1. 计算机网络速度的计算
当然要考虑进位问题,传输速度400Mbps,这个M是10^6,1GB的B是8b,G是2^30,所以1GB=2^30*8b,两者相除就可得到答案。
2^30*8/400*10^6=21.47
10^6表示10的6次方,2^30表示2的30次方
2. 计算机中二进制的乘法和除法如何用加法来实现的
除法与乘法类似,只不过将左移改为右移,加改成减。实际上减也是通过取补码后再加,不够减后就停止,得出余数。详细的是:(1)首先用“1”作为商试一下,相当于用“1”乘以除数“110”,然后把所得到的各位再与被除数的前4位“1001”相减。按照减法运算规则可以得到的余数为“011”。 (2)因为“011”与除数“110”相比,不足以被除,所以需要向低取一位,最终得到“0111”,此时的数就比除数“110”大了,可以继续除了。同样用“1”作为商去除,相当于用“1”去乘除数“110”,然后把所得的积与被除数中当前四位“0111”相减。根据以上介绍的减法运算规则可以得到此步的余数为“1”。 (3)因为“1”要远比除数“110”小,被除数向前取一位后为“11”,仍不够“110”除,所以此时需在商位置上用“0”作为商了。 (4)然后在被除数上继续向前取一位,得到“110”。此时恰好与除数“110”完全一样,结果当然是用“1”作为商,用它乘以除数“110”后再与被除数相减,得到的余数正好为“0”。证明这两个数能够整除。 这样一来,所得的商(1101)2就是两者相除的结果。
3. 计算机网络问题求助
1.网络中传输的一组数据:1001110,设 约定式G(x)=X4+X3+X0,计算数据在网络中传输的CRC。数据由A机传到B机,到达时结果为10011011001,
Gx=11001
10011011001对gx求余数,得00010,余数不为零,判断有差错。
2.数据由A机出发时,信息位为:1110 100 ,到达B机时,结果为:1111 100,对结果进行校验,如果有误,并进行纠正。 将B左移动4位哦,补1110
得11111001110,除以gx,余数不为零,判断有错,校正后为11101001110
3.在使用海明码时,假设k=7(信息位)时,保证海明码只有1位出错,那么r为多少?
海明码k=7,没有这个码型。
4. 计算机网络中,数据交换方式有哪几种
在计算机网络中,数据交换的方式有:
(1)线路交换。在数据传送之前需建立一条物理通路, 在线路被释放之前,该通路将一直被一对用户完全占有。
(2)报文交换。报文从发送方传送到接收方采用存储转发 的方式。在传送报文时,只占用一段通路;在交换节点中需要 缓冲存储,报文需要排队。因此,这种方式不满足实时通信的 要求。
(3)分组交换。此方式与报文交换类似,但报文被分成组传 送,并规定了分组的最长度,到达目的地后需重新将分组组装成报文。这是网络中最广泛采用的一种交换技术。
5. crc是什么意思
CRC(Cyclic Rendancy Check),即循环冗余校核,是一种根据网络数据包或电脑文件等数据产生简短固定位数校核码的快速算法,主要用来检测或校核数据传输或者保存后可能出现的错误。CRC利用除法及余数的原理,实现错误侦测的功能,具有原理清晰、实现简单等优点。
CRC也就是循环冗余校验码,是计算机网络通信领域常用的校验码。循环冗余校验码包括一系列移位、相除等数据编码规则,其算法原理、算法程序的设计与分析,都可以通过相应的软件编码进行解决。
循环冗余校验码是利用软件进行校验的算法,因此其检验速度很快,校验的误码率也较低,整个计算机网络通信的信息传输速度很高。CRC差错纠正控制法能够有效减少通信线路的误码率,得到的通信数据传输信息更准确。
在数据的传输过程中由于空间电磁环境复杂等原因,可能会产生误码,即某几位数据0变为1,或1变为0,导致接收端得到错误的数据。为了降低误码率,通常对数据进行特定编码,在收发端进行额外的验证,使接收端能发现某些错误;
进而实现纠错功能,常用的编码方法有CRC-32校验码、CRC-16校验码、汉明码、奇偶校验法等。其中32位循环冗余校验简称CRC-32校验在性能和资源消耗两方面都有较大的优势,因而,在无线电通信、SATA硬盘数据传输等系统中,CRC-32校验是最常用的检错手段之一。
6. 关于计算机网络的crc计算
我们知道,一台主机向另外一台主机发送报文的时候,需要一层层经过自己的协议栈进行数据封装,到达最后一层(四层协议的网络接口层)时需要在帧尾部添加FCS校验码(通过CRC算法得出)。当对端主机收到时,在接收端同样通过CRC算法进行验证,确认传输过程中是否出现错误。它只能确认一个帧是否存在比特差错,但没有提供解决措施。
循环冗余校验的原理
在发送端,先把数据划分为组(即:一帧)。假定每组 k 个比特。
在每组后面,添加供差错检测用的 n 位冗余码一起发送。即:实际发送长度为:k+n 比特。
发送前双方协商n+1位的除数P,方便接收方收到后校验。
给K比特的数据添加除数减一个0(P-1)作为被除数,与第三步确定的除数做“模2除法”。得出的余数即FCS校验序列,它的位数也必须是(P-1)。
将FCS校验序列添加至K个比特位的后面发送出去。
接收方对接收到的每一帧进行校验,若得出的余数 R = 0,则判定这个帧没有差错,就接受(accept)。若余数 R ≠ 0,则判定这个帧有差错,就丢弃。
对“模2除法”进行说明:
“模2除法”与“算术除法”类似,但它既不向上位借位,也不比较除数和被除数的相同位数值的大小,只要以相同位数进行相除即可。模2加法运算为:1+1=0,0+1=1,0+0=0,无进位,也无借位;模2减法运算为:1-1=0,0-1=1,1-0=1,0-0=0,也无进位,无借位。相当于二进制中的逻辑异或运算。
计算示例
那么接收方拿到的就是:101001001。再以它为被除数,1101为除数进行“模2除法”。
7. 计算机网络CRC检验中为什么选择16或32位效验码,效率最高
循环冗余校验(CRC)是一种根据网络数据封包或电脑档案等数据产生少数固定位数的一种散列函数,主要用来检测或校验数据传输或者保存后可能出现的错误。生成的数字在传输或者储存之前计算出来并且附加到数据后面,然后接收方进行检验确定数据是否发生变化。一般来说,循环冗余校验的值都是32位的整数。由于本函数易于用二进制的电脑硬件使用、容易进行数学分析并且尤其善于检测传输通道干扰引起的错误,因此获得广泛应用。它是由W.WesleyPeterson在他1961年发表的论文中披露[1]。{{noteTA|T=zh-hans:循环冗余校验;zh-hant:循环冗余校验;|1=zh-hans:循环冗余校验;zh-hant:循环冗余校验;}}'''循环冗余校验'''(CRC)是一种根据网路数据封包或[[电脑档案]]等数据产生少数固定位数的一种[[散列函数]],主要用来检测或校验数据传输或者保存后可能出现的错误。生成的数字在传输或者储存之前计算出来并且附加到数据后面,然后接收方进行检验确定数据是否发生变化。一般来说,循环冗余校验的值都是32位的整数。由于本函数易于用二进制的[[电脑硬件]]使用、容易进行数学分析并且尤其善于检测传输通道干扰引起的错误,因此获得广泛应用。它是由[[W.WesleyPeterson]]在他1961年发表的论文中披露{{citejournal|author=Peterson,W.W.andBrown,D.T.|year=1961|month=January|title=CyclicCodesforErrorDetection|journal=ProceedingsoftheIRE|doi=10.1109/JRPROC.1961.287814|issn=0096-8390|volume=49|pages=228}}。==简介==CRC“校验和”是两个位元数据流采用二进制除法(没有进位,使用XOR异或来代替减法)相除所得到的余数。其中被除数是需要计算校验和的信息数据流的二进制表示;除数是一个长度为n+1的预定义(短)的二进制数,通常用多项式的系数来表示。在做除法之前,要在信息数据之后先加上n个0.CRCa是基于[[有限域]]GF(2)([[同余|关于2同余]])的[[多项式环]]。简单的来说,就是所有系数都为0或1(又叫做二进制)的多项式系数的集合,并且集合对于所有的代数操作都是封闭的。例如::(x^3+x)+(x+1)=x^3+2x+1\equivx^3+12会变成0,因为对系数的加法都会模2.乘法也是类似的::(x^2+x)(x+1)=x^3+2x^2+x\equivx^3+x我们同样可以对多项式作除法并且得到商和余数。例如,如果我们用''x''3+''x''2+''x''除以''x''+1。我们会得到::\frac{(x^3+x^2+x)}{(x+1)}=(x^2+1)-\frac{1}{(x+1)}也就是说,:(x^3+x^2+x)=(x^2+1)(x+1)-1这里除法得到了商''x''2+1和余数-1,因为是奇数所以最后一位是1。字符串中的每一位其实就对应了这样类型的多项式的系数。为了得到CRC,我们首先将其乘以x^{n},这里n是一个固定多项式的[[多项式的阶|阶]]数,然后再将其除以这个固定的多项式,余数的系数就是CRC。在上面的等式中,x^2+x+1表示了本来的信息位是111,x+1是所谓的'''钥匙''',而余数1(也就是x^0)就是CRC.key的最高次为1,所以我们将原来的信息乘上x^1来得到x^3+x^2+x,也可视为原来的信息位补1个零成为1110。一般来说,其形式为::M(x)\cdotx^{n}=Q(x)\cdotK(x)+R(x)这里M(x)是原始的信息多项式。K(x)是n阶的“钥匙”多项式。M(x)\cdotx^{n}表示了将原始信息后面加上n个0。R(x)是余数多项式,既是CRC“校验和”。在通讯中,发送者在原始的信息数据M后加上n位的R(替换本来附加的0)再发送。接收者收到M和R后,检查M(x)\cdotx^{n}-R(x)是否能被K(x)整除。如果是,那么接收者认为该信息是正确的。值得注意的是M(x)\cdotx^{n}-R(x)就是发送者所想要发送的数据。这个串又叫做''codeword''.CRCs经常被叫做“[[校验和]]”,但是这样的说法严格来说并不是准确的,因为技术上来说,校验“和”是通过加法来计算的,而不是CRC这里的除法。“[[错误纠正编码]]”常常和CRCs紧密相关,其语序纠正在传输过程中所产生的错误。这些编码方式常常和数学原理紧密相关。==实现====变体==CRC有几种不同的变体*shiftRegister可以逆向使用,这样就需要检测最低位的值,每次向右移动一位。这就要求polynomial生成逆向的数据位结果。''实际上这是最常用的一个变体。''*可以先将数据最高位读到移位寄存器,也可以先读最低位。在通讯协议中,为了保留CRC的[[突发错误]]检测特性,通常按照[[物理层]]发送数据位的方式计算CRC。*为了检查CRC,需要在全部的码字上进行CRC计算,而不是仅仅计算消息的CRC并把它与CRC比较。如果结果是0,那么就通过这项检查。这是因为码字M(x)\cdotx^{n}-R(x)=Q(x)\cdotK(x)可以被K(x)整除。*移位寄存器可以初始化成1而不是0。同样,在用算法处理之前,消息的最初n个数据位要取反。这是因为未经修改的CRC无法区分只有起始0的个数不同的两条消息。而经过这样的取反过程,CRC就可以正确地分辨这些消息了。*CRC在附加到消息数据流的时候可以进行取反。这样,CRC的检查可以用直接的方法计算消息的CRC、取反、然后与消息数据流中的CRC比较这个过程来完成,也可以通过计算全部的消息来完成。在后一种方法中,正确消息的结果不再是0,而是\sum_{i=n}^{2n-1}x^{i}除以K(x)得到的结果。这个结果叫作核验多项式C(x),它的十六进制表示也叫作[[幻数]]。按照惯例,使用CRC-32多项式以及CRC-16-CCITT多项式时通常都要取反。CRC-32的核验多项式是C(x)=x^{31}+x^{30}+x^{26}+x^{25}+x^{24}+x^{18}+x^{15}+x^{14}+x^{12}+x^{11}+x^{10}+x^8+x^6+x^5+x^4+x^3+x+1。==错误检测能力==CRC的错误检测能力依赖于关键多项式的阶次以及所使用的特定关键多项式。''误码多项式''E(x)是接收到的消息码字与正确消息码字的''异或''结果。当且仅当误码多项式能够被CRC多项式整除的时候CRC算法无法检查到错误。*由于CRC的计算基于除法,任何多项式都无法检测出一组全为零的数据出现的错误或者前面丢失的零。但是,可以根据CRC的[[#变体|变体]]来解决这个问题。*所有只有一个数据位的错误都可以被至少有两个非零系数的任意多项式检测到。误码多项式是x^k,并且x^k只能被i\lek的多项式x^i整除。*CRC可以检测出所有间隔距离小于[[多项式阶次]]的双位错误,在这种情况下的误码多项式是E(x)=x^i+x^k=x^k\cdot(x^{i-k}+1),\;i>k。如上所述,x^k不能被CRC多项式整除,它得到一个x^{i-k}+1项。根据定义,满足多项式整除x^{i-k}+1的{i-k}最小值就是多项是的阶次。最高阶次的多项式是[[本原多项式]],带有二进制系数的n阶多项式==CRC多项式规范==下面的表格略去了“初始值”、“反射值”以及“最终异或值”。*对于一些复杂的校验和来说这些十六进制数值是很重要的,如CRC-32以及CRC-64。通常小于CRC-16的CRC不需要使用这些值。*通常可以通过改变这些值来得到各自不同的校验和,但是校验和算法机制并没有变化。CRC标准化问题*由于CRC-12有三种常用的形式,所以CRC-12的定义会有歧义*在应用的CRC-8的两种形式都有数学上的缺陷。*据称CRC-16与CRC-32至少有10种形式,但没有一种在数学上是最优的。*同样大小的CCITTCRC与ITUCRC不同,这个机构在不同时期定义了不同的校验和。==常用CRC(按照ITU-IEEE规范)=={|class="wikitable"!名称||多项式||表示法:正常或者翻转|-|CRC-1||x+1(用途:硬件,也称为[[奇偶校验位]])||0x1or0x1(0x1)|-|CRC-5-CCITT||x^{5}+x^{3}+x+1([[ITU]]G.704标准)||0x15(0x??)|-|CRC-5-USB||x^{5}+x^{2}+1(用途:[[USB]]信令包)||0x05or0x14(0x9)|-|CRC-7||x^{7}+x^{3}+1(用途:通信系统)||0x09or0x48(0x11)|-|CRC-8-ATM||x^8+x^2+x+1(用途:ATMHEC)||0x07or0xE0(0xC1)|-|CRC-8-[[CCITT]]||x^8+x^7+x^3+x^2+1(用途:[[1-Wire]][[总线]])|||-|CRC-8-[[Dallas_Semiconctor|Dallas]]/[[Maxim_IC|Maxim]]||x^8+x^5+x^4+1(用途:[[1-Wire]][[bus]])||0x31or0x8C|-|CRC-8||x^8+x^7+x^6+x^4+x^2+1||0xEA(0x??)|-|CRC-10||x10+x9+x5+x4+x+1||0x233(0x????)|-|CRC-12||x^{12}+x^{11}+x^3+x^2+x+1(用途:通信系统)||0x80For0xF01(0xE03)|-|CRC-16-Fletcher||参见[[Fletcher'schecksum]]||用于[[Adler-32]]A&BCRC|-|CRC-16-CCITT||''x''16+''x''12+''x''5+1([[X25]],[[V.41]],[[Bluetooth]],[[PPP]],[[IrDA]])||0x1021or0x8408(0x0811)|-|CRC-16-[[IBM]]||''x''16+''x''15+''x''2+1||0x8005or0xA001(0x4003)|-|CRC-16-[[BBS]]||x16+x15+x10+x3(用途:[[XMODEM]]协议)||0x8408(0x????)|-|CRC-32-Adler||See[[Adler-32]]||参见[[Adler-32]]|-|CRC-32-MPEG2||See[[IEEE802.3]]||参见[[IEEE802.3]]|-|CRC-32-[[IEEE802.3]]||x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1||0x04C11DB7or0xEDB88320(0xDB710641)|-|CRC-32C(Castagnoli)||x^{32}+x^{28}+x^{27}+x^{26}+x^{25}+x^{23}+x^{22}+x^{20}+x^{19}+x^{18}+x^{14}+x^{13}+x^{11}+x^{10}+x^9+x^8+x^6+1||0x1EDC6F41or0x82F63B78(0x05EC76F1)|-|CRC-64-ISO||x^{64}+x^4+x^3+x+1(use:ISO3309)||(0xB000000000000001)|-|CRC-64-[[EcmaInternational|ECMA]]-182||x^{64}+x^{62}+x^{57}+x^{55}+x^{54}+x^{53}+x^{52}+x^{47}+x^{46}+x^{45}+x^{40}+x^{39}+x^{38}+x^{37}+x^{35}+x^{33}+x^{32}+x^{31}+x^{29}+x^{27}+x^{24}+x^{23}+x^{22}+x^{21}+x^{19}+x^{17}+x^{13}+x^{12}+x^{10}+x^9+x^7+x^4+x+1(asdescribedin[CRC16toCRC64collisionresearch]*[index.htm#SAR-PR-2006-05ReversingCRC–TheoryandPractice.]{{math-stub}}[[Category:校验和算法]][[bg:CRC]][[ca:Controlderendànciacíclica]][[cs:Cyklickýrendantnísoučet]][[de:ZyklischeRendanzprüfung]][[en:Cyclicrendancycheck]][[es:Controlderendanciacíclica]][[eu:CRC]][[fi:CRC]][[fr:Contrôlederedondancecyclique]][[he:בדיקתיתירותמחזורית]][[id:CRC]][[it:Cyclicrendancycheck]][[ja:巡回冗长検査]][[ko:순환중복검사]][[nl:CyclicRendancyCheck]][[pl:CRC]][[pt:CRC]][[ru:Циклическийизбыточныйкод]][[simple:Cyclicrendancycheck]][[sk:Kontrolacyklickýmkódom]][[sv:CyclicRendancyCheck]][[vi:CRC]]