导航:首页 > 网络连接 > 计算机网络中的快重传名词解释

计算机网络中的快重传名词解释

发布时间:2023-01-10 09:55:36

1. 2019年同等学力申硕计算机综合试题解析--计算机网络

本文解析的原文出处都是《计算机网络第七版谢希仁》

一、填空题

1.  以太网的争用期是指(以太网的端到端往返时间2 ),以太网发送数据使用(曼切斯特)编码

解析: 第一空出处教材P88,第七段第三句: “因此以太网的端到端往返时间2 称为争用期”

第二空原话出处教材p86,第二段第一句:“ 以太网发送的数据都使用曼切斯特编码 的信号

2.  一个广域网传输比特率是4Kbps,传播时延为20ms,若采用停-等协议效率是50%,帧长至少为(160)位

解析: 停止等待协议概念出处P213,

传播时延为20ms,则往返时延rtt为40ms,效率即为信道利用率,设分组时延为T, , 忽略不计,把已知数据代入公式求出

帧长度为 (式子中有单位转换),因此帧长度最少为160位。

3.  一个网段的网络号为130.10.3.0/21,子网掩码可以写为(255.255.248.0)

解析:用位与的方法即可求出。

4.  TCP协议中发送窗口的大小应该由(拥塞)窗口和(接收)窗口中较小的一个决定

二、 选择题

1. 数据链链路层采用后退N帧协议,若发送窗口大小是16,那至少需要(C)位序号才能保证不出错

A. 7 

B.6  

C.5 

D.4

解析: 发窗口的大小  ,n代表序号位数,n位序号要减去0的组合,最大窗口只有n个1表示为 ,因此该题选C

2. 一台主机的IP地址为152.68.70.3,子网掩码为255.255.224.0,必须路由器才能与该主机通信的是(A)

A.152.68.62.23

B.152.68.67.15

C.152.68.85.220

D.152.68.90.30

解析: 根据子网掩码可知网络号是19位,主机IP为152.68.70.3,与子网掩码按位求与,其网络号为152.68.64.0,把子网掩码与选项中ip按位求与得到,A的网络号为152.68.32.0,其他选项的网络号为152.68.64.0,因此A与题干中ip不在一个网络,因此要路由器通信。

3.  对分片后的数据进行重组的是(B)

A.中间主机

B. 目的主机

C. 核心路由器

D.下一跳路由器

解析: IP协议规定,只有最终的目的主机才可以对分片数据报进行重组,这样做有两个好处:首先,在目的主机上进行重组减少了路由器的计算量,当转发一个IP数据报时,路由器不需要知道它是不是个分片;其次,路由器可以为每个分片独立选择路由,每个分片到达目的地所经过的路径可以不同。

4.  CIDR地址块192.168.10.0/20所包含的IP地址范围是(D)

A.192.168.10.0-192.168.12.255

B.192.168.10.0-192.168.13.255

C.192.168.10.0-192.168.14.255

D.192.168.10.0-192.168.15.255

解析: 根据题干192.168.10.0/20可以得到

子网掩码是 ,

IP地址的二进制表示为:

因此原题干IP范围为

192.168.10.0-192.168.15.255

5. 一个由25台计算机组成的通信网络,网络中任意两台计算机之间的往返时延为20ms,他们之间采用UDP协议进行请求和响应,如果40ms内未收到响应,该计算机立即重传请求,但很快网络发生崩溃,解决办法是(D)

A.增加超时计时器时间

B.增加路由中队列长度

C.在接收方使用滑动窗口机制防止缓冲区溢出

D.超时后重传请求时,使用二进制指数退避算法

解析: P88,二进制指数退避算法用来确定碰撞后重传时机,这种算法让发生碰撞的站在停止发送数据后,不是等待信道变为空闲后就立即再发送数据,而是推迟一个随机的时间。

三、名词解释

1.BGP协议

解析: (P164第三段和第四段)

BGP边界网关协议,是不同AS的路由器之间交换路由信息的协议。BGP力求寻找一条能够到达目的网络且比较好的路由,而并非要寻找一条最佳路由。BGP采用路径向量路由选择协议。

2.DHCP协议

解析: (P295-P296)

动态主机配置协议DHCP提供了一种机制,即插即用连网,这种机制允许一台计算机加入新的网络和获取IP地址而不用手工参与。DHCP对于运行客户软件和服务软件器软件都适用。DHCP使用客户服务器方式。DHCP服务器分配给DHCP客户的IP是临时的,因此DHCP客户只能在一段有限时间内使用这个分配到的IP地址。

四、计算

1. 一台路由器收到一个1500字节的IPv4分组,IP头部为20字节,如果需要将该分组转发到一个MTU为500字节的链路上,

1)该IP分组共分成几个分片,长度分别为多少字节

2)最后一个分片的片偏移是多少字节

解析:

(1)IP头部20个字节,而转发mtu500字节,因此数据量只有480字节。1500个字节分成4组,前三组都是480+20 = 500字节,其中数据长度为480字节,共用了1440个字节,原来的数据量为1500-20=1480,因此第四组长度为 1480-1440 +20= 60字节,其中数据长度为40字节。

(2)最后一个分片的片偏移了三个分组,mtu大小为500字节,ip占20个字节,每片大小最大为480,片偏移必须为8字节的整数倍。

第一个片偏移是:0/8 = 0,第二个片偏移是:480/8=60;

第三个片偏移是:480*2/8=960/8=120, 第四个片偏移是:480*3/8=1440/8=180, 因此得到答案180。

2. 一个TCP连接使用256Kbps链路,其端到端的传输时延为128ms,实际吞吐量是128Kbps,若忽略数据封装开销及接收方响应分组的发送时间,发送窗口大小是多少字节

解析: 实际吞吐量为128Kbps,使用的是256Kbps的链路,则说明信道利用率只有50%

ms,发送窗口大小即发送分组长度的大小,根据信道利用率公式: , 其中 忽略不计,rtt代入公式求出分组时间T=256ms,

则窗口大小为

3. 客户端C和S之间建立一个TCP连接,该连接总是以1KB的最大段长发送TCP段,C有足够数据发送,当拥塞窗口为32KB时,收到了三个重复的ACK报文,如果接下来4个RTT时间内TCP段的传输是成功的,那么在当四个RTT时间内发送的TCP段都得到ACK,拥塞窗口大小是多少?采用了怎样的拥塞机制?

解析: (P234-P235)有题干可知MSS=1KB,当收到3个重复确认时,就知道接收方确实没有收到最近发的那个报文段,立即使用 快重传 ,此时不是用慢启动而是使用 快恢复 算法,接下来的 第一个rtt ,发送放调整门限ssthresh = cwnd /2 = 32/2 = 16KB,于此同时设置拥塞窗口cwnd = ssthresh = 16KB。之后并开始执行 拥塞避免算法 ,因此接下来的连续 3个rtt 都是连续加法增大,因此最终拥塞窗口cwnd = 16+3*MSS = 19KB

因此该拥塞机制过程为: 快重传 → 快恢复 → 拥塞避免

2. 请计算机网络的高手做一下下面的名词解释各是什么意思,谢谢

ARP (Address Resolution Protocol)地址解析协议
ARQ (auto repeat request)自动重传请求
CSMA/CD (Carrier Sense Multiple Access/Collision Derect)载波监听多路访问/冲突检测
CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)载波监听多路访问/冲突防止
CTS 不知道
FTP (File Transfer Protocal)文件传输协议
HDSL(High-data-rate Digital Subscriber Line)高速率数字用户线路
ADSL(Asymmetric Digital Subscriber Line)非对称数字用户线
HTTP(HyperTextTransferProtocol)超文本传输协议
LAN (Local Area Network)局域网
MAC (Media Access Control)媒体访问控制
PING (Packet Internet Grope) 因特网探索数据包
QOS (Quality of Service) 服务质量
RTS 即时战略类游戏??
TCP (Transmission Control Protocol)传输控制协议
UDD 没听过,是不是UDP?(User Datagram Protocol)用户数据报协议
WAN (Wide Area Network) 广域网
WWW (World Wide Web )万维网
ATM (Asynchronous Transfer Mode)异步传输模式
DNS (Domain Name Server)域名服务器
RARP (Reverse Address Resolution Protocol)反向地址转换协议
IP (Internet Protocol)Internet协议
CDMA (Code Division Multiple Access)码分多址

3. 计算机网络的名词解释是什么

1、 计算机网络:是利用通信设备和线路将地理位置不同的、功能独立的多个计算机系统互连起来,以功能完善的网总软件实现网络中资源共享和信息传递的系统。

2、 联机系统:是由一台中央计算机连接大量的地理位置分散的终端而构成的计算机系统。

3、 PDN:是公用数据网。网中传输的是数字化的数据,属于通信子网的一种。

4、 OSI:是开放系统互连参考模型。为ISO(国际标准化组织)制订的七层网络模型。
5、 数据通信:是一种通过计算机或其他数据装置与通信线路,完成数据编码信号的传输、转接、存储和处理的通信技术。

6、 数据传输率:每秒能传输的二进制信息位数,单位为B/S.
7、 信道容量:是信息传输数据能力的极限,是信息的最大数据传输速率。

8、 自同步法:是指接收方能从数据信号波形中提取同步信号的方法。

9、 PCM:称脉码调制,是将模拟数据换成数字信号编码的最常用方法。
10、 FDM:又称时分多路复用技术,是在信道带宽超过原始信号所需带宽情况下,将物理停产的总带宽分成若干个与传输单个信号带宽相同的子停产,每个子信息传输一路信号。

11、 同步传输:是以一批字符为传输单位,仅在开始和结尾加同步标志,字符间和比特间均要求同步。

12、 差错控制:是指在数据通信过程中能发现或纠正差错,把差错限制在尽可能小的允许范围内的技术和方法。
13、 信号:是数据的电子或电磁编码。

14、 MODEM:又称调制解调器。其作用是完成数字数据和模拟信号之间的转换,使传输模拟信号的媒体能传输数字数据。发送端MODEM将数字数据调制转换为模拟信号,接收端MODEM再把模拟信号解调还原为原来的数字数据。
15、 信号传输速率:也称码元率、调制速率或波特率,表示单位时间内通过信道传输的码元个数,单位记做BAND。
16、 基带传输:是在线路中直接传送数字信号的电脉冲,是一种最简单的传输方式,适用于近距离通信的局域网。
17、 串行通信:数据是逐位地在一条通信线上传输的,较之并行通信速度慢,传输距离远。

18、 信宿:通信过程中接收和处理信息的设备或计算机。
19、 信源:通信过程中产生和发送信息的设备或计算机。

20、 全双工:允许数据同时在两个方向上传输,要有两条数据通道,发送端和接收端都要有独立的接收和发送能力。

4. 运输层知识要点——谢希仁《计算机网络》

为了在计算机网络中有条不紊地交换数据,就必须遵守一些事先约定好的规则。这些规则明确规定了所 交换数据的格式 以及有关的 同步 问题。

同步的含义:在一定条件下应当发生什么事件,因而含有时序的意思。

网络协议:为进行网络中的数据交换而建立的规则、标准或约定。

网络协议由以下三个要素组成:

   1)语法:即数据与控制信息的结构或格式

   2)语义:即需要发出何种控制信息,完成何种动作以及做出何种反应

   3)同步:即事件实现顺序的详细说明

一、运输层协议的概述

   1.1 进程之间的通信

   1.2 运输层的两个主要协议

   1.3 运输层的端口

二、用户数据报协议UDP

   2.1 UDP概述

   2.2 UDP的首部格式

三、传输控制协议TCP概述

   3.1 TCP的最主要的特点

   3.2 TCP的连接

四、可靠传输的工作原理

   4.1 停止等待协议

   4.2 连续ARQ协议

五、TCP报文段的首部格式

六、TCP可靠传输的实现

   6.1 以字节为单位的滑动窗口

   6.2 超时重传时间的选择

   6.3 选择确认SACK

七、TCP的流量控制

   7.1 利用滑动窗口实现流量控制

   7.2 必须考虑传输效率

八、TCP的拥塞控制

   8.1 拥塞控制的一般原理

   8.2 几种拥塞控制方法

   8.3 随机早期检测RED

九、TCP的运输连接管理

   9.1 TCP的连接建立

   9.2 TCP的连接释放

   9.3 TCP的有限状态机

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

1.1 进程之间的通信

1.只有主机的协议栈才有运输层,而网络核心部分中的路由器在转发分组时都只用到了下三层的功能

2.两个主机进行通信就是两个主机中的应用进程互相通信。从运输层的角度看,通信的真正端点并不是主机而是主机中的进程。(IP协议能把分组送到目的主机)

网络层时为主机之间提供逻辑通信,而运输层为应用进程之间提供端到端的逻辑通信。

3.运输层一个重要功能——复用、分用。 (应用进程复用、分用运输层)

1.2 运输层的两个主要协议

1.UDP—User Datagram Protocol 用户数据报协议(无连接):DNS/RIP/DHCP/SNMP/NFS

TCP—Transmission Control Protocol 传输控制协议(面向连接):SMTP/TELNET/HTTP/ FTP

1.3 运输层的端口

问题:为了使运行不同操作系统的计算机的应用进程能够互相通信,就必须使用统一的方法(而这种方法必须与特定操作系统无关)对TCP/IP体系的应用进程进行标识。

为什么不用进程号来区分?(第一,不同操作系统的进程标识符不同;第二,用功能来识别,而不是进程,例如邮件服务功能,而不管具体是哪个进程)

解决方案:在运输层使用协议端口号,即端口。软件端口是应用层的各种协议进程与运输实体进行层间交互的一种地址。(端口号只具有本地意义,只是为了标识本计算机应用层中各个进程在和运输层交互时的层间接口。)

端口分为两大类:

1)服务器使用的端口号:熟知端口号或系统端口号(0~1023);登记端口号(1024~49151)

2)客户端使用的端口号:49152~65535

2.1 UDP概述

1.UDP只在IP的数据报服务至上增加了很少一点功能,就是复用、分用以及差错检测功能

2.特点

   1)无连接

   2)尽最大努力交付

   3)面向报文 (不合并、不拆分、保留这些报文的边界)

   4)UDP没有拥塞控制

   5)UDP支持一对一、一对多、多对一和多对多的交互通信

   6)UDP的首部开销小,只有8字节

应用进程本身可以在不影响应用的实时性的前提下,增加一些提高可靠性的措施,如采用前向纠错或重传已丢失的报文。

2.2 UDP的首部格式

1.traceroute 让发送的UDP用户数据报故意使用一个非法的UDP端口号,接收方丢弃报文,并由ICMP(网络控制报文协议)发送“端口不可达”差错报文给发送方。

2.计算检验和。IP数据报的校验和只检验IP数据报的首部,但UDP的校验和是把首部和数据部分一起都检验。(12字节的首部+真正的首部+数据来进行校验和的计算)

   Q1.为什么计算校验和要加12字节的伪首部

   Q2.计算校验和的原理是什么?

3.1 TCP的最主要的特点

1.面向连接的运输层协议(建立连接、传输数据、释放连接)

2.点对点,每一条TCP连接只能有两个端点

3.可靠交付(无差错、不丢失、不重复、并且按序到达)

4.全双工通信。TCP连接的两端都设有发送缓存和接收缓存。

5.面向字节流。(流指的是流入到进程或从进程流出的字节序列;面向字节流:TCP把应用程序交下来的数据看成是一连串的无结构字节流。 接收方的应用程序必须有能力识别接收到的字节流,把它还原成有意义的应用层数据。 因此TCP可以根据窗口值和当前网络状况调整发送的报文长度。划分短一点,或者积累到足够多再发送出去。)

3.2 TCP的连接

1.TCP把连接作为最基本的抽象。

2.每一条TCP连接有两个端点。TCP连接的端点叫作套接字。

   套接字soket = (IP地址:端口号)

每一条TCP连接唯一地被通信两端的两个端点(即两个套接字)所确定。

   TCP连接 ::= {socket1, socket2}

理想的传输条件有以下两个特点:

   1)传输信道不产生差错

   2)不管发送方以多快的速度发送数据,接收方总是来得及处理收到的数据

实际的网络并不具备,因此:

   1)出现差错时,让发送方重传

   2)接收方来不及处理时,及时告诉发送方适当降低发送数据的速度

4.1 停止等待协议

1.“停止等待”就是没发送完一个分组就停止发送,等待对方的确认,在收到确认后再发送下一个分组。

2.超时重传。在每发完一个分组就设置一个超时计时器,如果在超时计时器之前收到对方的确认,就撤销已设置的超时计时器。如果未收到,就认为刚才的分组丢失,并重传。

3.三种情况:A发送的分组出错、丢失;B发送的确认丢失;B发送的确认迟到

确认丢失:B丢弃重复的分组,向A重传确认

确认迟到:A丢弃重复的确认,B丢弃重复分组,并向A重传确认

4.常称为自动重传请求ARQ,重传时自动进行的(超时即重传)

5.缺点:信道利用率太低

   U=Td/(Td+RTT+Ta)

为了提高传输效率,发送方不使用停止等待协议,而是采用流水线传输。流水线传输就是发送发可连续发送多个分组,不必等每发完一个分组就停顿下来等待对方的确认。(连续ARQ协议和滑动窗口协议)

4.2 连续ARQ协议

1.位于发送窗口内的分组都可连续发送出去,而不需要等待对方的确认。

2.累积确认:接收方不必对收到的分组逐个发送确认,而是在收到几个分组后,对按序到达的最后一个分组发送确认。

3.缺点:Go-back-N (发送前5个分组,第3个分组丢失,后面三个要重传)

1.源端口和目的端口

2.序号。 每个字节都按顺序编号。

3.确认号。 期望收到对方下一个报文段的第一个数据字节的序号。

若确认号=N,则表明:到序号N-1为止的所有数据都已正确收到。

4.数据偏移。 指出TCP报文段的数据起始处距离TCP报文段的起始处有多远(也即TCP报文段首部长度)。由于首部中还有长度不确定的选项字段,因此数据偏移字段是必要的。

5.窗口。窗口字段明确指出了现在允许对方发送的数据量。窗口值是经常在动态变化着。

6.1 以字节为单位的滑动窗口

1.发送缓存用来暂存:

   1)发送应用程序传送给发送方TCP准备发送的数据;

   2)TCP已发送但未收到确认德尔数据

2.接收缓存用来存放:

   1)按序到达的、但尚未被接收应收程序读取的数据;

   2)未按序到达的数据

3.注意三点:

   1)A的发送窗口是根据B的接收窗口设置的,但是在同一时刻,由于网络传输的滞后,A的发送窗口并不总是B的接收窗口一样大

   2)TCP通常对不按序到达的数据是先临时存放在接收窗口中,等到字节流中所缺少的字节收到后,再按序交付上层的应用进程

   3)TCP接收方有累计确认功能(不能过分推迟发送确认,否则会导致发送方不必要的重传)

6.2 超时重传时间的选择

1.超时重传时间设置太短,会引起很多不必要的重传;如果设置太长,使网络的空闲时间增大,降低传输效率。

2.新的RTTs = (1-a)x(旧的RTTs) + ax(新的RTT样本),其中RTT样本的时间为:记录一个报文段发出的时间,以及收到相应的确认时间,时间差就是报文段的往返时间RTT。

3.RTO = RTTs + 4 x RTTd,其中RTO为超时重传时间,RTTd是RTT的偏差的加权平均值。

新的RTTd = (1-b) x (旧的RTTd)+ b x |RTTs - 新的RTT样本|

4.一个问题:发送一个报文段,设定的重传时间到了,还没有收到确认。于是重传报文段。经过一段时间,收到了确认报文段。现在的问题是:如何判定此确认报文段是对先发送的报文段的确认,还是对后来重传的报文段的确认?

1)解决方法1,在计算加权平均值RTTs时,只要报文段重传了,就不采用其往返时间样本。

引入的问题:报文段的时延突然增大的情况

2)解决方法2,报文段每重传一次,就把超时重传时间RTO增大一些(一般是2倍)。当不在发生报文段的重传时,再根据加权平均计算。

6.3 选择确认SACK

SACK文档并没有指明发送发应当怎样响应SACK。因此大多数的实现还是重传所有未被确认的数据块。

7.1 利用滑动窗口实现流量控制

1.流量控制:就是让发送方的发送速率不要太快,要让接收方来得及接收。

2.利用滑动窗口机制可很方便地在TCP连接上实现对发送方的流量控制。发送方的发送窗口不能超过接收方给出的接收窗口的数值。

3.死锁情况:B向A发送了零窗口的报文段后不久,B又有了一些缓存空间,因此B向A发送rwnd = 400.然而该报文段在传送过程中丢失。A一直等待B发送的非零窗口的通知,B也一直等待A发送的数据。( 窗口通知不超时重传?为什么? )

解决方法:TCP为每个连接设有一个持续计时器。只要一方收到对方的零窗口通知,就启动计时器。计时器到期后,发送一个零窗口探测报文段,而对方就在确认这个探测报文段时给出了现在的窗口值。若仍为零,收到报文段的一方重新设置持续计时器。

7.2 必须考虑传输效率

1.应用程序把数据传送到TCP的发送缓存后,剩下的发送任务就由TCP来控制了。

2.三种不同的机制来控制TCP报文段的发送时机:

   1)TCP维持一个变量,它等于最大报文段长度MSS,只要缓存中的存放的数据达到MSS,就组装成一个TCP报文段发送出去

   2)由发送方的应用进程指明要求发送报文段,即TCP支持推送操作

   3)发送方设置一个定时器

3.问题一、若用户只发送一个字节,则非常浪费带宽。

解决方法:若发送应用程序把要发送的数据逐个字节地送到TCP的发送缓存,则发送方就把第一个数据字节先发送出去,把后面到达的数据字节都缓存起来。当发送方收到对第一个数据字符的确认后,再把发送缓存中的所有数据组装成一个报文段发送出去。(采用收到确认就发送+并开始缓存的方式;同时当到达的数据已达到发送窗口大小的一半或已达到报文段的最大长度时,就立即发送一个报文段。)

4.问题二、糊涂窗口综合症。接收缓存已满,应用程序一次只读取一个字节,然后向发送方发送确认。

解决方法:让接收方等待一段时间,使得接收缓存已有足够空间容纳一个最长的报文段,或者等到接收缓存已有一半空闲的空间。则接收方就发出确认报文。

8.1 拥塞控制的一般原理

1.拥塞的定义:对资源的需求 > 可用资源。 在计算机网络中的链路带宽、交换结点中的缓存和处理机等,都是网络中的资源。

2.拥塞解决不能靠解决某一个部分的问题。因为这会将瓶颈转移到其他地方。问题的实质往往是整个系统的各个部分不匹配。只有所有部分都平衡了,问题才会得到解决。

3.拥塞控制与流量控制的比较。

   1)拥塞控制:防止过多的数据注入到网络中,这样可以使网络中的路由器或链路不致过载。

   拥塞控制有个前提:网络能够承受现有的网络负荷

   拥塞控制是一个全局性过程。(发送拥塞时,不知道在某处、什么原因造成的)

   2)流量控制:点对点通信量的控制,是个端到端的问题

   流量控制:抑制发送端发送数据的速率,以便使接收端来得及接收。

4.寻找拥塞控制的方案无非就是使不等式 “对资源的需求 > 可用资源 ”不再成立的条件。但是必须考虑该措施带来的其他影响。

5.计算机网络是个复杂的系统。从控制理论的角度来看拥塞控制,可以分为开环控制和闭环控制两种方法。

   1)开环控制:设计网络时事先将有关发生拥塞的因素考虑周到,力求网络在工作时不产生拥塞。但一旦系统运行起来,就不再中途改正。

   2)闭环控制:基于反馈环路。

   步骤一、监测网络系统以便检测到拥塞在何时、何处发生;

   步骤二、把拥塞发生的信息传送到可采取行动的地方

   步骤三、调整网络系统的运行以解决出现的问题

8.2 几种拥塞控制方法(只考虑网络拥塞程度,即假设接收方总是有足够大的缓存空间)

1.慢开始和拥塞避免

1)发送方维持一个拥塞窗口。

   拥塞窗口的大小取决于网络的拥塞程度,并且动态地在变化。

   控制拥塞窗口的原则是:只要网络没有出现拥塞,拥塞窗口增大;如果网络出现拥塞,则减小。

2)慢开始的思路:由小到大逐渐增大拥塞窗口数值。每收到一个对新的报文段的确认,把拥塞窗口增加至多一个MSS的数值。(没经过一个传输轮次,拥塞窗口cwnd就加倍)

轮次:把拥塞窗口所允许发送的报文段都连续发送出去,并收到了对已发送的最后一字节的确认。

慢开始的“慢”并不是指cwnd的增长速率慢,而是指TCP开始发送报文段时先设置cwnd=1(一个MSS数值)。

3)慢开始门限ssthresh

   为防止拥塞窗口增长过大,引入一个慢开始门限ssthresh。

   当cwnd < ssthresh时,使用上述的慢开始算法

   当cwnd > ssthresh时,停止使用慢开始算法而改用拥塞避免算法

4)拥塞避免算法

思路:让拥塞窗口cwnd缓慢增大,即没经过一个往返时间RTT就把发送方的拥塞窗口cwnd增加1,而不是加倍。

5)慢开始门限的设置

只要发送方判断网络出现拥塞(没有按时收到确认),就把慢开始门限ssthresh设置为出现拥塞时发送方窗口值的一半,然后把拥塞窗口cwnd重置为1,执行慢开始算法。

6)乘法减小和加法增大

乘法减小:网络出现拥塞时,把慢开始门限ssthresh减半(当前的ssthresh的一半),并执行慢开始算法。

加法增大:执行拥塞避免方法

2.快重传和快恢复

1)快重传(尽快重传未被确认的报文段)

首先,要求接收方每收到一个失序的报文段后就立即发出重复确认。(如接收方收到了M1和M2后都分别发出了确认,但接收方没有收到M3但接着收到了M4。此时接收方立即发送对M2的重复确认。)

其次,发送方只要一连收到三个重复确认,就应当立即重传对方尚未收到的报文段M3.

2)快恢复

要点一、当发送方连续收到三个重复确认,就执行“乘法减小”算法,把慢开始门限ssthresh减半。

要点二、由于发送方认为网络很可能没有发生拥塞(因为收到了连续的重复确认),把cwnd设置为慢开始门限ssthresh减半后的值,然后开始执行拥塞避免算法

慢开始算法只在TCP连接建立时和网络出现超时才使用。

3.发送方的窗口

发送方窗口的上限值 = Min [rwnd, cwnd]

8.3 随机早期检测RED(IP层影响TCP层的拥塞控制)

1.网络层的分组丢弃策略

网络层的策略对TCP拥塞控制影响最大的就是路由器的分组丢弃策略。

如果路由器队列已满,则后续到达的分组将都被丢弃。这就叫做尾部丢弃策略。

2.全局同步

由于TCP复用IP,若发生路由器中的尾部丢弃,就可能会同时影响到很多条TCP连接,结果就使许多TCP连接在同一时间突然都进入到慢开始状态。全局同步使得全网的通信量突然下降了很多,网络恢复正常后,其通信量又突然增大很多。

3.随机早期检测RED

使路由器的队列维持两个参数,即队列长度最小门限THmin和最大门限THmax。当每一个分组到达时,RED就先计算平均队列长度Lav。RED算法是:

1)若平均队列长度小于最小门限THmin,则把新到达的分组放入队列进行排队

2)若平均队列长度超过最大门限THmax,则把新到达的分组丢弃

3)若平均队列长度在最小门限THmin和最大门限THmax之间,则按照某一概率p将新到达的分组丢弃。

随机体现在3),在检测到网络拥塞的早期征兆时(即路由器的平均队列长度超过一定的门限值时),就先以概率p随机丢弃个别的分组,让拥塞控制只在个别的TCP连接上进行,因而避免发生全局性的拥塞控制。

4.平均队列长度Lav和分组丢弃概率p

Lav = (1-d) x (旧的Lav) +d x (当前的队列长度样本)

p = ptemp / (1- count x ptemp)

ptemp = pmax x (Lav - THmin) / (THmax - THmin)

TCP时面向连接的协议。

运输连接就有三个阶段:连接建立、数据传送和连接释放

运输连接的管理:使运输连接的建立和释放都能正常地进行。

在TCP连接建立过程中要解决以下三个问题:

   1)要使每一方能够确知对方的存在

   2)要允许双方协商一些参数(如最大窗口值、是否使用窗口扩大选项和时间戳等等)

   3)能够对运输实体资源(如缓存大小、连接表中的项目等)进行分配

9.1 TCP的连接建立

1.TCP规定,SYN=1报文段不能携带数据,但消耗一个序号

2.TCP规定,ACK=1报文段可以携带数据,如果不携带数据则不消耗序号

3.为什么A还要发送一次确认?为了防止已失效的连接请求报文突然又传送到B,因而产生错误。

“已失效的连接请求报文段”

A发出第一个连接请求报文段,在网络中滞留超时,又发出了第二个连接请求。但B收到第一个延迟的失效的连接请求报文段后,就误认为是A又发出了一次新的连接请求。于是就向A发出确认报文段,同意建立连接。假定不采用三次握手,那么只要B发出确认,新的连接就建立。此时A不会理睬B的确认,也不会发数据,但B一直等A发送数据,B的许多资源就浪费了。

采用三次握手,A不会向B发送确认,因此B就知道A并没有要求建立确认。

9.2 TCP的连接释放

1.TCP规定,FIN报文段基石不携带数据,也消耗一个序号

2.第二次握手后,TCP通知高层应用程序,因而从A到B这个方向的连接就释放,TCP连接处于半关闭状态

3.为什么A在TIME-WAIT状态必须等待2MSL的时间

  1)为了保证A发送的最后一个ACK报文段能够到达B。因为ACK可能丢失,此时B可能会超时重传,然后A重传确认,并重新启动2MSL计时器

  2)防止“已失效的连接请求报文段”出现在本连接中。可以使本连接持续时间内所产生的所有报文段都从网络中消失。

9.3 TCP的有限状态机

5. 计算机网络

应用层(数据):确定进程之间通信的性质以满足用户需要以及提供网络与用户应用
表示层(数据):主要解决用户信息的语法表示问题,如加密解密
会话层(数据):提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制,如服务器验证用户登录便是由会话层完成的
传输层(段):实现网络不同主机上用户进程之间的数据通信,可靠
与不可靠的传输,传输层的错误检测,流量控制等
网络层(包):提供逻辑地址(IP)、选路,数据从源端到目的端的
传输
数据链路层(帧):将上层数据封装成帧,用MAC地址访问媒介,错误检测与修正
物理层(比特流):设备之间比特流的传输,物理接口,电气特性等

IP 地址编址方案将IP地址空间划分为 A、B、C、D、E 五类,其中 A、B、C 是基本类,D、E 类作为多播和保留使用,为特殊地址。
A 类地址:以 0 开头,第一个字节范围:0~127 。
B 类地址:以 10 开头,第一个字节范围:128~191 。
C 类地址:以 110 开头,第一个字节范围:192~223。
D 类地址:以 1110 开头,第一个字节范围:224~239 。
E 类地址:以 1111 开头,保留地址。

物理地址(MAC 地址),是数据链路层和物理层使用的地址。
IP 地址是网络层和以上各层使用的地址,是一种逻辑地址。
其中 ARP 协议用于 IP 地址与物理地址的对应。

网络层的 ARP 协议完成了 IP 地址与物理地址的映射。

TCP(Transmission Control Protocol),传输控制协议,是一种面向连接的、可靠的、基于字节流的传输层通信协议。
主要特点如下:

FTP :定义了文件传输协议
Telnet :它是一种用于远程登陆
SMTP :定义了简单邮件传送协议
POP3 :它是和 SMTP 对应,POP3 用于接收邮件
HTTP :从 Web 服务器传输超文本到本地浏览器的传送协议。

防止了服务器端的一直等待而浪费资源

服务器端准备为每个请求创建一个链接,并向其发送确认报文,然后等待客户端进行确认后创建。如果此时客户端一直不确认,会造成 SYN 攻击,即SYN 攻击,英文为 SYN Flood ,是一种典型的 DoS/DDoS 攻击。

TCP 协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP 是全双工模式,这就意味着:

TIME_WAIT 表示收到了对方的 FIN 报文,并发送出了 ACK 报文,就等 2MSL后即可回到 CLOSED 可用状态了。如果 FIN_WAIT_1 状态下,收到了对方同时带 FIN 标志和 ACK 标志的报文时,可以直接进入到 TIME_WAIT 状态,而无须经过 FIN_WAIT_2 状态。
如果不等,释放的端口可能会重连刚断开的服务器端口,这样依然存活在网络里的老的 TCP 报文可能与新 TCP 连接报文冲突,造成数据冲突,为避免此种情况,需要耐心等待网络老的 TCP 连接的活跃报文全部死翘翘,2MSL 时间可以满足这个需求(尽管非常保守)!

建立连接后,两台主机就可以相互传输数据了。如下图所示:

因为各种原因,TCP 数据包可能存在丢失的情况,TCP 会进行数据重传。如下图所示:

TCP 协议操作是围绕滑动窗口 + 确认机制来进行的。
滑动窗口协议,是传输层进行流控的一种措施,接收方通过通告发送方自己的窗口大小,从而控制发送方的发送速度,从而达到防止发送方发送速度过快而导致自己被淹没的目的。
TCP 的滑动窗口解决了端到端的流量控制问题,允许接受方对传输进行限制,直到它拥有足够的缓冲空间来容纳更多的数据。

计算机网络中的带宽、交换结点中的缓存及处理机等都是网络的资源。在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就会变坏,这种情况就叫做拥塞。

通过拥塞控制来解决。拥堵控制,就是防止过多的数据注入网络中,这样可以使网络中的路由器或链路不致过载。注意,拥塞控制和流量控制不同,前者是一个 全局性 的过程,而后者指 点对点 通信量的控制。

拥塞控制的方法主要有以下四种:

1)慢开始
不要一开始就发送大量的数据,先探测一下网络的拥塞程度,也就是说由小到大逐渐增加拥塞窗口的大小。

2)拥塞避免
拥塞避免算法,让拥塞窗口缓慢增长,即每经过一个往返时间 RTT 就把发送方的拥塞窗口 cwnd 加 1 ,而不是加倍,这样拥塞窗口按线性规律缓慢增长。

3)快重传
快重传,要求接收方在收到一个 失序的报文段 后就立即发出 重复确认 (为的是使发送方及早知道有报文段没有到达对方),而不要等到自己发送数据时捎带确认。
快重传算法规定,发送方只要一连收到三个重复确认,就应当立即重传对方尚未收到的报文段,而不必继续等待设置的重传计时器时间到期。

4)快恢复
快重传配合使用的还有快恢复算法,当发送方连续收到三个重复确认时,就执行“乘法减小”算法,把 ssthresh 门限减半。

UDP(User Data Protocol,用户数据报协议),是与 TCP 相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去。
主要特点如下:

DNS :用于域名解析服务
SNMP :简单网络管理协议
TFTP:简单文件传输协议

TCP 只支持点对点通信;UDP 支持一对一、一对多、多对一、多对多的通信模式。
TCP 有拥塞控制机制;UDP 没有拥塞控制,适合媒体通信,对实时应用很有用,如 直播,实时视频会议等

既使用 TCP 又使用 UDP 。

HTTP 协议,是 Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网服务器传输超文本到本地浏览器的传送协议。
主要特点如下:

请求报文包含三部分:
a、请求行:包含请求方法、URI、HTTP版本信息
b、请求首部字段
c、请求内容实体
响应报文包含三部分:
a、状态行:包含HTTP版本、状态码、状态码的原因短语
b、响应首部字段
c、响应内容实体

GET: 对服务器资源的简单请求。
POST: 用于发送包含用户提交数据的请求。
HEAD:类似于 GET 请求,不过返回的响应中没有具体内容,用于获取报头。
PUT:传说中请求文档的一个版本。
DELETE:发出一个删除指定文档的请求。
TRACE:发送一个请求副本,以跟踪其处理进程。
OPTIONS:返回所有可用的方法,检查服务器支持哪些方法。
CONNECT:用于 SSL 隧道的基于代理的请求。

1.明文发送,内容可能被窃听
2.不验证通信方的身份,因此可能遭遇伪装
3.无法证明报文的完整性,可能被篡改

综上所述:
需要 IP 协议来连接网络,TCP 是一种允许我们安全传输数据的机制,使用 TCP 协议来传输数据的 HTTP 是 Web 服务器和客户端使用的特殊协议。HTTP 基于 TCP 协议,所以可以使用 Socket 去建立一个 TCP 连接。

HTTPS ,实际就是在 TCP 层与 HTTP 层之间加入了 SSL/TLS 来为上层的安全保驾护航,主要用到对称加密、非对称加密、证书,等技术进行客户端与服务器的数据加密传输,最终达到保证整个通信的安全性。

端口不同:HTTP 与 HTTPS 使用不同的连接方式,端口不一样,前者是 80,后者是 443。
资源消耗:和 HTTP 通信相比,HTTPS 通信会由于加解密处理消耗更多的 CPU 和内存资源。
开销:HTTPS 通信需要证书,而证书一般需要向认证机构申请免费或者付费购买。

SSL 协议即用到了对称加密也用到了非对称加密

1)客户端发起 https 请求(就是用户在浏览器里输入一个 https 网址,然后连接到 server
的 443 端口)
2)服务端的配置(采用 https 协议的服务器必须要有一套数字证书,可以自己制作,
也可以向组织申请,这套证书就是一对公钥和私钥,这是非对称加密)。
3)传输证书(这个证书就是公钥,只是包含了很多信息)
4)客户端解析证书(由客户端 tls 完成,首先验证公钥是否有效,若发现异常,则弹出
一个警示框,提示证书存在问题,若无问题,则生成一个随机值(对称加密的私钥),然后用证书对随机值进行加密)
5)传输加密信息(这里传输的是加密后的随机值,目的是让服务端得到这个随机值,以后客户端和服务端的通信就可以通过这个随机值来进行加密了)
6)服务端解密信息(服务端用私钥(非对称加密)解密后得到了客户端传来的随机值(对称加密的私钥),然后把通信内容通过该值(对称加密的私钥随机值)进行对称加密。所谓对称加密就是,将信息和私钥(对称加密的私钥)通过某种算法混在一起,这样除非知道私钥(对称加密的私钥),不然无法获取内容,而正好客户端和服务端都知道这个私钥(对称加密的私钥),所以只要加密算法够彪悍,私钥够复杂,数据就够安全)
7)传输加密的信息
8)客户端解密信息,用随机数(对称加密的私钥)来解。

默认情况下建立 TCP 连接不会断开,只有在请求报头中声明 Connection: close 才会在请求完成后关闭连接。
在 HTTP/1.0 中,一个服务器在发送完一个 HTTP 响应后,会断开 TCP 链接。但是这样每次请求都会重新建立和断开 TCP 连接,代价过大。所以虽然标准中没有设定,某些服务器对 Connection: keep-alive 的 Header 进行了支持。意思是说,完成这个 HTTP 请求之后,不要断开 HTTP 请求使用的 TCP 连接。这样的好处是连接可以被重新使用,之后发送 HTTP 请求的时候不需要重新建立 TCP 连接,以及如果维持连接,那么 SSL 的开销也可以避免.

如果维持持久连接,一个 TCP 连接是可以发送多个 HTTP 请求的。

HTTP/1.1 存在一个问题,单个 TCP 连接在同一时刻只能处理一个请求,在 HTTP/1.1 存在 Pipelining 技术可以完成这个多个请求同时发送,但是由于浏览器默认关闭,所以可以认为这是不可行的。在 HTTP2 中由于 Multiplexing 特点的存在,多个 HTTP 请求可以在同一个 TCP 连接中并行进行。

TCP 连接有的时候会被浏览器和服务端维持一段时间。TCP 不需要重新建立,SSL 自然也会用之前的。

有。Chrome 最多允许对同一个 Host 建立六个 TCP 连接。不同的浏览器有一些区别。

如果图片都是 HTTPS 连接并且在同一个域名下,那么浏览器在 SSL 握手之后会和服务器商量能不能用 HTTP2,如果能的话就使用 Multiplexing 功能在这个连接上进行多路传输。不过也未必会所有挂在这个域名的资源都会使用一个 TCP 连接去获取,但是可以确定的是 Multiplexing 很可能会被用到。

如果发现用不了 HTTP2 呢?或者用不了 HTTPS(现实中的 HTTP2 都是在 HTTPS 上实现的,所以也就是只能使用 HTTP/1.1)。那浏览器就会在一个 HOST 上建立多个 TCP 连接,连接数量的最大限制取决于浏览器设置,这些连接会在空闲的时候被浏览器用来发送新的请求,如果所有的连接都正在发送请求呢?那其他的请求就只能等等了

6. 计算机网络知识点

一、计算机网络概述

1.1 计算机网络的分类

按照网络的作用范围:广域网(WAN)、城域网(MAN)、局域网(LAN);

按照网络使用者:公用网络、专用网络。

1.2 计算机网络的层次结构

TCP/IP四层模型与OSI体系结构对比:

1.3 层次结构设计的基本原则

各层之间是相互独立的;

每一层需要有足够的灵活性;

各层之间完全解耦。

1.4 计算机网络的性能指标

速率:bps=bit/s 时延:发送时延、传播时延、排队时延、处理时延 往返时间RTT:数据报文在端到端通信中的来回一次的时间。

二、物理层

物理层的作用:连接不同的物理设备,传输比特流。该层为上层协议提供了一个传输数据的可靠的物理媒体。简单的说,物理层确保原始的数据可在各种物理媒体上传输。

物理层设备:

中继器【Repeater,也叫放大器】:同一局域网的再生信号;两端口的网段必须同一协议;5-4-3规程:10BASE-5以太网中,最多串联4个中继器,5段中只能有3个连接主机;

集线器:同一局域网的再生、放大信号(多端口的中继器);半双工,不能隔离冲突域也不能隔离广播域。

信道的基本概念:信道是往一个方向传输信息的媒体,一条通信电路包含一个发送信道和一个接受信道。

单工通信信道:只能一个方向通信,没有反方向反馈的信道;

半双工通信信道:双方都可以发送和接受信息,但不能同时发送也不能同时接收;

全双工通信信道:双方都可以同时发送和接收。

三、数据链路层

3.1 数据链路层概述

数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。数据链路层在不可靠的物理介质上提供可靠的传输。

该层的作用包括: 物理地址寻址、数据的成帧、流量控制、数据的检错、重发 等。

有关数据链路层的重要知识点:

数据链路层为网络层提供可靠的数据传输;

基本数据单位为帧;

主要的协议:以太网协议;

两个重要设备名称:网桥和交换机。

封装成帧:“帧”是 数据链路层 数据的基本单位:

透明传输:“透明”是指即使控制字符在帧数据中,但是要当做不存在去处理。即在控制字符前加上转义字符ESC。

3.2 数据链路层的差错监测

差错检测:奇偶校验码、循环冗余校验码CRC

奇偶校验码–局限性:当出错两位时,检测不到错误。

循环冗余检验码:根据传输或保存的数据而产生固定位数校验码。

3.3 最大传输单元MTU

最大传输单元MTU(Maximum Transmission Unit),数据链路层的数据帧不是无限大的,数据帧长度受MTU限制.

路径MTU:由链路中MTU的最小值决定。

3.4 以太网协议详解

MAC地址:每一个设备都拥有唯一的MAC地址,共48位,使用十六进制表示。

以太网协议:是一种使用广泛的局域网技术,是一种应用于数据链路层的协议,使用以太网可以完成相邻设备的数据帧传输:

局域网分类:

Ethernet以太网IEEE802.3:

以太网第一个广泛部署的高速局域网

以太网数据速率快

以太网硬件价格便宜,网络造价成本低

以太网帧结构:

类型:标识上层协议(2字节)

目的地址和源地址:MAC地址(每个6字节)

数据:封装的上层协议的分组(46~1500字节)

CRC:循环冗余码(4字节)

以太网最短帧:以太网帧最短64字节;以太网帧除了数据部分18字节;数据最短46字节;

MAC地址(物理地址、局域网地址)

MAC地址长度为6字节,48位;

MAC地址具有唯一性,每个网络适配器对应一个MAC地址;

通常采用十六进制表示法,每个字节表示一个十六进制数,用 - 或 : 连接起来;

MAC广播地址:FF-FF-FF-FF-FF-FF。

四、网络层

网络层的目的是实现两个端系统之间的数据透明传送,具体功能包括寻址和路由选择、连接的建立、保持和终止等。数据交换技术是报文交换(基本上被分组所替代):采用储存转发方式,数据交换单位是报文。

网络层中涉及众多的协议,其中包括最重要的协议,也是TCP/IP的核心协议——IP协议。IP协议非常简单,仅仅提供不可靠、无连接的传送服务。IP协议的主要功能有:无连接数据报传输、数据报路由选择和差错控制。

与IP协议配套使用实现其功能的还有地址解析协议ARP、逆地址解析协议RARP、因特网报文协议ICMP、因特网组管理协议IGMP。具体的协议我们会在接下来的部分进行总结,有关网络层的重点为:

1、网络层负责对子网间的数据包进行路由选择。此外,网络层还可以实现拥塞控制、网际互连等功能;

2、基本数据单位为IP数据报;

3、包含的主要协议:

IP协议(Internet Protocol,因特网互联协议);

ICMP协议(Internet Control Message Protocol,因特网控制报文协议);

ARP协议(Address Resolution Protocol,地址解析协议);

RARP协议(Reverse Address Resolution Protocol,逆地址解析协议)。

4、重要的设备:路由器。

路由器相关协议

4.1 IP协议详解

IP网际协议是 Internet 网络层最核心的协议。虚拟互联网络的产生:实际的计算机网络错综复杂;物理设备通过使用IP协议,屏蔽了物理网络之间的差异;当网络中主机使用IP协议连接时,无需关注网络细节,于是形成了虚拟网络。

IP协议使得复杂的实际网络变为一个虚拟互联的网络;并且解决了在虚拟网络中数据报传输路径的问题。

其中,版本指IP协议的版本,占4位,如IPv4和IPv6;首部位长度表示IP首部长度,占4位,最大数值位15;总长度表示IP数据报总长度,占16位,最大数值位65535;TTL表示IP数据报文在网络中的寿命,占8位;协议表明IP数据所携带的具体数据是什么协议的,如TCP、UDP。

4.2 IP协议的转发流程

4.3 IP地址的子网划分

A类(8网络号+24主机号)、B类(16网络号+16主机号)、C类(24网络号+8主机号)可以用于标识网络中的主机或路由器,D类地址作为组广播地址,E类是地址保留。

4.4 网络地址转换NAT技术

用于多个主机通过一个公有IP访问访问互联网的私有网络中,减缓了IP地址的消耗,但是增加了网络通信的复杂度。

NAT 工作原理:

从内网出去的IP数据报,将其IP地址替换为NAT服务器拥有的合法的公共IP地址,并将替换关系记录到NAT转换表中;

从公共互联网返回的IP数据报,依据其目的的IP地址检索NAT转换表,并利用检索到的内部私有IP地址替换目的IP地址,然后将IP数据报转发到内部网络。

4.5 ARP协议与RARP协议

地址解析协议 ARP(Address Resolution Protocol):为网卡(网络适配器)的IP地址到对应的硬件地址提供动态映射。可以把网络层32位地址转化为数据链路层MAC48位地址。

ARP 是即插即用的,一个ARP表是自动建立的,不需要系统管理员来配置。

RARP(Reverse Address Resolution Protocol)协议指逆地址解析协议,可以把数据链路层MAC48位地址转化为网络层32位地址。

4.6 ICMP协议详解

网际控制报文协议(Internet Control Message Protocol),可以报告错误信息或者异常情况,ICMP报文封装在IP数据报当中。

ICMP协议的应用:

Ping应用:网络故障的排查;

Traceroute应用:可以探测IP数据报在网络中走过的路径。

4.7网络层的路由概述

关于路由算法的要求:正确的完整的、在计算上应该尽可能是简单的、可以适应网络中的变化、稳定的公平的。

自治系统AS: 指处于一个管理机构下的网络设备群,AS内部网络自治管理,对外提供一个或多个出入口,其中自治系统内部的路由协议为内部网关协议,如RIP、OSPF等;自治系统外部的路由协议为外部网关协议,如BGP。

静态路由: 人工配置,难度和复杂度高;

动态路由:

链路状态路由选择算法LS:向所有隔壁路由发送信息收敛快;全局式路由选择算法,每个路由器计算路由时,需构建整个网络拓扑图;利用Dijkstra算法求源端到目的端网络的最短路径;Dijkstra(迪杰斯特拉)算法

距离-向量路由选择算法DV:向所有隔壁路由发送信息收敛慢、会存在回路;基础是Bellman-Ford方程(简称B-F方程);

4.8 内部网关路由协议之RIP协议

路由信息协议 RIP(Routing Information Protocol)【应用层】,基于距离-向量的路由选择算法,较小的AS(自治系统),适合小型网络;RIP报文,封装进UDP数据报。

RIP协议特性:

RIP在度量路径时采用的是跳数(每个路由器维护自身到其他每个路由器的距离记录);

RIP的费用定义在源路由器和目的子网之间;

RIP被限制的网络直径不超过15跳;

和隔壁交换所有的信息,30主动一次(广播)。

4.9 内部网关路由协议之OSPF协议

开放最短路径优先协议 OSPF(Open Shortest Path First)【网络层】,基于链路状态的路由选择算法(即Dijkstra算法),较大规模的AS ,适合大型网络,直接封装在IP数据报传输。

OSPF协议优点:

安全;

支持多条相同费用路径;

支持区别化费用度量;

支持单播路由和多播路由;

分层路由。

RIP与OSPF的对比(路由算法决定其性质):

4.10外部网关路由协议之BGP协议

BGP(Border Gateway Protocol)边际网关协议【应用层】:是运行在AS之间的一种协议,寻找一条好路由:首次交换全部信息,以后只交换变化的部分,BGP封装进TCP报文段.

五、传输层

第一个端到端,即主机到主机的层次。传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输。此外,传输层还要处理端到端的差错控制和流量控制问题。

传输层的任务是根据通信子网的特性,最佳的利用网络资源,为两个端系统的会话层之间,提供建立、维护和取消传输连接的功能,负责端到端的可靠数据传输。在这一层,信息传送的协议数据单元称为段或报文。

网络层只是根据网络地址将源结点发出的数据包传送到目的结点,而传输层则负责将数据可靠地传送到相应的端口。

有关网络层的重点:

传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输以及端到端的差错控制和流量控制问题;

包含的主要协议:TCP协议(Transmission Control Protocol,传输控制协议)、UDP协议(User Datagram Protocol,用户数据报协议);

重要设备:网关。

5.1 UDP协议详解

UDP(User Datagram Protocol: 用户数据报协议),是一个非常简单的协议。

UDP协议的特点:

UDP是无连接协议;

UDP不能保证可靠的交付数据;

UDP是面向报文传输的;

UDP没有拥塞控制;

UDP首部开销很小。

UDP数据报结构:

首部:8B,四字段/2B【源端口 | 目的端口 | UDP长度 | 校验和】 数据字段:应用数据

5.2 TCP协议详解

TCP(Transmission Control Protocol: 传输控制协议),是计算机网络中非常复杂的一个协议。

TCP协议的功能:

对应用层报文进行分段和重组;

面向应用层实现复用与分解;

实现端到端的流量控制;

拥塞控制;

传输层寻址;

对收到的报文进行差错检测(首部和数据部分都检错);

实现进程间的端到端可靠数据传输控制。

TCP协议的特点:

TCP是面向连接的协议;

TCP是面向字节流的协议;

TCP的一个连接有两端,即点对点通信;

TCP提供可靠的传输服务;

TCP协议提供全双工通信(每条TCP连接只能一对一);

5.2.1 TCP报文段结构:

最大报文段长度:报文段中封装的应用层数据的最大长度。

TCP首部:

序号字段:TCP的序号是对每个应用层数据的每个字节进行编号

确认序号字段:期望从对方接收数据的字节序号,即该序号对应的字节尚未收到。用ack_seq标识;

TCP段的首部长度最短是20B ,最长为60字节。但是长度必须为4B的整数倍

TCP标记的作用:

5.3 可靠传输的基本原理

基本原理:

不可靠传输信道在数据传输中可能发生的情况:比特差错、乱序、重传、丢失

基于不可靠信道实现可靠数据传输采取的措施:

差错检测:利用编码实现数据包传输过程中的比特差错检测 确认:接收方向发送方反馈接收状态 重传:发送方重新发送接收方没有正确接收的数据 序号:确保数据按序提交 计时器:解决数据丢失问题;

停止等待协议:是最简单的可靠传输协议,但是该协议对信道的利用率不高。

连续ARQ(Automatic Repeat reQuest:自动重传请求)协议:滑动窗口+累计确认,大幅提高了信道的利用率。

5.3.1TCP协议的可靠传输

基于连续ARQ协议,在某些情况下,重传的效率并不高,会重复传输部分已经成功接收的字节。

5.3.2 TCP协议的流量控制

流量控制:让发送方发送速率不要太快,TCP协议使用滑动窗口实现流量控制。

5.4 TCP协议的拥塞控制

拥塞控制与流量控制的区别:流量控制考虑点对点的通信量的控制,而拥塞控制考虑整个网络,是全局性的考虑。拥塞控制的方法:慢启动算法+拥塞避免算法。

慢开始和拥塞避免:

【慢开始】拥塞窗口从1指数增长;

到达阈值时进入【拥塞避免】,变成+1增长;

【超时】,阈值变为当前cwnd的一半(不能<2);

再从【慢开始】,拥塞窗口从1指数增长。

快重传和快恢复:

发送方连续收到3个冗余ACK,执行【快重传】,不必等计时器超时;

执行【快恢复】,阈值变为当前cwnd的一半(不能<2),并从此新的ssthresh点进入【拥塞避免】。

5.5 TCP连接的三次握手(重要)

TCP三次握手使用指令:

面试常客:为什么需要三次握手?

第一次握手:客户发送请求,此时服务器知道客户能发;

第二次握手:服务器发送确认,此时客户知道服务器能发能收;

第三次握手:客户发送确认,此时服务器知道客户能收。

建立连接(三次握手):

第一次: 客户向服务器发送连接请求段,建立连接请求控制段(SYN=1),表示传输的报文段的第一个数据字节的序列号是x,此序列号代表整个报文段的序号(seq=x);客户端进入 SYN_SEND (同步发送状态);

第二次: 服务器发回确认报文段,同意建立新连接的确认段(SYN=1),确认序号字段有效(ACK=1),服务器告诉客户端报文段序号是y(seq=y),表示服务器已经收到客户端序号为x的报文段,准备接受客户端序列号为x+1的报文段(ack_seq=x+1);服务器由LISTEN进入SYN_RCVD (同步收到状态);

第三次: 客户对服务器的同一连接进行确认.确认序号字段有效(ACK=1),客户此次的报文段的序列号是x+1(seq=x+1),客户期望接受服务器序列号为y+1的报文段(ack_seq=y+1);当客户发送ack时,客户端进入ESTABLISHED 状态;当服务收到客户发送的ack后,也进入ESTABLISHED状态;第三次握手可携带数据;

5.6 TCP连接的四次挥手(重要)

释放连接(四次挥手)

第一次: 客户向服务器发送释放连接报文段,发送端数据发送完毕,请求释放连接(FIN=1),传输的第一个数据字节的序号是x(seq=x);客户端状态由ESTABLISHED进入FIN_WAIT_1(终止等待1状态);

第二次: 服务器向客户发送确认段,确认字号段有效(ACK=1),服务器传输的数据序号是y(seq=y),服务器期望接收客户数据序号为x+1(ack_seq=x+1);服务器状态由ESTABLISHED进入CLOSE_WAIT(关闭等待);客户端收到ACK段后,由FIN_WAIT_1进入FIN_WAIT_2;

第三次: 服务器向客户发送释放连接报文段,请求释放连接(FIN=1),确认字号段有效(ACK=1),表示服务器期望接收客户数据序号为x+1(ack_seq=x+1);表示自己传输的第一个字节序号是y+1(seq=y+1);服务器状态由CLOSE_WAIT 进入 LAST_ACK (最后确认状态);

第四次: 客户向服务器发送确认段,确认字号段有效(ACK=1),表示客户传输的数据序号是x+1(seq=x+1),表示客户期望接收服务器数据序号为y+1+1(ack_seq=y+1+1);客户端状态由FIN_WAIT_2进入TIME_WAIT,等待2MSL时间,进入CLOSED状态;服务器在收到最后一次ACK后,由LAST_ACK进入CLOSED;

为什么需要等待2MSL?

最后一个报文没有确认;

确保发送方的ACK可以到达接收方;

2MSL时间内没有收到,则接收方会重发;

确保当前连接的所有报文都已经过期。

六、应用层

为操作系统或网络应用程序提供访问网络服务的接口。应用层重点:

数据传输基本单位为报文;

包含的主要协议:FTP(文件传送协议)、Telnet(远程登录协议)、DNS(域名解析协议)、SMTP(邮件传送协议),POP3协议(邮局协议),HTTP协议(Hyper Text Transfer Protocol)。

6.1 DNS详解

DNS(Domain Name System:域名系统)【C/S,UDP,端口53】:解决IP地址复杂难以记忆的问题,存储并完成自己所管辖范围内主机的 域名 到 IP 地址的映射。

域名解析的顺序:

【1】浏览器缓存,

【2】找本机的hosts文件,

【3】路由缓存,

【4】找DNS服务器(本地域名、顶级域名、根域名)->迭代解析、递归查询。

IP—>DNS服务—>便于记忆的域名

域名由点、字母和数字组成,分为顶级域(com,cn,net,gov,org)、二级域(,taobao,qq,alibaba)、三级域(www)(12-2-0852)

6.2 DHCP协议详解

DHCP(Dynamic Configuration Protocol:动态主机设置协议):是一个局域网协议,是应用UDP协议的应用层协议。作用:为临时接入局域网的用户自动分配IP地址。

6.3 HTTP协议详解

文件传输协议(FTP):控制连接(端口21):传输控制信息(连接、传输请求),以7位ASCII码的格式。整个会话期间一直打开。

HTTP(HyperText Transfer Protocol:超文本传输协议)【TCP,端口80】:是可靠的数据传输协议,浏览器向服务器发收报文前,先建立TCP连接,HTTP使用TCP连接方式(HTTP自身无连接)。

HTTP请求报文方式:

GET:请求指定的页面信息,并返回实体主体;

POST:向指定资源提交数据进行处理请求;

DELETE:请求服务器删除指定的页面;

HEAD:请求读取URL标识的信息的首部,只返回报文头;

OPETION:请求一些选项的信息;

PUT:在指明的URL下存储一个文档。

6.3.1 HTTP工作的结构

6.3.2 HTTPS协议详解

HTTPS(Secure)是安全的HTTP协议,端口号443。基于HTTP协议,通过SSL或TLS提供加密处理数据、验证对方身份以及数据完整性保护

原文地址:https://blog.csdn.net/Royalic/article/details/119985591

7. 计算机网络

TCP/IP五层协议的体系结构,自顶向下依次为:应用层、传输层、网络层、数据链路层、物理层。

不使用两次握手和四次握手的原因

为什么TIME_WAIT等待的时间是2MSL
MSL,Maximum Segment Lifetime英文的缩写, 报文最大生存时间 ,它是任何报文在网络上存在的最长时间,超过这个时间将被丢弃。

概述

区别

区别(表形式)

概念

超时时间应该设置为多少呢

8、快速重传

概念

SACK(Selective Acknowledgment 选择性确认),这种方式需要在 TCP 头部选项字段里加一个 叫SACK 的东西,它可以将 缓存的地图发送给发送方 ,这样发送方就可以知道哪些数据收到了,哪些数据没收到,知道了这些信息,就可以 只重传丢失的数据

D-SACK,其主要使用了 SACK 来 告诉发送方有哪些数据被重复接收了
下面以两个例子,来说明D-SACK的作用。

D-SACK有这么几个好处

引入滑动窗口的原因

窗口的实现

窗口的大小

窗口应用示例

窗口的大小由哪一方决定?

TCP 利用滑动窗⼝实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收(让发送方根据接收方的实际接收能力控制发送的数据量)。 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。

HTTP协议的⻓连接和短连接,实质上是TCP协议的⻓连接和短连接。

HTTP 是⼀种不保存状态的协议,即无状态(stateless)协议。也就是说 HTTP 协议⾃身不对请求和响应之间的通信状态进⾏保存。
无状态的利弊:

对于无状态的问题,解法方案有很多种,其中比较简单的方式用 Cookie 技术 。Cookie的工作原理如下:
(1)浏览器端第一次发送请求到服务器端
(2)服务器端创建Cookie,该Cookie中包含用户的信息,然后将该Cookie发送到浏览器端
(3)浏览器端再次访问服务器端时会携带服务器端创建的Cookie
(4)服务器端通过Cookie中携带的数据区分不同的用户

此外,还有 Session 机制来解决这一问题。Session的工作原理如下:
(1)浏览器端第一次发送请求到服务器端,服务器端创建一个Session,同时会创建一个 特殊 的Cookie(name为JSESSIONID的固定值,value为session对象的ID),然后将该Cookie发送至浏览器端
(2)浏览器端发送第N(N>1)次请求到服务器端,浏览器端访问服务器端时就会携带该name为JSESSIONID的Cookie对象
(3)服务器端根据name为JSESSIONID的Cookie的value(sessionId),去查询Session对象,从而区分不同用户。

Cookie 和 Session都是⽤来跟踪浏览器⽤户身份的会话⽅式,但是两者的应⽤场景不太⼀样。

Cookie ⼀般⽤来保存⽤户信息。比如①我们在 Cookie 中保存已经登录过得⽤户信息,下次访问⽹站的时候⻚⾯可以⾃动帮你登录的⼀些基本信息给填了;②⼀般的⽹站都会有保持登录也就是说下次你再访问⽹站的时候就不需要重新登录了,这是因为⽤户登录的时候我们可以存放了⼀个Token 在 Cookie 中,下次登录的时候只需要根据 Token 值来查找⽤户即可(为了安全考虑,重新登录⼀般要将 Token 重写);③登录⼀次⽹站后访问⽹站其他⻚⾯不需要重新登录。

Session 的主要作⽤就是通过服务端记录⽤户的状态。 典型的场景是购物⻋,当你要添加商品到购物⻋的时候,系统不知道是哪个⽤户操作的,因为 HTTP 协议是⽆状态的。服务端给特定的⽤户创建特定的 Session 之后就可以标识这个⽤户并且跟踪这个⽤户了。

Cookie数据存储在客户端(浏览器)中,⽽Session数据保存在服务器上,相对来说 Session 安全性更⾼。如果要在Cookie 中存储⼀些敏感信息,不要直接写⼊ Cookie 中,最好能将 Cookie 信息加密然后使⽤到的时候再去服务器端解密。

HTTP1.0最早在⽹⻚中使⽤是在1996年,那个时候只是使⽤⼀些较为为简单的⽹⻚上和⽹络请求上,⽽HTTP1.1则在1999年才开始⼴泛应⽤于现在的各⼤浏览器⽹络请求中,同时HTTP1.1也是当前使⽤最为⼴泛的HTTP协议。 主要区别主要体现在:

URI的作⽤像身份证号⼀样,URL的作⽤更像家庭住址⼀样。URL是⼀种具体的URI,它不仅唯⼀标识资源,⽽且还提供了定位该资源的信息。

8. [计算机网络之六] 传输层

  传输层向它上面的应用层提供通信服务,它属于面向通信部分的最高层,同时也是用户功能中的最底层。

  从传输层的角度,通信的真正端点并不是主机而是主机中的进程。

  传输层有 分用 复用 的功能。 “复用” 是指在发送方不同的应用进程都可以使用同一个运输层协议传送数据, “分用” 是指接收方的运输层在剥去报文的首部后能够把这些数据正确交付目的应用进程。

  网络层和运输层有明显的区别,网络层为主机之间提供逻辑通信,而运输层为应用进程之间提供端到端的逻辑通信。

知名端口号 :0~1023
登记端口号 :1024~49151
客户端短暂端口号 :49152~65535


① 无连接。 发送数据之前不需要建立连接,因此减少了开销和发送数据之前的时延。
② 尽最大努力交付。 即不保证可靠交付,因此主机不需要维持复杂的连接状态表。
③ 面向报文的。 对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界,UDP 一次交付一个完整的报文。

  用户数据报 UDP 有两个字段:数据字段和首部字段。首部字段很简单,只有 8 个字节,由四个字段组成,每个字段的长度都是两个字节。各字段意义如下:

① 源端口 在需要对方回信时选用。不需要时可用全0。
② 目的端口 目的端口号。这在终点交付报文时必须使用。
③ 长度 用户数据报的长度,最小值为 8 (仅有首部)。
④ 检验和 检测用户数据报在传输中是否有错。有错就丢弃。

  用户数据报首部检验和的计算和校验都要计算出一个伪首部。


① 面向连接。

  应用程序在使用 TCP 协议之前,必须先建立 TCP 连接;传送数据完毕后,必须释放已经建立的 TCP 连接。类似于打电话:通话前要先拨号建立连接,通话结束后要挂机释放连接。

② 一对一。

  TCP 连接只能是点对点的(一对一)。

③ 可靠交付。

  通过 TCP 连接传送的数据,无差错、不丢失、不重复,并且按序到达。

④ 全双工通信。

  通信双方的应用进程在任何时候都能发送和接收数据,TCP 连接的两端都设有发送缓存和接收缓存,用来临时存放双向通信的数据。

⑤ 面向字节流。

  TCP 中的 “流” 指的是流入到进程或从进程流出的字节序列。

  “面向字节流” 的含义:虽然应用程序和 TCP 的交互式一次一个数据块(大小不等),但 TCP 把应用程序交下来的数据仅仅看成是一连串无结构的字节流。TCP 并不知道所传送的字节流的含义。TCP 不保证接收方应用程序锁收到的数据块和发送方应用程序所发出的数据块具有对应的大小关系。但接收方应用程序收到的字节流必须和发送方应用程序发出的字节流完全一样,当然接收方的应用程序必须有能力识别收到的字节流,把它还原成有意义的应用层数据。

  TCP 连接是协议软件提供的一种抽象,每一条 TCP 连接唯一地被通信两端的两个端点(即两个套接字)所确定,即:

  TCP 连接 ::= {socket1, socket2} = {(IP1: port1), (IP2: port2)}

  IP1 和 IP2 分别是两个端点主机的 IP 地址,port1 和 port2 分别是两端端点主机中的端口号。


  网络只能提供最大努力的服务,是不可靠的,因此 TCP 必须采用适当的措施才能使得两个运输层之间的通信变得可靠。当出现差错时让发送方重传出现差错的数据,同时在接收方来不及处理收到的数据时,及时告知发送方适当降低发送数据的速度,这样就可以在不可靠的传输信道实现可靠传输。

  ARQ(Auto Repeat-reQuest):自动重传请求。

  发送方每发送完一个分组就停止发送,等待接收方确认,在收到确认后再发送下一个分组。
  A 是发送方,B 是接收方。

  A 每发送一个分组后,等待 B 对该分组的确认后,再接着发送下一个分组。

【发送方】A 发送的分组在传输过程中出错,可能是丢失了,也可能是分组受到干扰出错了
【接收方】这时 B 直接丢弃分组,什么也不做(也不通知 A 受到的分组有差错)。

【解决方案】发送方在每发送完一个分组时设置一个 超时计数器 ,只要超过一段时间仍然没有接收到确认,就认为刚才发送的分组丢失了,因而重传前面发送过的分组,这叫 超时重传 。反之在超时计时器到期之前收到了相应的确认,就撤销该超时计时器。

第一,A 在发送完一个分组后, 必须暂时保留已发送的分组的副本 (在发生超时重传时使用)。只有在收到相应的确认后才能清楚暂时保留的分组副本。

第二,分组和确认分组都必须进行 编号 。这样才能明确是哪一个发送出去的分组受到了确认,而哪一个分组还没有收到确认。

第三,超时计时器设置的 重传时间应当比数据在分组传输的平均往返时间更长一些

【发送方】超时重传时间内没有收到确认报文,无法确认是发送出错、丢失,还是接收方的确认丢失,超时计时器到期后就要重传。
【接收方】丢弃收到的重复分组,不向上层交付;向发送方发送确认。

【发送方】收下迟到的确认,并且丢弃

  发送方大部分时间都在等待确认,信道的利用率低

  使用流水线的 ARQ 可以提高信道利用率

【发送方】维持一个发送窗口,位于发送窗口内的分组都可连续发送出去,而不需要等待对方的确认。

回退N帧协议 :如果发送方发送了多个分组,但中间的某个分组丢失了,这时接收方只能对丢失分组之前的分组发出确认,而发送方无法知道丢失分组及后面分组的接收情况,只好把丢失分组及后面的分组重传一次,这叫 Go-back-N ,表示需要再退回来重传已发送过的 N 个分组。


  前面 20 个字节固定,因此 TCP 首部最小长度是 20 字节。

  TCP 的滑动窗口以字节为单位,窗口后沿的部分表示已发送且已收到通知,窗口里的序号表示允许发送的序号,窗口前沿之前的数据暂时不允许发送,需要等待收到接收方的确认后前沿往前移才可发送。

描述一个发送窗口需要三个指针:P1、P2 和 P3,如图所示:

  小于 P1 的是已发送并已收到确认的部分,而大于 P3 的是不允许发送的部分。

  P3 - P1 = A 的发送窗口

  P2 - P1 = 已发送但尚未收到确认的字节数

  P3 - P2 = 允许发送但当前尚未发送的字节数(又称为 可用窗口 有效窗口

  接收方 B 接收窗口大小为20,因为未收到 31 的数据,即使已收到后面的序号 32、33 的数据,返回的确认号仍然是 31。

  现在接收方收到了 31、32、33,并返回确认号 33,接收窗口往前滑动 3 个序号,发送方接收到确认,发送窗口也向前滑动 3 个序号大小,现在 A 可以发送序号 51~53 的数据了。

  当发送方将发送窗口内的数据都发送出去,但是接收方的确认可能由于网络拥塞滞留,这时发送方发送窗口已满,可用窗口为 0,只能等待接收方的确认报文到达。

  TCP 为了保证可靠传输,要求必须受到对已发送报文的确认,如果超过一定时间未受到确认报文,则重传已发送的报文。这个时间就叫 超时重传时间 ,很明显超时重传时间的大小设置应该更贴近网络的实际情况,如果网络状况好,就设短一点,否则使网络的空闲时间增大,降低了传输效率;网络差就设长一点,否则会引起很多不必要的重传,使网络负荷增大。

  TCP 采用了一种自适应的算法:

  RTT(报文段的往返时间)、RTTs(加权平均往返时间),RTTs 的计算公式:

RTTd(RTT 的偏差的加权平均值)、RTO(RetransmissionTime-Out 超时重传时间):

【场景】TCP 的接收方在接收对方发送过来的数据字节流的序号不连续,形成一些不连续的字节块,如果简单按照回退N帧协议处理,意味着要重传第一个未收到的序号数据块及之后的数据,如果能通知发送方已收到了哪些数据(选择确认),就可以让发送方只发送接收方未收到的数据。



  流量控制就是让发送方的发送速率不要太快,要让接收方来得及接收。

  当发送方收到接收方通知,将窗口缩小为 0 时,发送方将暂时不能发送数据了,必须等接收方通知更新接收窗口大小,但是这个通知又有可能丢失,导致发送方没收到通知。

  为了避免双方互相等待死锁,TCP 为每个链接设有一个 持续计时器 ,只要 TCP 连接的一方收到对方的零窗口通知,就启动持续计时器。若持续计时器设置的时间到期,就发送一个零窗口 探测报文段 (仅携带 1 字节的数据),而对方就在确认这个探测报文段时给出了现在的窗口值。如果窗口仍然是零,那么受到这个报文段的一方就重新设置持续计时器;如果窗口不是零,那么死锁的僵局就可以打破了。



【优点】提高网络利用率
【缺点】可能会发生某种程度的延迟

【场景】接收数据的主机如果每次都立刻回复确认应答的话,可能会返回一个较小的窗口,因为接收方刚接收完数,缓冲区已满。

【糊涂窗口综合征问题】
TCP 接收方缓存已满,而交互式的应用进程一次只从接收缓存中读取 1 个字节(这样就使接收缓存空间仅腾出 1 个字节),然后向发送方发送确认,并把窗口设置为 1 个字节(但发送的数据报是 40 字节长,TCP 首部 + IP 数据报首部)。接着,发送方又发来 1 个字节的数据(注意发送方发送的 IP 数据报是 41 字节长)。接收方发回确认,仍然将窗口设置为 1 个字节。这样进行下去,使网络的效率很低。

  TCP 文件传输中,就采用了两个数据段返回一次确认应答,并且等待一定时间后没有其他数据包到达时也依然发送确认应答。

  当对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏,这种情况就叫做 拥塞



  慢开始(slow-start)、拥塞避免(congestion avoidance)、快重传(fast retransmit)和快恢复(fast recovery)。

【算法思路】

  当主机开始发送数据时,由于并不清楚网络的负荷情况,所以如果立即把大量数据字节注入网络,那么就有可能引起网络发生拥塞。较好的方法是先探测一下,即 由小到大逐渐增大发送窗口 ,也就是说, 由小到大逐渐增大拥塞窗口数值

【处理过程】

   慢开始门限值 ssthresh 决定了拥塞窗口达到多大时要执行什么算法。

① 当 cwnd < ssthresh 时,使用慢开始算法;
② 当 cwnd > ssthresh 时,停止使用慢开始算法而改用拥塞避免算法;
③ 当 cwnd = ssthresh 时,既可使用慢开始算法,也可使用拥塞避免算法。

  在拥塞窗口 cwnd 达到门限值之前,发送方每一轮次收到确认应答后,cwnd 就增大为原来的两倍;达到门限值后,执行拥塞避免算法。

PS. 慢开始只是表示初始发送数据少,不代表发送速率增长速度慢,实际上是指数级增长非常快。

【算法思路】

  让拥塞窗口 cwnd 缓慢地增大,即每经过一个往返时间 RTT 就把发送方的拥塞窗口 cwnd 加 1,而不是像慢开始阶段那样加倍增长。拥塞避免阶段有 “加法增大” 的特点,按线性规律缓慢增长,使网络比较不容易出现拥塞

【处理过程】

  在执行拥塞避免算法阶段,当网络出现超时时,发送方判断为网络拥塞,调整门限值为当前拥塞窗口的一半,即 ssthresh = cwnd / 2,同时拥塞窗口重置为 1,即 cwnd = 1,进入慢开始阶段。

【算法原理】

① 快重传

【场景】有时,个别报文段会在网络中丢失,但实际上网络并未发生拥塞。如果发送方迟迟收不到确认,就会产生超时,就会误认为网络发生了拥塞,导致发送方错误地启动慢开始,把拥塞窗口 cwnd 又设置为 1,因而降低了传输效率。

【方案】接收方不要等待自己发送数据时才进行捎带确认,而是要立即发送确认,即使收到了失序的报文段也要立即发出对已收到的报文段的重复确认,当发送方 一连收到 3 个重复确认 ,就知道接收方确实没有收到某个报文段,因而应当 立即进行重传

② 快恢复:

  发送方知道只是丢失了个别的报文段,于是不启动慢开始,而是执行快恢复算法,调整发送方门限值 ssthresh = cwnd / 2,同时设置拥塞窗口 cwnd = ssthresh = 8,并开始执行拥塞避免算法。


拥塞控制的流程如下:

  拥塞窗口 cwnd,接收方窗口 rwnd, 发送方发送窗口的上限值 = Min[rwnd, cwnd]

① 当 rwnd < cwnd,接收方的接收能力限制发送方窗口大小;
② 当 cwnd < rwnd,网络的拥塞程度限制发送方窗口大小。


【问题背景】

  路由器采取分组丢弃策略,即按照 先进先出(FIFO) 规则处理分组,当队列已满时,则丢弃后面到达的分组,这叫 尾部丢弃策略

  丢失的分组会导致发送方出现超时重传,发送方转而执行慢开始算法,不同分组属于不同 TCP 连接,导致很多 TCP 同时进入慢开始状态,这种现象称为 全局同步

【解决方案】

  主动队列管理 AQM:不等到路由器的队列长度已经达到最大值时才不得不丢弃后面到达的分组,而是在队列长度达到某个警惕值时就主动丢弃到达的分组,这样就提醒了发送方放慢发送的速率,因而有可能使网络拥塞的程度减轻,甚至不出现网络拥塞。


  TCP 是面向连接的协议,运输连接有三个阶段: 连接建立、数据传送、连接释放

  TCP 连接建立过程要解决的几个问题:

① 使每一方能够确知对方的存在;
② 允许双方协商一些参数(如最大窗口值、是否使用窗口扩大选项和时间戳选项以及服务质量等);
③ 能够对运输实体资源(如缓存大小、连接表中的项目等)进行分配。

  TCP 建立连接的过程叫做握手,握手需要在客户和服务器之间交换三个 TCP 报文段,即 三次握手

  最初客户端和服务端都处于 CLOSED(关闭) 状态,A(Client)主动打开连接,B(Server)被动打开连接。

  一开始,B 的 TCP 服务器进程先创建 传输控制块 TCB ,准备接受客户进程的连接请求。然后服务器进程就处于 LISTEN(收听)状态,等待客户端的连接请求。如有,即作出响应。

   第一次握手 :A 的 TCP 客户进程也是首先创建传输控制块 TCB,准备接受客户进程的连接请求。然后在打算建立 TCP 连接时,向 B 发出连接请求报文段,这时首部中的同步位 SYN = 1,同时选择一个初始序号 seq = x。TCP 规定,SYN 报文段(即 SYN = 1 的报文段)不能携带数据,但要 消耗掉一个序号 。这时,TCP 客户进程进入 SYN-SENT(同步已发送) 状态。

   第二次握手 :B 收到连接请求报文段后,如同意建立连接,则向 A 发送确认。在确认报文段中应把 SYN 位和 ACK 位都置 1,确认号是 ack = x + 1,同时也为自己选择一个初始序号 seq = y。请注意,这个报文段也不能携带数据,但同样 要消耗掉一个序号 。这时 TCP 服务器进程进入 SYN-RCVD(同步收到) 状态。

   第三次握手 :TCP 客户进程收到 B 的确认后,还要向 B 给出确认。确认报文段的 ACK 置 1,确认号 ack = y + 1,而自己的序号 seq = x + 1。TCP 的标准规定,ACK 报文段可以携带数据。但 如果不携带数据则不消耗序号 ,在这种情况下,下一个数据报文段的序号仍是 seq = x + 1。这时,TCP 连接已经建立,A 进入 ESTABLISHED(已建立连接) 状态。当 B 收到 A 的确认后,也进入 ESTABLISHED(已建立连接)状态。








  数据传输结束后,通信的方法都可释放连接。现在 A 和 B 都处于 ESTABLISHED 状态。

   第一次挥手 :A 的应用进程先向其 TCP 发出连接释放报文段,并停止再发送数据,主动关闭 TCP 连接。A 把连接释放报文段首部的终止控制位 FIN 置 1,其序号 seq = u,它等于前面已传送过的数据的最后一个字节的序号加 1。这时 A 进入 FIN-WAIT-1(终止等待 1)状态,等待 B 的确认。请注意,TCP 规定,FIN 报文段即使不携带数据,它也消耗掉一个序号。

   第二次挥手 :B 收到连接释放报文后即发出确认,确认号是 ack = u + 1,而这个报文段自己的序号是 v,等于 B 前面已传送过的最后一个字节的序号加 1。然后 B 就进入 CLOSE-WAIT(关闭等待)状态。TCP 服务器进程这时应通知高层应用程序,因而从 A 到 B 这个方向的连接就释放了,这时的 TCP 连接处于半关闭(half-close)状态,即 A 已经没有数据要发送了,但 B 若发送数,A 仍要接收。也就是说,从 B 到 A 这个方向的连接并未关闭,这个状态可能会持续一段时间。A 收到来自 B 的确认后,就进入 FIN-WAIT-2(终止等待 2)状态,等待 B 发出的连接释放报文段。

   第三次挥手 :若 B 已经没有要向 A 发送的数据,其应用进程就通知 TCP 释放连接。这时 B 发出的连接释放报文段必须使 FIN = 1。现假定 B 的序号为 w(在半关闭状态 B 可能又发送了一些数据)。B 还必须重复上次已发送过的确认号 ack = u + 1。这时 B 就进入 LAST-ACK(最后确认)状态,等待 A 的确认。

   第四次挥手 :A 在收到 B 的连接释放报文段后,必须对此发出确认。在确认报文段中把 ACK 置 1,确认号 ack = w + 1,而自己的序号是 seq = u + 1(根据 TCP 标准,前面发送过的 FIN 报文段要消耗一个序号)。然后进入 TIME-WAIT(时间等待)状态。请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器(TIME-WAIT timer)设置的时间 2MSL 后,A 才进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果 B 一收到 A 的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,B 结束 TCP 连接的时间要早于 A。




9. 计算机网络名词解释知识点简答题整理

基带传输:比特流直接向电缆发送,无需调制到不同频段;

基带信号:信源发出的没有经过调制的原始电信号;

URL :统一资源定位符,标识万维网上的各种文档,全网范围唯一;

传输时延:将分组的所有比特推向链路所需要的时间;

协议:协议是通信设备通信前约定好的必须遵守的规则与约定,包括语法、语义、定时等。

网络协议:对等层中对等实体间制定的规则和约定的集合;

MODEM :调制解调器;

起始(原始)服务器:对象最初存放并始终保持其拷贝的服务器;

计算机网络:是用通信设备和线路将分散在不同地点的有独立功能的多个计算机系统互相连接起来,并通过网络协议进行数据通信,实现资源共享的计算机集合;

解调:将模拟信号转换成数字信号;

多路复用:在一条传输链路上同时建立多条连接,分别传输数据;

默认路由器:与主机直接相连的一台路由器;

LAN :局域网,是一个地理范围小的计算机网络;

DNS :域名系统,完成主机名与 IP 地址的转换;

ATM :异步传输模式,是建立在电路交换和分组交换基础上的一种面向连接的快速分组交换技术;

Torrent :洪流,参与一个特定文件分发的所有对等方的集合;

Cookie :为了辨别用户、用于 session 跟踪等而储存在用户本地终端的数据;

SAP :服务访问点;

n PDU : PDU 为协议数据单元,指对等层之间的数据传输单位;第 n 层的协议数据单元;

PPP :点对点传输协议;

Web caching :网页缓存技术;

Web 缓存:代替起始服务器来满足 HTTP 请求的网络实体。

Proxy server :代理服务器;

Go-back-n :回退 n 流水线协议;允许发送方连续发送分组,无需等待确认,若出错,从出错的分组开始重发;接收方接收数据分组,若正确,发 ACK ,若出错,丢弃出错分组及其后面的分组,不发任何应答;

Packet switching :分组交换技术;

CDMA :码分多路复用技术;各站点使用不同的编码,然后可以混合发送,接收方可正确提取所需信息;

TDM :时分多路复用,将链路的传输时间划分为若干时隙,每个连接轮流使用不同时隙进行传输;

FDM :频分多路复用,将链路传输频段分成多个小的频段,分别用于不同连接信息的传送;

OSI :开放系统互连模型,是计算机广域网体系结构的国际标准,把网络分为 7 层;

CRC :循环冗余检测法,事先双方约定好生成多项式,发送节点在发送数据后附上冗余码,使得整个数据可以整除生成多项式,接收节点收到后,若能整除,则认为数据正确,否则,认为数据错误;

RIP :路由信息协议;

Socket (套接字):同一台主机内应用层和运输层的接口;

转发表:交换设备内,从入端口到出端口建立起来的对应表,主要用来转发数据帧或 IP 分组;

路由表:路由设备内,从源地址到目的地址建立起来的最佳路径表,主要用来转发 IP 分组;

存储转发:分组先接收存储后,再转发出去;

虚电路网络:能支持实现虚电路通信的网络;

数据报网络:能支持实现数据报通信的网络;

虚电路:源和目的主机之间建立的一条逻辑连接,创建这条逻辑连接时,将指派一个虚电路标识符 VC.ID ,相关设备为它运行中的连接维护状态信息;

毒性逆转技术: DV 算法中,解决计数到无穷的技术,即告知从相邻路由器获得最短路径信息的相邻路由器到目的网络的距离为无穷大;

加权公平排队 WFQ :排队策略为根据权值大小不同,将超出队列的数据包丢弃;

服务原语:服务的实现形式,在相邻层通过服务原语建立交互关系,完服务与被服务的过程;

透明传输:在无需用户干涉的情况下,可以传输任何数据的技术;

自治系统 AS :由一组通常在相同管理者控制下的路由器组成,在相同的 AS 中,路由器可全部选用同样的选路算法,且拥有相互之间的信息;

分组丢失:分组在传输过程中因为种种原因未能到达接收方的现象;

隧道技术:在链路层或网络层通过对等协议建立起来的逻辑通信信道;

移动接入:也称无线接入,是指那些常常是移动的端系统与网络的连接;

面向连接服务:客户机程序和服务器程序发送实际数据的分组前,要彼此发送控制分组建立连接;

无连接服务:客户机程序和服务器程序发送实际数据的分组前,无需彼此发送控制分组建立连接;

MAC 地址:网卡或网络设备端口的物理地址;

拥塞控制:当网络发生拥塞时,用响应的算法使网络恢复到正常工作的状态;

流量控制:控制发送方发送数据的速率,使收发双方协调一致;

Ad Hoc 网络:自主网络,无基站;

往返时延:发送方发送数据分组到收到接收方应答所需要的时间;

电路交换:通信节点之间采用面向连接方式,使用专用电路进行传输;

ADSL :异步数字用户专线,采用不对称的上行与下行传输速率,常用于用户宽带接入。

多播:组播,一对多通信;

路由器的组成包括:输入端口、输出端口、交换结构、选路处理器;

网络应用程序体系结构:客户机 / 服务器结构、对等共享、混合;

集线器是物理层设备,交换机是数据链路层设备,网卡是数据链路层设备,路由器是网络层设备;

双绞线连接设备的两种方法:直连线和交叉线,同种设备相连和计算机与路由器相连都使用交叉线;不同设备相连用直连线;

MAC 地址 6 字节, IPv4 地址 4 字节, IPv6 地址 16 字节;

有多种方法对载波波形进行调制,调频,调幅,调相;

IEEE802.3 以太网采用的多路访问协议是 CSMA/CD ;

自治系统 AS 内部的选路协议是 RIP 、 OSPF ;自治系统间的选路协议是 BGP ;

多路访问协议:分三大类:信道划分协议、随机访问协议、轮流协议;

信道划分协议包括:频分 FDM 、时分 TDM 、码分 CDMA ;

随机访问协议包括: ALOHA 、 CSMA 、 CSMA/CD(802.3) 、 CSMA/CA(802.11) ;

轮流协议包括:轮询协议、令牌传递协议

ISO 和 OSI 分别是什么单词的缩写,中文意思是什么?用自己的理解写出 OSI 分成哪七层?每层要解决的问题和主要功能是什么?

答:ISO:international standard organization 国际标准化组织;OSI:open system interconnection reference model 开放系统互连模型;

OSI分为 应用层、表示层、会话层、传输层、网络层、数据链路层、物理层;

层名称解决的问题主要功能

应用层实现特定应用选择特定协议;针对特定应用规定协议、时序、表示等,进行封装。在端系统中用软件来实现,如HTTP;

表示层压缩、加密等表示问题;规定数据的格式化表示,数据格式的转换等;

会话层会话关系建立,会话时序控制等问题;规定通信的时序;数据交换的定界、同步、建立检查点等;

传输层源端口到目的端口的传输问题;所有传输遗留问题:复用、流量、可靠;

网络层路由、拥塞控制等网络问题;IP寻址,拥塞控制;

数据链路层相邻节点无差错传输问题;实现检错与纠错,多路访问,寻址;

物理层物理上可达;定义机械特性,电气特性,功能特性等;

因特网协议栈分层模型及每层的功能。

分层的优点:使复杂系统简化,易于维护和更新;

分层的缺点:有些功能可能在不同层重复出现;

​​



假设一个用户 ( 邮箱为: [email protected]) 使用 outlook 软件发送邮件到另一个用户 ( 邮箱为: [email protected]) ,且接收用户使用 IMAP 协议收取邮件,请给出此邮件的三个传输阶段,并给出每个阶段可能使用的应用层协议。

用户 [email protected] 使用outlook软件发送邮件到 163 邮件服务器

163邮件服务器将邮件发送给用户 [email protected] 的yahoo邮件服务器

用户 [email protected] 使用IMAP协议从yahoo邮件服务器上拉取邮件

第1、2阶段可以使用SMTP协议或者扩展的SMTP协议:MIME协议,第3阶段可以使用IMAP、POP3、HTTP协议

三次握手的目的是什么?为什么要三次(二次为什么不行)?

为了实现可靠数据传输,TCP协议的通信双方,都必须维护一个序列号,以标识发送出去的数据包中,哪些是已经被对方收到的。三次握手的过程即是通信双方相互告知序列号起始值,并确认对方已经收到了序列号起始值的必经步骤。

如果只是两次握手,至多只有连接发起方的起始序列号能被确认,另一方选择的序列号则得不到确认。

选择性重传 (SR) 协议中发送方窗口和接收方窗口何时移动?分别如何移动?

发送方:当收到ACK确认分组后,若该分组的序号等于发送基序号时窗口发生移动;向前移动到未确认的最小序号的分组处;

接收方:当收到分组的序号等于接收基序号时窗口移动;窗口按交付的分组数量向前移动;

简述可靠传输协议 rdt1.0, rdt2.0, rdt2.1, rdt2.2 和 rdt3.0 在功能上的区别。

rdt1.0:经可靠信道上的可靠数据传输,数据传送不出错不丢失,不需要反馈。

rdt2.0(停等协议):比特差错信道上的可靠数据传输,认为信道传输的数据可能有比特差错,但不会丢包。接收方能进行差错检验,若数据出错,发送方接收到NAK之后进行重传。

rdt2.1:在rdt2.0的基础上增加了处理重复分组的功能,收到重复分组后,再次发送ACK;

rdt2.2:实现无NAK的可靠数据传输,接收方回发带确认号的ACK0/1,

收到出错分组时,不发NAK,发送接收到的上一个分组的ACK;

rdt3.0:实现了超时重发功能,由发送方检测丢包和恢复;

电路交换和虚电路交换的区别?哪些网络使用电路交换、报文交换、虚电路交换和数据报交换?请各举一个例子。

电路交换时整个物理线路由通讯双方独占;

虚电路交换是在电路交换的基础上增加了分组机制,在一条物理线路上虚拟出多条通讯线路。

电路交换:电话通信网

报文交换:公用电报网

虚电路交换:ATM

数据报交换:Internet

电路交换:面向连接,线路由通信双方独占;

虚电路交换:面向连接,分组交换,各分组走统一路径,非独占链路;

数据报交换:无连接,分组交换,各分组走不同路径;

交换机逆向扩散式路径学习法的基本原理:

交换表初始为空;

当收到一个帧的目的地址不在交换表中时,将该帧发送到所有其他接口(除接收接口),并在表中记录下发送节点的信息,包括源MAC地址、发送到的接口,当前时间;

如果每个节点都发送了一帧,每个节点的地址都会记录在表中;

收到一个目的地址在表中的帧,将该帧发送到对应的接口;

表自动更新:一段时间后,没有收到以表中某个地址为源地址的帧,从表中删除该地址;

非持久 HTTP 连接和持久 HTTP 连接的不同:

非持久HTTP连接:每个TCP连接只传输一个web对象,只传送一个请求/响应对,HTTP1.0使用;

持久HTTP连接:每个TCP连接可以传送多个web对象,传送多个请求/响应对,HTTP1.1使用;

Web 缓存的作用是什么?简述其工作过程:

作用:代理原始服务器满足HTTP请求的网络实体;

工作过程:

浏览器:与web缓存建立一个TCP连接,向缓存发送一个该对象的HTTP请求;

Web缓存:检查本地是否有该对象的拷贝;

若有,就用HTTP响应报文向浏览器转发该对象;

若没有,缓存与原始服务器建立TCP连接,向原始服务器发送一个该对象的HTTP请求,原始服务器收到请求后,用HTTP响应报文向web缓存发送该对象,web缓存收到响应,在本地存储一份,并通过HTTP响应报文向浏览器发送该对象;

简要说明无线网络为什么要用 CSMA/CA 而不用 CSMA/CD ?

无线网络用无线信号实施传输,现在的技术还无法检测冲突,因此无法使用带冲突检测的载波侦听多路访问协议CSMA/CD,而使用冲突避免的载波侦听多路访问协议CSMA/CA;

简述各种交换结构优缺点,并解释线头 HOL 阻塞现象。

内存交换结构:以内存为交换中心;

       优点:实现简单,成本低;

       缺点:不能并行,速度慢;

总线交换结构:以共享总线为交换中心;

       优点:实现相对简单,成本低;

       缺点:不能并行,速度慢,不过比memory快;

纵横制:以交叉阵列为交换中心;

       优点:能并行,速度快,比memory和总线都快;

       缺点:实现复杂,成本高;

线头HOL阻塞:输入队列中后面的分组被位于线头的一个分组阻塞(即使输出端口是空闲的),等待交换结构发送;

CSMA/CD 协议的中文全称,简述其工作原理。

带冲突检测的载波侦听多路访问协议;

在共享信道网络中,发送节点发送数据之前,先侦听链路是否空闲,若空闲,立即发送,否则随机推迟一段时间再侦听,在传输过程中,边传输边侦听,若发生冲突,以最快速度结束发送,并随机推迟一段时间再侦听;

奇偶校验、二维奇偶校验、 CRC 校验三者比较:

奇偶校验能检测出奇数个差错;

二维奇偶校验能够检测出两个比特的错误,能够纠正一个比特的差错;

CRC校验能检测小于等于r位的差错和任何奇数个差错;

GBN 方法和 SR 方法的差异:

GBN:一个定时器,超时,重发所有已发送未确认接收的分组,发送窗口不超过2的k次方-1,接收窗口大小为1,采用累计确认,接收方返回最后一个正确接受的分组的ACK;

SR:多个定时器,超时,只重发超时定时器对应的分组,发送窗口和接收窗口大小都不超过2的k-1次方,非累计确认,接收方收到当前窗口或前一窗口内正确分组时返回对应的ACK;

10. 计算机常用网络名词解释

自http://www.programfan.com/blog/article.asp?id=11894
只是很小的一部分
====================================================

缩略语解释

A

AAL ( ATM Adapter Layer ) ATM适配子层

ADSL ( Asymmetrical Digital Subscriber Loop ) 非对称数字用户环路

API ( Application Program Interfacet ) 应用程序编程接口

ARCNET ( ) 令牌总线网

ARP ( Address Resolution Protocol ) 地址解析协议

ARQ ( Automatic Repeat reQuest ) 反溃重传法

ATM ( Asynchronous Transfer Mode ) 异步传输模式

B

BRI ( Basic Rate Interface ) 基本速率接口

BSC ( Binary Synchronization Communication ) 二进制同步通信规程

B-ISDN ( Broadband ISDN ) 宽带ISDN

C

CERNET ( China Ecation and Research Network ) 中国教育科研网

CCITT 国际电报、电话咨询委员会

ChinaDDN 中国公用数字数据网

ChinaPAC 中国公用数据网

CO/DEC ( Coding and Decoding ) 编码/解码

CRC ( CYC rendance checkout ) 循环校验码

CS ( Convergence Sublayer ) 传输会聚子层

CSMA/CD ( Carrier Sense Multiple Access with Collision Detection ) 载波侦听多重访问/冲突检测

C/S ( Client/Server ) 客户/服务器

D

DCE ( Data Circuit-terminal Equpment ) 数据电路终接设备

DDN ( Digital Data Network ) 数字数据网

DES ( Data Encryption Standard ) 数据加密标准

DIX ( ) 数据链路层和物理层规范,也称DIX规范

DL ( Data Link ) 数据链路

DNIC ( Data Netwrok Indentifier Code )数据网络识别码

DNS ( Domain Naming System ) 域名系统

DTE ( Data Terminal Equipment ) 数据终端设备

DU ( Data Unit ) 数据单元

E

E1 ( ) 支持32路PCM载波信号的欧洲PCM载波标准

EDI ( Electronic Data Interchange ) 电子数据交换

EIA ( Electronic Instries Association ) 国际电气工业协会

F

FDM ( Frequency Division Multiplexing ) 频分多路复用

FDDI ( ) 光纤分布数字结口

FR ( Frame Relay ) 帧中继

FTAM ( File Transfer Access Management ) 文件传送访问和管理

FTP ( File Transfer Protocol ) 文件传输协议

H

HDLC ( High-level Data Link Control ) 高级数据链路控制

HTTP ( HyperText Transfer Protocol ) 超文本传输协议

HUB 集线器

I

IDU ( Interface Data Unit ) 接口数据单元

ICMP ( Internet Control Message Protocol ) 因特网控制报文协议

IP ( Internet Protocol ) 网际协议

ISDN ( Integrated Services Digital Network ) 综合业务数字网

ISO ( International Standards Organization ) 国际标准化组织

ISP ( Internet Serve Provider ) 因特网服务提供商

L

LAN ( Local Area Network ) 局域网

LEC ( LAN Emulation Client ) 局域网仿真客户

LES ( LAN Emulation Server ) 局域网仿真服务器

LC ( Logical Circuit ) 逻辑链路

LLC ( Logical Link Control ) 逻辑链路控制

M

MAC ( Medium Access Control ) 媒体访问控制

MAN ( Metropolitan Area Network ) 城域网

MAU ( Multiple Access Unit ) 多路访问器

MLP ( Multiple Link Protocol ) 多链路规程

MODEM ( Molator-Demolator ) 调制解调器

N

NMC [ Network Manager Center ) 网络管理中心

NNI ( Network-Network Interface ) 网络/网络端接口

NRNI ( ) 不归0交替编码

N-ISDN ( Narrowband ISDN ) 窄带ISDN

O

OSI ( Open System Interconnection ) 开放式系统互连

P

PAD ( Packet Assembler Disassembler ) 分组组装、拆卸设备

PC ( Personal Computer ) 个人计算机

PC ( Packet Concentrator )

PCI ( Protocol Control Information )协议控制信息

PCM ( Pulse Code Molation ) 脉码调制

PDH ( )准同步数字体系

PDU( Protocol Data Unit )协议数据单元

PM ( Physical Medium ) 物理媒体子层

POP3 ( Post Office Protocol-3 ) 邮件代理协议

PRI ( Primary Rate Interface )一次群速率接口

PSDN ( Packet Switched Data Network ) 分组交换数据网

PSE ( Packet Switched Equipment ) 分组交换设备

PSTN ( Public Switched Telephone Network ) 公用交换电话网

PVC ( Permanent Virtual Circuit ) 永久虚电路

Q

QOS ( Quality of Service ) 服务质量

R

RPU 环中继转发器

RARP ( Reverse Address Resolution Protocol ) 反向地址解析协议

S

SAR ( Segmentation and Reassembly sublayer ) 分段、组装子层

SDH ( Synchronous Digital Hierarchy )同步数字体系

SDLC ( Synchronous Data Link Control )同步数字体系

SDU ( Service Data Unit )服务数据单元

SLP ( Single Link Protocol ) 单链路规程

SMTP ( Simple Mail Transfer Protocol ) 简单邮件传输协议

SNA ( Systems Network Architecture ) 系统网络体系结构

SNMP ( Simple Network Management Protocol ) 简单邮件传输协议

SONET ( Synchronous Optical Network ) 同步光纤网

STP ( Shielded Twisted Pair ) 屏蔽双绞线

SVC ( Switched Virtual circuit ) 交换虚电路

T

T1 ( ) 支持24路PCM载波信号的美洲PCM载波标准

TC ( Transmission Convergence ) 传输会聚子层

TCP ( Transfer Control Protocol ) 传输控制协议

TDM ( Time Division Multiplexing ) 时分多路复用

TIA ( Telecommunication Instries Association ) 电信工业协会

Token-BUS ( ) 令牌总线

TSMU ( Time-Sharing Multi-Use ) 分时多用户

U

UDP ( User Datagram Protocol ) 用户数据报协议

UNI ( User Network Interface ) 网络用户端接口

UTP ( Unshielded Twisted Paired ) 非屏蔽双绞线

V

VC ( Virtual Circuit ) 虚电路

VCI ( Virtual Channel Indicate ) 虚拟通道标志

VPI ( Virtual Path Indicate ) 虚拟路径标志

VT ( Virtual Terminal ) 虚拟终端

W

WAN ( Wide Area Network ) 广域网

WDM ( Wavelength Division Multiplexing ) 波分多路复用

WWW ( World Wide Web ] 因特网

X

X.25 ( ) 由CCITT提出的DTE至DCE间的接口协议

阅读全文

与计算机网络中的快重传名词解释相关的资料

热点内容
创世安网络摄像头怎么连手机 浏览:440
网络通道6是wifi6吗 浏览:849
广西广播网络电视台月租多少钱 浏览:363
广电网络机顶盒wifi信道 浏览:440
网络己连接不可上网怎么回事 浏览:912
itv路由器后面有网络插口 浏览:460
网络安全小公司能学到技术吗 浏览:179
双卡用一个上网移动网络用关吗 浏览:234
华为手机在哪里添加网络打印机 浏览:955
网络围棋平台哪个好用 浏览:865
美团众包为啥网络异常 浏览:325
有网络没有卡的手机怎么登录抖音 浏览:827
电视无线网络怎么设置视频 浏览:241
信号是满的为啥网络这么卡 浏览:210
建筑网络化管理的含义有哪些 浏览:797
显示三星无线网络适配器未连接 浏览:818
石家庄四院的无线网络 浏览:420
漯河网络营销课程 浏览:758
创维电视连wifi无网络 浏览:833
网络推广哪个层次最好 浏览:325

友情链接