导航:首页 > 网络连接 > 计算机网络地址块子网怎么划分

计算机网络地址块子网怎么划分

发布时间:2022-12-27 22:35:20

① 已知ip地址192.168.30.5/24如何将该网络分成4个子网并写出4个子网的网络地址

方法如下:
1、划分子网时,随着子网地址借用主机位数的增多,子网的数目随之增加,而每个子网中的可用主机数逐渐减少,以B类地址172.19.0.0/16为例。
2、要将网络划分为4个子网,先套用子网的计算公式:子网数=2的n次方,即4=2的n次方,n为2。
3、由上述步骤可知,n为2,即需要在主机位上借2位进行子网的划分,主机位还剩6+8=14位。
4、由主机位可以知道网络掩码位数为32-14=18位,即子网掩码为255.255.192.0
5、由上述可知,每个子网的地址块为256-192=64。
6、所以,每个子网的的地址分别为172.19.0.0/18,172.19.64.0/18,172.19.128.0/18,172.19.192.0/18。

计算机网络问题 C类地址划分子网

1.已知是C类地址,又知要划分4个子网,即2的X次方等于4,解之得X=2

2.X=2说明子网借用了主机2位用做子网划分,第四个8位字节即为11000000,转为十进制为192,即此子网掩码为:255.255.255.192

3.由此2项可知,此子网的块大小为256-192(子网掩码)=64,即从0开始,以64为分块计数子网掩码数值,可以得到的子网为0 64 128 192

4.每个网段的IP地址范围就是去掉本网段的网络地址和广播地址。例如,192.117.84.0,此网段的有效主机IP就是192.117.84.1(子网地址加1)---- 192.117.84.62(192.117.84.63 是广播地址)。有效主机IP是介于子网地址和广播地址之间的地址。

③ 子网怎么划分

一种计算方法
类范围:IP地址常采用点分十进制表示方法:X.Y.Y.Y,在这里,X=1--126时称为A类地址;X=128--191时成为B类地址;X=192--223时称为C类地址;如10.202.52.130,因为X=10在1--126范围内所以称为A类地址,默认子网掩码:A类为255.0.0.0;B类为255.255.0.0;C类为255.255.255.0

当我们要划分子网用到子网掩码M时,类子网掩码的格式应为:A类为255.M.0.0;B类为255.255.M.0;C类为255.255.255.M. M是相应的子网掩码,如255.255.255.240

十进制计算基数:256.等一下我们所有的十进制计算都要用256来进行

几个公式变量的说明:

Subnet_block:可分配子网块的大小,指在某一子网掩码下的子网的块数.

Subnet_num:实际可分配子网数,指可分配子网块中要剔除首,尾两块,这是某一子网掩码下可分配的实际子网数量,它等于Subnet_block-2

IP_block:每个子网可分配的IP地址块大小

IP_num:每个子网实际可分配的IP地址数,因为每个子网的首,尾IP地址必须保留(一个为网络地址,一个为广播地址),所以它等于IP_block-2.IP_num也用于计算主机段

M:子网掩码(net mask)

他们之间的公式如下:

M=256-IP_block

IP_block=256/Subnet_block,反之Subnet_block=256/IP_block

IP_num=IP_block-2

Subnet_num=Subnet_block-2

2的冥数:要熟练掌握2^8(256)以内的2的冥数的十进制数,如128=2^7,64=2^6....,这可使我们立即推算出Subnet_block和IP_block数.

什么是子网,子网到底是怎么划分的呢

以下答案为本人原创,绝非复制。分两部分来回答你的疑问。

一、子网掩码的含义和根据子网掩码划分子网

一个IP地址必然属于某一个网络,或者叫子网。子网掩码就是用来指定某个IP地址的网络地址的,换一句话说,就是用来划分子网的。

例如,一个A类网络可以容纳16777214台主机。但是在实际运用中,不可能把一个A类网络只用于一个子网,因为那样管理起来很不方便,也会出现广播风暴等种种问题,所以需要根据实际需求把它划分为若干个较小的子网。一个B类网络可以容纳65534台主机,往往也是需要划分子网的。即便一个小型企业内部,为了部门之间的职能的需要,配置那些电脑可以互相访问,哪些不能互相访问,就需要通过划分子网的方法来实现。

子网划分的问题看起来很复杂,其实也不是很复杂。只要把IP地址的位数、网络位数、主机位数、子网掩码的位数这几个概念搞清楚,就觉得很简单了。

IP地址位数=网络位数+主机位数=32位。子网掩码的位数就是网络的位数。

A类网络的网络位数是8位,子网掩码就是11111111.00000000.00000000.00000000,换算成二进制表示为255.0.0.0。

B类网络的网络位数是16位,子网掩码就是11111111.11111111.00000000.00000000,换算成十进制表示为255.255.0.0。

C类网络的网络位数是24位,子网掩码就是11111111.11111111.11111111.00000000,换算成十进制表示为255.255.255.0。

A类网络加长子网掩码到16位就把一个A类网络划分为256个B类网络同样大小的网络,再加长到24位就又把每个B类大小的子网划分为256个C类网络大小的子网。就是这个道理。一个大的网络,通过把子网掩码加长,使网络位多了,也就是网络数目多了,子网就多了。

当然你也可以不划分为256个子网,而划分为128个,64个,32个,16个,8个,4个,2个。

一个B类网络的默认子网掩码为255.255.0.0,你如果想把它划分为2个子网,网络位数就成立17位,也就是说子网掩码就变成了255.255.128.0;想划分为16个子网,因为16是2的4次方,所以网络位数加4变成了20位,也就是说子网掩码加长,成了20位,就是255.255.240.0。依此类推。

一个C类网络的默认子网掩码为24位的,那么主机位=32-24=8位,2的8次方等于256,所以一个C类网络的IP地址数量(包括网络地址和广播地址)为256个。

但是你仍然可以通过加长子网掩码的手段,把一个C类子网划分为更多的子网。划分的子网数必定是2的n次方个,每个子网的IP数量必定是2的(8- n)次方个。

子网掩码加长1位,划分2个子网;加长2位,划分4个子网,加长6位,划分2的6次方个,也就是64个子网。

子网掩码的1的个数表示网络位的个数,简单地来说,网络位是不属于你控制的,是上级主管给你的,给你多少就是多少。但是主机位是你可以控制的,你可以把它缩短,把缩短出来的位数加到网络位中,这样网络位就长了,子网数就多了,相应地每个子网的IP数量就少了。

记住下面的公式,遇到再复杂的子网划分问题也难不倒你了。

IP地址位数=32
网络位+主机位=32
子网掩码加长n位,则在当前子网基础上划分为2的n次方个子网。每个子网的IP地址数量=2^(32-划分前子网掩码位数-n)

二、如何根据子网划分的目标计算子网掩码

简单来说,子网掩码就是网络地址的位数。

一个IP地址一共有32位,其中靠前的某些位表示网络地址,后面的某些位表示主机位。

网络位数+主机位数=IP地址位数=32

知道了这个道理,计算子网掩码的方法就是:已知子网内IP数的多少,求出主机位的位数,用32减去主机位数就等于网络位数,也就是子网掩码。

举最简单的例子。一个C类网络,包括256个主机位置,256是2 的8次方,所以主机位是8,那么网络位就是32-8=24,也就是说子网掩码是24位,用二进制表示就是11111111.11111111.11111111.00000000,换算成十进制就是255.255.255.0

再比如一个C类网络划分的子网,每个网络主机IP数是32, 而32是2的5次方,所以主机位是5,那么网络位就是32-5=27,也就是说子网掩码是27位,用二进制表示就是11111111.11111111.11111111.11100000,换算成十进制就是255.255.255.224

再比如一个B类网络划分的子网,每个网络主机IP数是1024, 而1024是2的10次方,所以主机位是10,那么网络位就是32-10=22,也就是说子网掩码是22位,用二进制表示就是11111111.11111111.11111100.00000000,换算成十进制就是255.255.252.0

子网划分是通过改变子网掩码的位数来实现的。比如一个C类IP地址,默认子网掩码是24位的,二进制表示是11111111.11111111.11111111.0000000,换算成10进制的就是255.255.255.0。

如果是这样的子网掩码,后面的8位都可以用来做为主机的位置,2 的8次方等于256,一共有256个IP位置,因为有2个不能用,所以可用的主机位置为254个。

但是你要把这样一个地址划分成2个子网,就要从主机位里拿出一位来作为网络地址,网络地址就成了25位了。相应地主机位就成了7位了,2 的7次方等于128,一共有126个地址可用。

这是从正向来说的,就是已知要划分的子网数,求每个子网的主机数。但是在实际工作中往往是先知道每个子网的主机数,让你划分子网。其实也很简单。

首先你算一下主机数更接近于2 的几次方,那么主机位数就是几位。32减去主机位就是网络位。

举例说明。假如给你一个C类IP地址192.168.0.0。假如你想划分2个子网,一个里面有100台电脑,另一个有50台电脑。

100大于2的6次方,小于2的7次方,所以主机位数取7位。那么网络位数就是32-7=25位。25位的子网掩码11111111.11111111.11111111.10000000 换算成10进制的就是
255. 255. 255. 128,这就是第一个子网的子网掩码,网络号为192.168.0.0/25,网络地址192.168.0.0,主机地址192.168.0.1~192.168.0.126,广播地址192.168.0.127

50大于2的5次方,小于2的6次方,所以主机位数取6位。那么网络位数就是32-6=26位。26位的子网掩码11111111.11111111.11111111.11000000 换算成10进制的就是
255. 255. 255. 192,这就是第二个子网的子网掩码,网络号为192.168.0.128/26,网络地址192.168.0.128,主机地址192.168.0.129~192.168.0.190,广播地址192.168.0.191

注:以上的这些内容其实是我把以前我给其他网友的3个提问的回答拼接到一起又整理了一下搞出来的。可能看起来比较乱,对不起了。你搜搜网上的那些回答,比我的更乱。

子网掩码和子网划分的概念和方法,对于不会的人来说,特别难。一旦你会了,又会觉得特别简单。也许你看了我上面的回答还是云里雾里,看着很头大。但说不定哪一天你就豁然开朗了,又会觉得这些东西很简单,根本不用写那么多。

⑤ 子网掩码是怎么样划分的啊

子网掩码

子网掩码不能单独存在,它必须结合IP地址一起使用。子网掩码只有一个作用,就是将某个IP地址划分成网络地址和主机地址两部分。
子网掩码的设定必须遵循一定的规则。与IP地址相同,子网掩码的长度也是32位,左边是网络位,用二进制数字“1”表示;右边是主机位,用二进制数字“0”表示。附图所示的就是IP地址为“192.168.1.1”和子网掩码为“255.255.255.0”的二进制对照。其中,“1”有24个,代表与此相对应的IP地址左边24位是网络号;“0”有8个,代表与此相对应的IP地址右边8位是主机号。这样,子网掩码就确定了一个IP地址的32位二进制数字中哪些是网络号、哪些是主机号。这对于采用TCP/IP协议的网络来说非常重要,只有通过子网掩码,才能表明一台主机所在的子网与其他子网的关系,使网络正常工作。

子网掩码的术语是扩展的网络前缀码不是一个地址,但是可以确定一个网络层地址哪一部分是网络号,哪一部分是主机号 1 的部分代表网络号,掩码为 0的部分代表主机号子网掩码的作用就是获取主机 IP的网络地址信息,用于区别主机通信不同情况,由此选择不同路径其中 A类网络的子网掩码为 255.0.0.0;B类网络为 255.255.0.0;C类网络地址为:255.255.255.0

如何通过子网掩码来确定网络号或者网络地址?
通过 IP 地址的二进制与子网掩码的二进制进行与运算进行定某个设备的网络地址,
也就是说通过子网掩码分辨一个网络的网络部分和主机部分子网掩码一旦设置,网络地址和主机地址就固定了。
相对于使用子网掩码来识别网络地址,早期的使用类别进行网络地址的分类存在着地址大量浪费的不足。

子网一个最显着的特征就是具有子网掩码。与IP地址相同,子网掩码的长度也是32位,也可以使用十进制的形式。例如,为二进制形式的子网掩码:,采用十进制的形式为:255.255.255.0。

1.子网掩码的概念
子网掩码是一个32位地址,用于屏蔽IP地址的一部分以区别网络标识和主机标识,并说明该IP地址是在局域网上,还是在远程网上。

2.确定子网掩码数
用于子网掩码的位数决定于可能的子网数目和每个子网的主机数目。在定义子网掩码前,必须弄清楚本来使用的子网数和主机数目。

定义子网掩码的步骤为:

A、确定哪些组地址归我们使用。比如我们申请到的网络号为 “210.73.a.b”,该网络地址为c类IP地址,网络标识为“210.73”,主机标识为“a.b”。

B、根据我们现在所需的子网数以及将来可能扩充到的子网数,用宿主机的一些位来定义子网掩码。比如我们现在需要12个子网,将来可能需要16个。用第三个字节的前四位确定子网掩码。前四位都置为“1”,即第三个字节为“11110000”,这个数我们暂且称作新的二进制子网掩码。

C、把对应初始网络的各个位都置为“1”,即前两个字节都置为“1”,第四个字节都置为“0”,则子网掩码的间断二进制形式为:“11111111.11111111.11110000.00000000”

D、把这个数转化为间断十进制形式为:“255.255.240.0”

这个数为该网络的子网掩码。

3.IP掩码的标注
A、无子网的标注法

对无子网的IP地址,可写成主机号为0的掩码。如IP地址210.73.140.5,掩码为255.255.255.0,也可以缺省掩码,只写IP地址。

B、有子网的标注法

有子网时,一定要二者配对出现。以C类地址为例。

1.IP地址中的前3个字节表示网络号,后一个字节既表明子网号,又说明主机号,还说明两个IP地址是否属于一个网段。如果属于同一网络区间,这两个地址间的信息交换就不通过路由器。如果不属同一网络区间,也就是子网号不同,两个地址的信息交换就要通过路由器进行。例如:对于IP地址为210.73.140.5的主机来说,其主机标识为00000101,对于IP地址为210.73.140.16的主机来说它的主机标识为00010000,以上两个主机标识的前面三位全是000,说明这两个IP地址在同一个网络区域中,这两台主机在交换信息时不需要通过路由器进行10.73.60.1的主机标识为00000001,210.73.60.252的主机标识为11111100,这两个主机标识的前面三位000与011不同,说明二者在不同的网络区域,要交换信息需要通过路由器。其子网上主机号各为1和252。

2.掩码的功用是说明有子网和有几个子网,但子网数只能表示为一个范围,不能确切讲具体几个子网,掩码不说明具体子网号,有子网的掩码格式(对C类地址)。

⑥ 如何划分子网

简单划分方法:

A类网络的网络位数是8位,子网掩码就是11111111.00000000.00000000.00000000,换算成二进制表示为255.0.0.0。

B类网络的网络位数是16位,子网掩码就是11111111.11111111.00000000.00000000,换算成十进制表示为255.255.0.0。

C类网络的网络位数是24位,子网掩码就是11111111.11111111.11111111.00000000,换算成十进制表示为255.255.255.0。

我们可以划分子网个数为128个,64个,32个,16个,8个,4个,2个

一个B类网络的默认子网掩码为255.255.0.0,你如果想把它划分为2个子网,网络位数就成立17位(2^1),也就是说子网掩码就变成了255.255.128.0;想划分为16个子网,因为16是2的4次方,所以网络位数加4变成了20位,也就是说子网掩码加长,成了20位,就是255.255.24.

(6)计算机网络地址块子网怎么划分扩展阅读:

子网划分定义:Internet组织机构定义了五种IP地址,有A、B、C三类地址。A类网络有126个,每个A类网络可能有16777214台主机,它们处于同一广播域。而在同一广播域中有这么多节点是不可能的,网络会因为广播通信而饱和,结果造成16777214个地址大部分没有分配出去。

可以把基于每类的IP网络进一步分成更小的网络,每个子网由路由器界定并分配一个新的子网网络地址,子网地址是借用基于每类的网络地址的主机部分创建的。划分子网后,通过使用掩码,把子网隐藏起来,使得从外部看网络没有变化,这就是子网掩码。

参考资料:子网划分_网络

⑦ 一个IP地址怎样划分子网

IP地址是由网络号(net ID)与主机号(host ID)两部分组成的。

使用在以上子网划分的方案中,该机关网络可用的IP地址为:

子网1:212.26.220.33~212.26.220.62

子网2:212.26.220.65~212.26.220.94

子网3:212.26.220.97~212.26.220.126

子网4:212.26.220.129~212.26.220.158

子网5:212.26.220.161~212.26.220.190

子网6:212.26.220.193~212.26.220.222

⑧ 计算机网络如何划分子网

Internet组织机构定义了五种IP地址,用于主机的有A、B、C三类地址。其中A类网络有126个,每个A类网络可能有16,777,214台主机,它们处于同一广播域。

而在同一广播域中有这么多结点是不可能的,网络会因为广播通信而饱和,结果造成16,777,214个地址大部分没有分配出去,形成了浪费。而另一方面,随着互连网应用的不断扩大,IP地址资源越来越少。为了实现更小的广播域并更好地利用主机地址中的每一位,可以把基于类的IP网络进一步分成更小的网络,每个子网由路由器界定并分配一个新的子网网络地址,子网地址是借用基于类的网络地址的主机部分创建的。

划分子网后,通过使用掩码,把子网隐藏起来,使得从外部看网络没有变化,这就是子网掩码。

⑨ 计算机网络子网划分

1、网络前缀为 /29

2、每个子网有8个地址,其中可以用于主机的地址有6个。

3、各个子网的地址块为:126.23.12.64~126.23.12.71, 72~79, 80~87, 88~95

4、每一个子网分配给主机使用的最小地址和最大地址分别是:136.23.12.65, 136.23.12.70; 73, 78; 81,86; 89,94

⑩ 计算机网络-4-4-转发分组,构建子网和划分超网

上图是一个路由器怎么进行分组转发的例子:有四个A类网络通过三个路由器连接在一起,每一个网络上都可能会有成千上万台主机。若路由表指出每一台主机该进行怎样的转发。则要维护的路由表是非常的庞大。 如果路由表指定到某一个网络如何转发,则路由表中只有4行,每一行对应一个网络。 以路由器2的路由表为例:由于R2同时连接在网络2和网络3上,因此只要目标主机在网络2或者网络3上,都可以通过接口0或者1或者路由器R2直接交付(当然还有使用ARP协议找到这些主机相应的MAC地址)。若目标主机在网络1中,则下一跳路由器为R1,其IP地址为20.0.0.7。路由器R2和R1由于同时连接在网络2上,因此从路由器2把转发分组给R1是很容易的。 我们应当注意到:每一个路由器至少都要拥有两个不同的IP地址。 总之,在路由表中,对每一条路由最主要的是以下两条信息: (目的网络,下一跳地址) 我们根据目的网络地址来确定下一跳路由器,这样可以得到以下结论:

虽然互联网上所有的分组转发都是 基于目的主机所在的网络 ,但是在大多数情况下都允许这样的实例: 对特定的主机指明一个路由 ,这种路由叫 特定主机路由 。采用特定主机路由可以使网络人员方便管理控制网络和测试网络

路由器还可以采用 默认路由 以减少路由表所占用的空间和搜索路由表所使用的时间。

当路由器接收到一个待转发的数据报,在从路由表中得出下一跳路由器的IP地址后,不是把这个地址写入IP数据报,而是送交 数据链路层的网络接口软件 ,网络接口软件把负责下一跳的路由器IP地址转化为硬件地址(必须使用ARP),将硬件地址写入MAC帧的首部,然后根据这个硬件地址找到下一跳路由器。由此可见,当发送一连串的数据报时,上述的这种查找路由表,用ARP得到硬件地址,把硬件地址写入MAC地址首部等过程,将不断地重复进行,造成了一定的开销。

根据以上几点,我们提出 分组转发算法:

这里我们需要强调一下,路由表并没有给分组指明某个网络的完整路径(即先经过哪一个路由器,然后再经过哪一个路由器,等等)。路由表指出,到达某个网络应该先到达某个路由器(下一条路由器),在到达下一跳路由器之后,再继续查找路由表,知道再下一步应当到达哪一个路由器。这样一步步的查找下去,直到最后到达目的网络。

为什么划分子网?

为解决上述问题,从1985年引出 子网络号字段 ,使得两级IP地址变为三级IP地址,这种做法叫做 划分子网(subnetting)【RFC950】

划分子网的基本思路:

划分子网的用例

如上图为某单位拥有一个B类IP地址,网络地址为145.13.0.0(网络号为145.13),凡是目的网络为145.13.x.x的数据报都会送到这个网络上路由器R1上。

现在把该网络划分为三个字网,这里假设子网络号占用8位,因此主机号就只剩下16-8=8位了,所划分的三个字网为145.13.3.0,145.13.7.0,145.3.21.0。路由器在接受到145.13.0.0上的路由器数据后,再根据数据报的目的地址把它转化到相应的子网。

总之,当没有划分子网的时候,IP地址是两节结构。划分子网后IP地址就变成了三级结构。划分子网只是把IP地址的主机号这部分进行再划分,而不改变IP地址原来的网络号。

假定有一个IP数据报(其目的地址为145.13.3.10)已经到达了路由器R1,那么这个路由器如何把它转发到子网145.13.3.0呢?
我们知道,从IP数据包报的首部无法看出源主机的目的主机所连接的网络是否进行了子网划分。这是因为32位IP地址本身以及数据报的首部没有包含任何关于子网划分的信息。因此必须另想办法,这就是使用 子网掩码

把三级IP地址的子网掩码和收到的目的地址的IP地址 逐位进行与(AND)运算,就可以立即得到网络地址,剩下的步骤就交给路由器处理分组。

使用子网掩码的好处是:不管网络有没有划分子网,只要把子网掩码和IP地址进行逐位 与(AND) 运算,就立即得出网络地址来,这样在路由器处理到来的分组时就可采取同样的做法。

在不划分子网时,为什么还要使用子网掩码?这就是为了更便于查找路由表。现在互联网规定:所有网络都必须使用子网掩码,同时在路由器的路由表中也必须有子网掩码这一栏。如果一个网路不划分子网,那么该网络的子网掩码就是用 默认的子网掩码 ,默认子网掩码中1的位置和IP地址中的网络号字段net-id正好相对应。因此,若用默认子网掩码和某个不划分子网的IP地址逐位相"与",就应该能够得出该IP地址的网络地址来,这样做可以不用查找该地址的类别位就能够知道这是哪一类的IP地址。显然:

图4-21是这三类IP地址的网络地址和相应的默认子网掩码:

子网掩码是一个网络或者一个子网的重要属性 。在RFC950成为互联网标准后,路由器在和相邻路由器交换路由信息时,必须把自己所在的网络(或子网)的子网掩码告诉相邻路由器,在路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。若一个路由器连接在两个子网上就拥有两个网络地址和两个子网掩码。

例4-2:
已知IP地址是141.14.72.24,子网掩码是255.255.192.0,求网络地址:
解: 255.255.192.0的二进制:11111111 11111111 11000000 00000000

IP 141.14.72.24二进制: 11111111 11111111 01001000
00000000

将IP地址二进制与子网掩码二进制进行 与(AND)运算 为 ::11111111 11111111 11000000 00000000
即网络IP为:141.14.64.0

在划分子网的情况下,分组转发的算法必须作出改动。在使用子网划分后,路由表应该包含以下内容:

在划分子网的情况下,路由器转发分组的算法如下:

例4-4:
图4-24有三个字网,两个路由器,以及路由器R1的部分路由表。现在源主机H1向目的主机H2发送分组。试讨论R1收到H1向H2发送的分组后查路由表的过程。

解:

源主机H1向目标主机H2发送的分组的目的地址为128.30.33.138。

源主机H1把本子网的子网掩码255.255.255.128与H2的IP地址128.30.33.128相与得到128.30.33.128,它不等于H1的网络地址(128.30.33.0)。这说明主机H2与主机H1不在同一个网段上,因此H1不能把数据包直接交付给H2。必须交给子网上的默认路由R1,由R1转发。

路由表在接受到这个分组之后,就在其路由表中逐行匹配寻找。
首先看R1路由表的第一行:用这一行的子网掩码255.255.255.128与H2IP地址进行互与,得到128.30.33.128,然后和这一行用样的方法进行第二行,结果发现相与出来的结果和目的网络地址匹配,则说明这个网络(子网2)就是收到的分组所要寻找的目的网络。于是就不用继续找了。R1把分组从接口1直接交付给主机H2(他们都在一个子网上)。

在一个划分子网的网络中可使用几个不同的子网掩码。使用变长 子网掩码VLSM(Variable Length Subnet Mask) 可进一步提高IP地址资源的利用率。在VLSM的基础上又进一步研究出 无分类编制 方法。它的正式名字是无分类域间路由选择CIDR(Classless Inter-Domain Routing)。

CIDR 最主要的特点有两个:

CIDR还使用斜线记法,就是在IP地址后面加上斜线/,然后写上 网络前缀所占的位数 。例如IP地址为128.14.35.7/20是某CIDR地址快中的一个地址,其中前20位就是网络前缀,后面的14位是主机位。如图所示:

当然以上地址的主机号全为0和全为1的地址,一般并不使用,这个地址块共有2^12个地址,我们可以使用地址块中最小的地址和网络前缀来指明这个地址快。例如,上述的地址块可记为128.14.32.0/20。

为了更方便的进行路由选择,CIDR使用了32位的地址掩码(address mask)。地址掩码是由一串1和一串0组成, 而1的个数就是网络前缀的个数。 虽然CIDR不使用子网了,但是出于某些原因,CIDR使用的地址掩码也可以继续称为 子网掩码,斜线记法中,斜线后面的数字就是1的个数 。例如,/20地址快的地址掩码是 11111111 11111111 11110000 00000000 (20个连续的1)。 斜线记法中,斜线后面的数字就是地址掩码中1的个数。

斜线记法还有一个好处就是它除了可以表示一个IP地址外,还提供了一些其他重要的信息。我们举例说明如下:
例如,地址为192.199.170.82/27不仅表示IP地址是192.199.170.82,而且还表示这个地址快的网络前缀有27位(剩下的5位是主机号),因此这个地址快包含32个IP地址( =32)。通过见到那的计算还可以得出,这个地址块的最小地址是192.199.170.64,最大地址是192.199.170.95。具体的计算方法是这样的:找到地址掩码中1和0的交界处发生在地址中的哪一个字节,现在是第四个字节,因此只要把这一个字节的十进制82用二进制表示即可:82的二进制是01010010,取其前3位(这3位加上前3字节的24位就够成了27位),再把后面的5位都写成0,即01000000,等于十进制64,这样就找到了地址快的最小地址192.199.170.64,再把最后面5位都置为1,即01011111,等于十进制的95,这就找到了地址块中的最大地址192.199.170.95。

由于一个CICR地址块有很多地址,所以在路由表中就利用CIDR地址块来查找目的网络。这种地址的聚合常称之为 路由聚合(route aggregation) ,它使得路由表中的一个项目可以表示原来传统分类地址的很多个路由,路由聚合也称之为 构成超网(supernetting) ,路由聚合有利于减少路由器之间的路由选择信息的交换,从而提高了整个互联网的性能。

每一个CIDR地址块中的地址数一定是2的整数次幂,这就是 构建超网 的来源。

网络前缀越短 ,其地址块所包含的地址数就越多,而在三级结构的IP地址中,划分子网是使网络前缀变长。

在使用了CIDR时,由于采用网络前缀这种记法,IP地址由网络前缀和主机号这两部分组成,因此在路由表中的项目也要有相应的变化,这时,每个项目由 网络前缀 下一跳地址组成 但是在查找路由表时可能会得到不止一个匹配结果 ,这样就带来一个问题:我们应该从这些匹配结果中选择哪一条路由呢?

正确的答案是: 应但从匹配结果中选择具有最长网络前缀的路由 ,这就做 最长前缀匹配(long-prefix matching) ,这是因为网络前缀越长,说明其地址块越小因而路由就越具体,最长前缀匹配又称之为 最长匹配 或者 最佳匹配

使用CIDR后,由于要寻找最长前缀匹配,使路由表的查找过程变的十分复杂,当路由表的项目数很大的时候,怎样设法减少路由表的平均查找时间就成为了一个非常重要的问题,现在常用的是 二叉线索(binary trie) ,它是一种特殊结构的树,IP地址中从左到右的比特值决定了从根节点逐层向下层延伸的路径,二二叉线索中的各个路径就代表路由表中存放的各个地址。

图4-26用一个例子说明二叉树线索的结构,图中给出了5个IP地址。为了简化二叉线索的结构,可以先找出对应一与每一个IP地址的唯一前缀(unique prefix),所谓唯一前缀就是在表中所有的IP地址中,该前缀时唯一的,这样就可以用这些唯一前缀来构造二叉线索。在进行查找时,只要能够和唯一前缀匹配相匹配就可以了。

从二叉树的根节点自顶向下的深度最多有32层,每一层对应于IP地址中的一位。

阅读全文

与计算机网络地址块子网怎么划分相关的资料

热点内容
小米电视连接无线网络总断网 浏览:331
如何享受移动5g网络 浏览:136
旅游企业开发网络营销主要策略 浏览:812
蓝牙网络共享给电视 浏览:195
网络招聘和传统招聘哪个更广泛 浏览:57
网络语音机顶盒批发在哪里 浏览:970
5g网络模式nsa与sa哪个好 浏览:42
网络系统包含哪些寄存器 浏览:900
移动网络基站有多大辐射 浏览:621
最火手机网络游戏 浏览:865
一般有线电视如何接入网络 浏览:730
网络涉黑是什么意思 浏览:85
极风一直网络异常 浏览:279
计算机网络最大好处 浏览:427
中国电信天翼wifi网络要不要钱 浏览:857
特步网络密码 浏览:213
什么是幼儿园主题网络 浏览:317
哥易拉罐能提高路由器网络快吗 浏览:799
连接了网络没有访问权限 浏览:702
唐dm有网络显示未连接网络 浏览:406

友情链接