导航:首页 > 网络连接 > 网络编程通讯连接

网络编程通讯连接

发布时间:2023-01-16 23:48:16

Ⅰ 即时通讯软件开发的网络编程方式有哪些

引言、即时通讯是网上最为流行的通讯方式,市场上也出现了各种各样的即时通讯软件。这篇文章将会给大家介绍一些开发即时通讯软件的网络编程方式。

开发即时通讯软件需要用到安卓端技术java语言,苹果端oc语言,电脑端win系统桌面C/C++语言,管理后台数据库语言,后台管理界面java或者php。建议可以使用第三方SDK,可以有效地避免消息漏发,卡顿,数据并发等很多问题,提高了用户对产品的体验感。

三、如何设置编程。

mysql数据库的用户名为root,密码为空,可以根据自己的需要设置相应的用户名和密码(固定在程序中)。mychatserver是聊天服务器,myfileserver是文件服务器,文件服务器负责上传和下载聊天中发送的文件,myimgserver负责上传和下载聊天中的图片。三个服务之间相互独立,不会互相影响。聊天服务器监听端口是20000,文件服务器端口是20001,图片服务器端口号是20002,这三个端口的客户端连接,其中聊天端口和客户端是长连接,文件端口和图片可选择长连接或短连接。第一次运行mychatserver时,如果能顺利连上mysql,mychatserver会自动检测是否存在名为myim的数据库,如果不存在就可以创建了,并新建三张信息表,分别是用户信息表,好友关系表和聊天消息记录表。第一次启动文件服务器时会创建filecache目录,这个目录用来存储聊天中的聊天图片和离线文件以及客户端的升级包。为了方便查看代码,可以用Visual Studio管理代码,使用VS打开myserver.sln查看和管理代码。

Ⅱ 网络编程(五)TCP详解

考虑最简单的情况:两台主机之间的通信。这个时候只需要一条网线把两者连起来,规定好彼此的硬件接口,如都用 USB、电压 10v、频率 2.4GHz 等, 这一层就是物理层,这些规定就是物理层协议

我们当然不满足于只有两台电脑连接,因此我们可以使用交换机把多个电脑连接起来,如下图:

这样连接起来的网络,称为局域网,也可以称为以太网(以太网是局域网的一种)。在这个网络中,我们需要标识每个机器,这样才可以指定要和哪个机器通信。这个标识就是硬件地址 MAC。

硬件地址随机器的生产就被确定,永久性唯一。在局域网中,我们需要和另外的机器通信时,只需要知道他的硬件地址,交换机就会把我们的消息发送到对应的机器。

这里我们可以不管底层的网线接口如何发送,把物理层抽离,在他之上创建一个新的层次,这就是 数据链路层

我们依然不满足于局域网的规模,需要把所有的局域网联系起来,这个时候就需要用到路由器来连接两个局域网:

但是如果我们还是使用硬件地址来作为通信对象的唯一标识,那么当网络规模越来越大,需要记住所有机器的硬件地址是不现实的;

同时,一个网络对象可能会频繁更换设备,这个时候硬件地址表维护起来更加复杂。这里使用了一个新的地址来标记一个网络对象: IP 地址

通过一个简单的寄信例子来理解 IP 地址。

我住在北京市,我朋友 A 住在上海市,我要给朋友 A 写信:

因此,这里 IP 地址就是一个网络接入地址(朋友 A 的住址),我只需要知道目标 IP 地址,路由器就可以把消息给我带到。 在局域网中,就可以动态维护一个 MAC 地址与 IP 地址的映射关系,根据目的 IP 地址就可以寻找到机器的 MAC 地址进行发送

这样我们不需管理底层如何去选择机器,我们只需要知道 IP 地址,就可以和我们的目标进行通信。这一层就是 网络层 。网络层的核心作用就是 提供主机之间的逻辑通信

这样,在网络中的所有主机,在逻辑上都连接起来了,上层只需要提供目标 IP 地址和数据,网络层就可以把消息发送到对应的主机。

一个主机有多个进程,进程之间进行不同的网络通信,如边和朋友开黑边和女朋友聊微信。我的手机同时和两个不同机器进行通信。

那么当我的手机收到数据时,如何区分是微信的数据,还是王者的数据?那么就必须在网络层之上再添加一层: 运输层

运输层通过 socket(套接字),将网络信息进行进一步的拆分,不同的应用进程可以独立进行网络请求,互不干扰。

这就是运输层的最本质特点: 提供进程之间的逻辑通信 。这里的进程可以是主机之间,也可以是同个主机,所以在 android 中,socket 通信也是进程通信的一种方式。

现在不同的机器上的应用进程之间可以独立通信了,那么我们就可以在计算机网络上开发出形形式式的应用:如 web 网页的 http,文件传输 ftp 等等。这一层称为 应用层

应用层还可以进一步拆分出表示层、会话层,但他们的本质特点都没有改变: 完成具体的业务需求 。和下面的四层相比,他们并不是必须的,可以归属到应用层中。

最后对计网分层进行小结:

这里需要注意的是,分层并不是在物理上的分层,而是逻辑上的分层。通过对底层逻辑的封装,使得上层的开发可以直接依赖底层的功能而无需理会具体的实现,简便了开发。

这种分层的思路,也就是责任链设计模式,通过层层封装,把不同的职责独立起来,更加方便开发、维护等等。

TCP 并不是把应用层传输过来的数据直接加上首部然后发送给目标,而是把数据看成一个字节 流,给他们标上序号之后分部分发送。这就是 TCP 的 面向字节流 特性:

面向字节流的好处是无需一次存储过大的数据占用太多内存,坏处是无法知道这些字节代表的意义,例如应用层发送一个音频文件和一个文本文件,对于 TCP 来说就是一串字节流,没有意义可言,这会导致粘包以及拆包问题,后面讲。

前面讲到,TCP 是可靠传输协议,也就是,一个数据交给他,他肯定可以完整无误地发送到目标地址,除非网络炸了。他实现的网络模型如下:

对于应用层来说,他就是一个可靠传输的底层支持服务;而运输层底层采用了网络层的不可靠传输。虽然在网络层甚至数据链路层就可以使用协议来保证数据传输的可靠性,但这样网络的设计会更加复杂、效率会随之降低。把数据传输的可靠性保证放在运输层,会更加合适。

可靠传输原理的重点总结一下有: 滑动窗口、超时重传、累积确认、选择确认、连续 ARQ

停止等待协议

要实现可靠传输,最简便的方法就是:我发送一个数据包给你,然后你跟我回复收到,我继续发送下一个数据包。传输模型如下:

这种“一来一去”的方法来保证传输可靠就是 停止等待协议 (stop-and-wait)。不知道还记不记得前面 TCP 首部有一个 ack 字段,当他设置为 1 的时候,表示这个报文是一个确认收到报文。

然后再来考虑另一种情况:丢包。网络环境不可靠,导致每一次发送的数据包可能会丢失,如果机器 A 发送了数据包丢失了,那么机器 B 永远接收不到数据,机器 A 永远在等待。

解决这个问题的方法是: 超时重传 。当机器 A 发出一个数据包时便开始计时,时间到还没收到确认回复,就可以认为是发生了丢包,便再次发送,也就是重传。

但重传会导致另一种问题:如果原先的数据包并没有丢失,只是在网络中待的时间比较久,这个时候机器 B 会受到两个数据包,那么机器 B 是如何辨别这两个数据包是属于同一份数据还是不同的数据?

这就需要前面讲过的方法: 给数据字节进行编号 。这样接收方就可以根据数据的字节编号,得出这些数据是接下来的数据,还是重传的数据。

在 TCP 首部有两个字段:序号和确认号,他们表示发送方数据第一个字节的编号,和接收方期待的下一份数据的第一个字节的编号。

停止等待协议的优点是简单,但缺点是 信道利用率 太低。

假定AB之间有一条直通的信道来传送分组

这里的TD是A发送分组所需要的时间(显然TD = 分组长度 / 数据速率)再假定TA是B发送确认分组所需要的时间(A和B处理分组的时间都忽略不计)那么A在经过TD+RTT+TA时间后才能发送下一个分组,这里的RTT是往返时间,因为只有TD是采用来传输有用的数据(这个数据包括了分组首部,如果可以知道传输更精确的数据的时间,可以计算的更精确),所有信道利用率为

为了提高传输效率,发送方可以不使用低效率的停止等待协议,而是采用 流水线传输 :就是发送方可以 连续的发送多个分组 ,不必每发完一个分组就停下来等待对方的确认。这样可使信道上一直有数据不间断地在传送。显然这种传输方式可以获得很高的信道利用率

停止等待协议已经可以满足可靠传输了,但有一个致命缺点: 效率太低 。发送方发送一个数据包之后便进入等待,这个期间并没有干任何事,浪费了资源。解决的方法是: 连续发送数据包

也就是下面介绍的 连续ARQ协议 滑动窗口协议

连续 ARQ 协议

模型如下:

和停止等待最大的不同就是,他会源源不断地发送,接收方源源不断收到数据之后,逐一进行确认回复。这样便极大地提高了效率。但同样,带来了一些额外的问题:

发送是否可以无限发送直到把缓冲区所有数据发送完?不可以。因为需要考虑接收方缓冲区以及读取数据的能力。如果发送太快导致接收方无法接受,那么只是会频繁进行重传,浪费了网络资源。所以发送方发送数据的范围,需要考虑到接收方缓冲区的情况。这就是 TCP 的 流量控制

解决方法是: 滑动窗口 。基本模型如下:

在 TCP 的首部有一个窗口大小字段,他表示接收方的剩余缓冲区大小,让发送方可以调整自己的发送窗口大小。通过滑动窗口,就可以实现 TCP 的流量控制,不至于发送太快,导致太多的数据丢失。

连续 ARQ 带来的第二个问题是:网络中充斥着和发送数据包一样数据量的确认回复报文,因为每一个发送数据包,必须得有一个确认回复。提高网络效率的方法是: 累积确认

接收方不需要逐个进行回复,而是累积到一定量的数据包之后,告诉发送方,在此数据包之前的数据全都收到。例如,收到 1234,接收方只需要告诉发送方我收到 4 了,那么发送方就知道 1234 都收到了。

第三个问题是:如何处理丢包情况。在停止等待协议中很简单,直接一个超时重传就解决了。但,连续 ARQ 中不太一样。

例如:接收方收到了 123 567,六个字节,编号为 4 的字节丢失了。按照累积确认的思路,只能发送 3 的确认回复,567 都必须丢掉,因为发送方会进行重传。这就是 GBN(go-back-n) 思路。

但是我们会发现,只需要重传 4 即可,这样不是很浪费资源,所以就有了: 选择确认 SACK 。在 TCP 报文的选项字段,可以设置已经收到的报文段,每一个报文段需要两个边界来进行确定。这样发送方,就可以根据这个选项字段只重传丢失的数据了。

第四个问题是:拥塞控制的问题
也是通过窗口的大小来控制的,但是检测网络满不满是个挺难的事情,所以 TCP 发送包经常被比喻成往谁管理灌水,所以拥塞控制就是在不堵塞,不丢包的情况下尽可能的发挥带宽。

水管有粗细,网络有带宽,即每秒钟能发送多少数据;水管有长度,端到端有时延。理想状态下,水管里面的水 = 水管粗细 * 水管长度。对于网络上,通道的容量 = 带宽 * 往返时延。

如果我们设置发送窗口,使得发送但未确认的包为通道的容量,就能撑满整个管道。

如图所示,假设往返时间为 8 秒,去 4 秒,回 4 秒,每秒发送一个包,已经过去了 8 秒,则 8 个包都发出去了,其中前四个已经到达接收端,但是 ACK 还没返回,不能算发送成功,5-8 后四个包还在路上,还没被接收,这个时候,管道正好撑满,在发送端,已发送未确认的 8 个包,正好等于带宽,也即每秒发送一个包,也即每秒发送一个包,乘以来回时间 8 秒。

如果在这个基础上调大窗口,使得单位时间可以发送更多的包,那么会出现接收端处理不过来,多出来的包会被丢弃,这个时候,我们可以增加一个缓存,但是缓存里面的包 4 秒内肯定达不到接收端课,它的缺点会增加时延,如果时延达到一定程度就会超时重传

TCP 拥塞控制主要来避免两种现象,包丢失和超时重传,一旦出现了这些现象说明发送的太快了,要慢一点。

具体的方法就是发送端慢启动,比如倒水,刚开始倒的很慢,渐渐变快。然后设置一个阈值,当超过这个值的时候就要慢下来

慢下来还是在增长,这时候就可能水满则溢,出现拥塞,需要降低倒水的速度,等水慢慢渗下去。

拥塞的一种表现是丢包,需要超时重传,这个时候,采用快速重传算法,将当前速度变为一半。所以速度还是在比较高的值,也没有一夜回到解放前。

到这里关于 TCP 的可靠传输原理就已经介绍得差不多。最后进行一个小结:

当然,这只是可靠传输的冰山一角,感兴趣可以再深入去研究

Ⅲ Unity网络编程(一)常见概念

一直用Http用多了 复习一下基础
Unity通讯一般分为2类
Http : 应用层 Unity内置的UnityWebRequest类进行通信(之前写过一个分发器垃圾框架)用于交互量比较小
Socket:传输层 比较底层 实现TCP/UDP 用于频繁的通信

这个是基于TCP 和IP传输不同消息

这个是三种常见的网络层次划分

基本数据单位为帧
主要的协议:以太网协议

基本数据单位为IP数据报;
IP协议(Internet Protocol,因特网互联协议)
ICMP协议(Internet Control Message Protocol,因特网控制报文协议)
ARP协议(Address Resolution Protocol,地址解析协议)
RARP协议(Reverse Address Resolution Protocol,逆地址解析协议)

包含的主要协议:TCP协议(Transmission Control Protocol,传输控制协议)、UDP协议(User Datagram Protocol,用户数据报协议)

数据传输基本单位为报文
包含的主要协议:
FTP(文件传送协议)、Telnet(远程登录协议)、DNS(域名解析协议)、SMTP(邮件传送协议),POP3协议(邮局协议),HTTP协议(Hyper Text Transfer Protocol)。

分配给用户上网使用的网际协议
目前IPv4多 比如192.168.1.1
新的IPv6(因为IPv4数量不够分配)如3ffe:3201:1401:1280:c8ff:fe4d:db39:1984。

Internet最基本的协议
TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。
可靠的协议 通过三次握手建立的面向连接通信协议

3次握手 四次挥手 实习生常考
TCP连接建立过程(三次握手):
1.首先Client端发送连接请求报文
2.Server段接受连接后回复ACK报文,并为这次连接分配资源。
3.Client端接收到ACK报文后也向Server段发生ACK报文,并分配资源,这样TCP连接就建立了。
TCP连接断开过程(四次挥手):
1.Client端发起中断连接请求(FIN报文)
2.Server端接到FIN报文后,发送ACK服务器还有消息没发完让Client待命,Client端就进入FIN_WAIT,继续等待Server端的FIN报文
3.Server端确定数据已发送完成,则向Client端发送FIN报文,
4.Client端收到FIN报文后发送ACK后进入TIME_WAIT状态,如果Server端没有收到ACK则可以重传,Server端收到ACK后 关闭,Client等待了2MSL后依然没有收到回复客户端也关闭
SYN:"synchronize"请求同步标志;;ACK:"acknowledge"确认标志";FIN:"Finally"结束标志。

什么要三次握手?
防止因为网卡导致Sever收到多次Client请求 建立N个监听 造成资源浪费
为什么要四次挥手?
自己不请求直接关闭 但是服务器还能给你发数据 服务器浪费资源 而且客户端也会强行接收
使用TCP的协议:FTP(文件传输协议)、Telnet(远程登录协议)、SMTP(简单邮件传输协议)、POP3(和SMTP相对,用于接收邮件)、HTTP协议等。

面向无连接的通讯协议
UDP通讯时不需要接收方确认,属于不可靠的传输 会丢包
UDP与TCP位于同一层,但它不管数据包的顺序、错误或重发
主要用于面向查询---应答的程序
每个UDP报文分UDP报头和UDP数据区两部分
UDP报头由4个域组成,其中每个域各占用2个字节
(1)源端口号;
(2)目标端口号;
(3)数据报长度;
(4)校验值。

使用UDP协议包括:TFTP(简单文件传输协议)、SNMP(简单网络管理协议)、DNS(域名解析协议)、NFS、BOOTP。

超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议

HTTP协议特点:
简单快速 灵活 无连接 无状态 支持B/S(浏览器/服务器)及C/S(客户端/服务器)模式。
URL

和服务器有一些频繁的交互 用http时不时请求 叫轮询 效率低下
soket可以理解为插座 插头接上了可以保持通信

端口:
每个Socket连接都是从一台计算机网卡的一个端口连接到另外一台计算机网卡的某个端口。
IP是房子的话 端口就是门
TCP端口和UDP端口相互独立 如TCP255端口 和UDP255端口 不冲突

周知端口
范围从0到1023,其中80端口分配给WWW服务,21端口分配给FTP服务等。
浏览器的地址栏里输入一个网址的时候是不必指定端口号的,因为在默认情况下WWW服务的端口是“80”。
网络服务是可以使用其他端口号的 比如 网址:8080
但是有些系统协议使用固定的端口号,它是不能被改变的,比如139 端口专门用于NetBIOS与TCP/IP之间的通信,不能手动改变。
自己开发时尽量不要使用1024之下的端口,可能会与系统端口冲突。

服务端:
创建socket对象
bind:绑定IP地址和端口
listen:开始监听绑定的IP地址和端口,等待客户端的连接
accept:如果有客户端发起连接,通过accept接受连接请求,连接成功后会复制一个socket出来用于和当前接受连接的客户端进行通信。(服务端最初创建的那个socket只是用来监听并建立连接用的,实际和客户端通信并不是最初的socket,而是在accept这一步会自动创建一个新的socket出来和客户端通信。)
read/write:使用新的socket读写数据
close:关闭socket,如果关闭的是服务端的监听socket,则无法接收新的连接,但是已经创建的和客户端的连接不会被关闭。
客户端:
创建socket对象
connect:连接服务端,连接成功后系统会自动分配端口
read/write:连接成功后,就可以进行数据的读写了,这里读写使用的socket还是第一步创建的socket对象。
close:关闭连接。
如果收到了长度为0的数据,则代表远程socket关闭了连接。

服务器:
创建socket对象
bind:绑定IP和端口,用于接收数据(注意这里绑定完就可以直接接收数据了,并不需要等待连接)
read/write:读写数据
客户端:
创建socket对象
read/write:读写数据,不需要先建立连接,直接给对应的IP+端口发送数据即可。

由于没有建立连接以及连接的保障,UDP在传输效率上会很高
UDP有一个功能是TCP所不具备的,那就是广播功能(UDP可以将消息发送到在同一广播网络上的每个主机 CS、魔兽争霸局域网对战)。

HTTP/HTTPS(比http更安全):小游戏 网页 间歇性发送链接 偶尔延迟。
TCP长连接: 卡牌游戏 某些mmo 客户端和服务器都可以独立发包 偶尔延迟
UDP:动作游戏 mmo 枪战 客户端和服务器都可以独立发包 无法接受延迟

可以混合使用你的MMO客户端也许首先使用HTTP去获取上一次的更新内容,然后使用UDP跟游戏服务器进行连接。
现在也有kcp 就是tcp和udp结合 快速安全可靠

简单直接的长连接
可靠的信息传输
数据包的大小没有限制

坑多 断线检测、慢速客户端响应阻塞数据包,对开放连接的各种dos攻击,阻塞和非阻塞IO模型
丢包会有阻塞机制(一般是重发 tcp相反) 所以手机游戏ping跳1000就这个原因

只使用一个socket进行通信
快速
基于数据包构建
灵活 多种方式处理延迟

很多东西没有要自己构建
不可靠
丢包

客户端直接开始进行计算而不等待服务端确认是一种典型的隐藏延迟的技术(容易被抓包篡改)。
我们到底是使用TCP还是UDP取决于我们能否隐藏延迟。
比如TCP 在棋牌 卡牌游戏 卡1S无所谓 在动作游戏moba游戏就很致命
可靠的UDP/kcp和TCP不一样,要去实现一个特殊的阻塞控制,而且还要保证可靠性,也可以使用许多支持可靠通信的UDP库,但是库一般为了通用会降低某种新能,自己根据项目情况写可以发挥到极致
如果不知道用什么就TCP

Ⅳ 在java网络编程中,客户端/服务器怎么实现不同电脑之间的通信

1、首先两台电脑和服务器都在同一个网络中
2、相互之间可以用sokect<--->server
相互进行通信

阅读全文

与网络编程通讯连接相关的资料

热点内容
网络锁苹果怎么看 浏览:39
服务器组建网络安全书籍 浏览:780
网络安全专题部署会 浏览:671
汽车怎样共享蓝牙网络 浏览:190
2019网络哪个行业最赚钱 浏览:624
无线网中分享网络的功能在哪里 浏览:289
网络公关具体有哪些优势 浏览:884
判断路由器网络好坏 浏览:912
微信怎样连接网络音频 浏览:858
如何使家里的网络变好 浏览:534
无线网络延迟速度 浏览:174
电脑无法连接网络可以投屏吗 浏览:781
网络tv盒子怎么安装 浏览:277
华为移动网络设置方法软件 浏览:40
v6网络播放器软件 浏览:780
电脑连接到交换机网络不通 浏览:58
网络共享提示网络已被禁用 浏览:694
电信网络测速网址多少 浏览:550
可以直接获取网络密码的软件 浏览:785
为什么晚上网络一直掉线 浏览:829

友情链接