来推推公式,多思考,明白了反向传播本质上是链式法则(虽然之前也知道,但是当时还是理解的迷迷糊糊的)。所有的梯度其实都是对最终的loss进行求导得到的,也就是标量对矩阵or向量的求导。当然同时也学到了许多其他的关于cnn的。并且建议你不仅要完成练习,最好能自己也写一个cnn,这个过程可能会让你学习到许多更加细节和可能忽略的东西。这样的网络可以使用中间层构建出多层的抽象,正如我们在布尔线路中做的那样。例如,如果我们在进行视觉模式识别,那么在第一层的神经元可能学会识别边,在第二层的神经元可以在边的基础上学会识别出更加复杂的形状,例如三角形或者矩形。第三层将能够识别更加复杂的形状。依此类推。这些多层的抽象看起来能够赋予深度网络一种学习解决复杂模式识别问题的能力。然后,正如线路的示例中看到的那样,存在着理论上的研究结果告诉我们深度网络在本质上比浅层网络更加强大。

❿ 卷积神经网络

关于花书中卷积网络的笔记记录于 https://www.jianshu.com/p/5a3c90ea0807 。

卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号

卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:

目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。

卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。

一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:

我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:

信号序列 和滤波器 的卷积定义为:

一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :

二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:

下图给出一个二维卷积示例:

注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。

在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map)

最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征

在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。

互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:

互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。

在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 零填充 来增加卷积多样性,更灵活地进行特征抽取。

滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。

零填充(Zero Padding)是在输入向量两端进行补零。

假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷积层的神经元数量为 。

一般常用的卷积有以下三类:

因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:

假设 。

, , 。函数 为一个标量函数。

则由 有:

可以看出, 关于 的偏导数为 和 的卷积

同理得到:

当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积

用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):

在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。

如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:

根据卷积的定义,卷积层有两个很重要的性质:

由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。

卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。

特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。

在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。

不失一般性,假设一个卷积层的结构如下:

为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。

在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。

汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。

常用的汇聚函数有两种:

其中 为区域 内每个神经元的激活值。

可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。

典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。

一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。

目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。

目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络

在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。

不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入

由 得:

同理可得,损失函数关于第 层的第 个偏置 的偏导数为:

在卷积网络中,每层参数的梯度依赖其所在层的误差项 。

卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。

第 层的第 个特征映射的误差项 的具体推导过程如下:

其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。

第 层的第 个特征映射的误差项 的具体推导过程如下:

其中 为宽卷积。

LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:

不计输入层,LeNet-5共有7层,每一层的结构为:

AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。

AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。

AlexNet的具体结构如下:

在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成

v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取

阅读全文

与卷积神经网络连接训练相关的资料

热点内容
共享办公室的网络要怎么避免关联 浏览:545
网络哪里可以兼职 浏览:57
学校里的网络是不是企业wifi 浏览:891
手机没有网络如何解锁 浏览:29
无卡无网络的手机游戏 浏览:618
小米2s怎么设置网络制式 浏览:477
linux网络安全软件哪个好 浏览:498
扣扣电话显示网络异常 浏览:930
只狼如何在网络上玩 浏览:972
拓扑图进行路由器网络 浏览:451
路由器如何重置网络连接 浏览:446
手机提示当前网络欠佳 浏览:990
湛江移动网络好吗 浏览:975
qq网络硬盘最大多少 浏览:276
真我gt如何将网络变稳定 浏览:622
电脑怎么配置无线网络 浏览:785
多语种网络学习价钱怎么算 浏览:568
看着网络这么好为什么手机这么卡 浏览:345
衡山医院网络上哪个平台在播放 浏览:756
哪些网络小说值得推荐观看 浏览:800

友情链接