导航:首页 > 网络连接 > 组装电脑训练神经网络

组装电脑训练神经网络

发布时间:2023-01-05 07:20:10

1. 从零开始用Python构建神经网络

从零开始用Python构建神经网络
动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。
这篇文章的内容是我的所学,希望也能对你有所帮助。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层,?
? 每层之间有一组权值和偏置,W and b
? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)

2 层神经网络的结构
用 Python 可以很容易的构建神经网络类

训练神经网络
这个网络的输出 ? 为:

你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b,,这一步成为反向传播
下面的顺序图展示了这个过程:

前向传播
正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:

我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:

但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。
损失函数
常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。
回想微积分中的概念,函数的导数就是函数的斜率。

梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。

链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。
这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。
现在我们将反向传播算法的函数添加到 Python 代码中

为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合并完成一个实例
既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。

神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。
让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。

让我们看看经过 1500 次迭代后的神经网络的最终预测结果:

经过 1500 次迭代训练后的预测结果
我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。
注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。
下一步是什么?
幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:
? 除了 Sigmoid 以外,还可以用哪些激活函数
? 在训练网络的时候应用学习率
? 在面对图像分类任务的时候使用卷积神经网络
我很快会写更多关于这个主题的内容,敬请期待!
最后的想法
我自己也从零开始写了很多神经网络的代码
虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。
这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助

2. 怎么选取训练神经网络时的Batch size

在考虑这个问题时先要明白Batch size的意义。刚开始因为批量梯度下降法容易使得网络陷入局部收敛,并且样本量太大,训练速度很慢,因此就提出了随机梯度下降法。不过当时的SGD算法中的batch size=1,效果并不好,所以后面就又提出了mini-batch SGD,也就有了这里的batch size。
因此,batch size不能过小,不然每次所利用的样本量太少,所包含的信息也少,我觉得至少8吧。当然也不能太大,不然就跟批量下降一样的。所以建议取8~256左右,可以根据样本量进行调整,当然还取决于你的电脑内存。

3. AlphaGo的神奇全靠它,详解人工神经网络!

4. 如何训练神经网络

1、先别着急写代码

训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。

由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。

一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。

2、设置端到端的训练评估框架

处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。

在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。获得准确度等衡量模型的标准,用模型进行预测。

这个阶段的技巧有:

· 固定随机种子

使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。

· 简单化

在此阶段不要有任何幻想,不要扩增数据。扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。

· 在评估中添加有效数字

在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。

· 在初始阶段验证损失函数

验证函数是否从正确的损失值开始。例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。

· 初始化

正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。

· 人类基线

监控除人为可解释和可检查的损失之外的指标。尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。

· 设置一个独立于输入的基线

最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。

· 过拟合一个batch

增加了模型的容量并验证我们可以达到的最低损失。

· 验证减少训练损失

尝试稍微增加数据容量。

5. 深度神经网络具体的工作流程是什么样的

所谓神经网络算法,就是对人类学习能力的一种模拟算法。理论认为人的认知模式,处事方式是存储在神经元与神经元之间的连接上的,称为“神经元连接权重”,人脑神经布局类似网状结构,神经元是网的交叉点,权重就是网的连线,这些连线有粗有细,也就是权重的大小不同。而人类的学习能力就是去不断改变权重的值,从而改变自己的认知模式和处事方式,简单的说,不同人对同一个外部事物有不同看法,就是因为同样的初始信号,在不同粗细的神经元连线放大或缩小后,变成了侧重点不同的最终信号。最开始的“感知机"只用了2层神经元,即输入层和输出层,发现很多问题无法模拟,最着名的就是“异或”问题。 后来聪明的人在输入层和输出层之间加了一层神经元叫做隐藏层,3层的神经网络已经可以模拟二维上的任意函数曲线。只不过此时对“连接权重”的训练过程就变得非常复杂,通常使用一种叫“误差反传”的计算方法。参考人脑,人脑大概有亿级层数的神经元(当然,人脑是多任务处理器集合,某些特定的任务如人脸识别,只需用到大脑的某个局部)。于是人们会猜想,更多的隐藏层是否会有更高的学习效果。事实证明的确如此,随着隐藏层数的增加,一些图片,语音的识别率越来越高。因此,就有了深度神经网络这一概念。但隐藏层数越多训练过程也越复杂,且误差会在多层传递的时候衰减,导致GradientVanish问题,最终导致训练结果收敛在局部最优或者难以收敛。后来又有聪明的人不断改进误差训练算法,神经网路的层数深度越来越大,现在最NB的是微软的“残差神经网络”,已经将隐藏层提高至152层。

6. RTX 2060Super可以用作机器学习、神经网络训练么

当然可以,显卡能不能用于这些深度学习算法训练,主要看有没有cuda单元。 super的意思只是cuda单元增加了,所以肯定能用,而且比普通版的要好

阅读全文

与组装电脑训练神经网络相关的资料

热点内容
网络用语中哪些字有网名 浏览:599
oppowatch2开通移动网络 浏览:603
fh456路由器网络标准 浏览:398
虾米网络异常请检查网络 浏览:488
株洲移动网络办理点 浏览:282
lte无线网络由基站 浏览:596
打开蓝牙网络能共享吗 浏览:741
谷歌你当前无法连接网络 浏览:716
网络安全系语10条 浏览:920
联通转移动为什么有二个网络了 浏览:394
当提示网络异常怎么办 浏览:187
win8网络组策略在哪里打开 浏览:834
如何连网络接台式电脑 浏览:262
定制手机网络共享 浏览:545
中医如何传播网络 浏览:770
能打通电话但网络信号不好 浏览:818
网络连接速度mbp多少最好 浏览:949
查看网络上其他电脑共享文件 浏览:799
别人骂你网络女神怎么回怼 浏览:262
搞怪无线网络昵称 浏览:308

友情链接