导航:首页 > 网络连接 > p2p计算机网络例子

p2p计算机网络例子

发布时间:2022-06-08 16:02:21

‘壹’ 什么是P2P网络

P2P网络即对等网络/对等计算机网络:是一种在对等者(Peer)之间分配任务和工作负载的分布式应用架构,是对等计算模型在应用层形成的一种组网或网络形式。

“Peer”在英语里有“对等者、伙伴、对端”的意义。因此,从字面上,P2P可以理解为对等计算或对等网络。国内一些媒体将P2P翻译成“点对点”或者“端对端”。

学术界则统一称为对等网络(Peer-to-peer networking)或对等计算(Peer-to-peer computing),其可以定义为:网络的参与者共享他们所拥有的一部分硬件资源(处理能力、存储能力、网络连接能力、打印机等),这些共享资源通过网络提供服务和内容,能被其它对等节点(Peer)直接访问而无需经过中间实体。

在此网络中的参与者既是资源、服务和内容的提供者(Server),又是资源、服务和内容的获取者(Client)。

(1)p2p计算机网络例子扩展阅读:

与客户端/服务器网络相比,对等网络具有下列优势:

1、可在网络的中央及边缘区域共享内容和资源。在客户端/服务器网络中,通常只能在网络的中央区域共享内容和资源。

2、由对等方组成的网络易于扩展,而且比单台服务器更加可靠。单台服务器会受制于单点故障,或者会在网络使用率偏高时,形为瓶颈。

3、由对等方组成的网络可共享处理器,整合计算资源以执行分布式计算任务,而不只是单纯依赖一台计算机,如一台超级计算机。

4、用户可直接访问对等计算机上的共享资源。网络中的对等方可直接在本地存储器上共享文件,而不必在中央服务器上进行共享。

‘贰’ 常用的p2p技术及典型产品

P2P即peer-to-peer的缩写。而peer在英语里是“同等者” ? “同事”及“伙伴”的意思。因此,P2P也就可以理解为 同事” 伙伴”的意思。因此,P2P也就可以理解为 “伙伴对伙伴”的意思,或称为对等联网。 伙伴对伙伴” P2P也可以被看作为一种思想,它具有改变整个因特网基 P2P也可以被看作为一种思想,它具有改变整个因特网基 础的潜能的思想。虽然从纯技术角度而言,P2P并未激发 础的潜能的思想。虽然从纯技术角度而言,P2P并未激发 出任何重大的创新,而更多的是改变了人们对因特网的理 解与认识。正是由于这个原因,IBM早就宣称P2P不是一 解与认识。正是由于这个原因,IBM早就宣称P2P不是一 个技术概念,而是一个社会和经济现象。 P2P技术是目前国际计算机网络技术领域研究的一个热点, P2P技术是目前国际计算机网络技术领域研究的一个热点, 被《财富》杂志誉为将改变因特网未来的四大新技术之一, 财富》 甚至被认为是无线宽带因特网的未来技术。 2 ? 2010-122010-12-18 图1-1 C/S模式 图1-2 P2P模式 2010-122010-12-18 3 图1-3 第一代P2P网络采用中央控制网络体系结构 早期的Napster就采用这种结构。它采用快速搜索算法,排队响应时间短,使用简 单的协议能够提供高性能和弹性,缺点是容易中断服务。 2010-122010-12-18 4 图1-4 第二代P2P采用分散分布网络体系结构 第二代P2P采用分散分布网络体系结构 不再使用中央服务器,消除了中央服务器带来的问题。没有中央控制点, 不会因为一点故障导致全部瘫痪,是真正的分布式网络。由于每次搜索 都要在全网进行,造成大量网络流量,致使其搜索速度慢、排队响应时 间长。用户PC的性能及其与网络连接的方式决定网络弹性和性能。这种 间长。用户PC的性能及其与网络连接的方式决定网络弹性和性能。这种 模式具有自组织(ad-hoc)行为,降低了拥有者的成本,提供可扩展性。 模式具有自组织(ad-hoc)行为,降低了拥有者的成本,提供可扩展性。 特别适合在自组织(ad-hoc)网上的应用,如即时通信等。 特别适合在自组织(ad-hoc)网上的应用,如即时通信等。 2010-122010-12-18 5 ? 第三代P2P采用混合网络体系结构,如图1-5所示。这种模式综合第一代和第二代的优 第三代P2P采用混合网络体系结构,如图1 ? 点,用分布的超级节点取代中央检索服务器。采用分层次的快速搜索改进了搜索性能, 缩短了排队响应时间,每次排队产生的流量低于第二代分布网络。超级智能节点的布 设提供高性能和弹性。没有中央控制点,不会因为一点故障导致全部瘫痪。 内容被分布存储在分布的存储器和客户终端中。通过快速检索系统可以快速发现内容 分布存储的位置。目前常用的P2P软件有BT、edonky和Gnutella等,这些软件采用“ 分布存储的位置。目前常用的P2P软件有BT、edonky和Gnutella等,这些软件采用“快 速追踪”技术构成P2P网络,有着许多传统客户机-服务器网络所没有的优点。技术上 速追踪”技术构成P2P网络,有着许多传统客户机-服务器网络所没有的优点。技术上 不但可以大大的减少文件搜寻的时间,更重要的是可以不用昂贵的中央控制硬件设备 (服务器等)。这种P2P网络使用终端本身电脑的处理能力,网络处理能力随着终端使 (服务器等)。这种P2P网络使用终端本身电脑的处理能力,网络处理能力随着终端使 用者人数增长而增加。 2010-122010-12-18 6 第四代P2P技术 第四代P2P技术 ? 第四代P2P目前正在发展中,主要发展的技术有动态端口 第四代P2P目前正在发展中,主要发展的技术有动态端口 选择和双向下载。动态端口选择:目前P2P使用固定的端 选择和双向下载。动态端口选择:目前P2P使用固定的端 口,但是一些公司已经开始引入协议可以动态选择传输端 口,端口的数目一般在1 口,端口的数目一般在1 024~4 000之间。有的协议甚至 000之间。有的协议甚至 让P2P流可以用原来用于HTTP(SMTP)的端口80(25) P2P流可以用原来用于HTTP(SMTP)的端口80(25) 来传输以便隐藏。这将使识别跨运营商网络的P2P流、掌 来传输以便隐藏。这将使识别跨运营商网络的P2P流、掌 握其流量变得更困难。双向下载:eD和BT等公司进一步 握其流量变得更困难。双向下载:eD和BT等公司进一步 发展引入双向流下载。可以多路并行下载和上载一个文件 或多路并行下载一个文件的一部分,而目前传统的体系结 构要求目标在完全下载后才能开始上载。这将大大加快文 件分发速度。 以上演化的四代P2P系统都属于“无组织的P2P重叠网” 以上演化的四代P2P系统都属于“无组织的P2P重叠网”, 在因特网中得到快速发展,目前宽带用户流量中一半以上 是这种P2P流。 是这种P2P流。 7 ? 2010-122010-12-18 P4P技术 P4P技术 ? ,分布式计算产业协会(DCIA)提出了“P4P”网络 ,分布式计算产业协会(DCIA)提出了“P4P” 协议概念,而Verizon最近的试验也证明,这种 协议概念,而Verizon最近的试验也证明,这种 P2P网络升级版的确可以大幅提高下载速度,并显 P2P网络升级版的确可以大幅提高下载速度,并显 着减少网络拥堵现象。 P4P全称“ P4P全称“Proactive network Provider Participation for P2P”,意在加强服务供应商 P2P”,意在加强服务供应商 (ISP)与客户端程序的通信 (ISP)与客户端程序的通信,降低骨干网络传输 与客户端程序的通信, 压力和运营成本,并提高改良的P2P文件传输的 压力和运营成本,并提高改良的P2P文件传输的 性能。 P2P随机挑选Peer(对等机)不同,P4P协 性能。与P2P随机挑选Peer(对等机)不同,P4P协 议可以协调网络拓扑数据,能够有效选择Peer, 议可以协调网络拓扑数据,能够有效选择Peer, 从而提高网络路由效率。 8 ? 2010-122010-12-18 ? Verizon高级工程师、P4P工作组联合主席Doug Verizon高级工程师、P4P工作组联合主席Doug Pasko表示,Verizon使用Pando进行的测试表明, Pasko表示,Verizon使用Pando进行的测试表明, P4P可以带来大约 P4P可以带来大约200%的下载性能提升,部分 可以带来大约200%的下载性能提升, 时候甚至高达600% 时候甚至高达600%。Doug Pasko指出,P2P虽 Pasko指出,P2P虽 然面临很多法律难题,但已经在很多大型商业化 内容发布系统中得以合法化,而P4P能让P2P得到 内容发布系统中得以合法化,而P4P能让P2P得到 更大范围的商业化应用,同时减轻网络负担.

‘叁’ peer to peer (P2P),grid大概是怎么一回事计算机网络方面的

★p2p★
P2P是peer-to-peer的缩写,peer在英语里有"(地位、能力等)同等者"、"同事"和"伙伴"等意义。这样一来,P2P也就可以理解为"伙伴对伙伴"的意思,或称为对等联网。目前人们认为其在加强网络上人的交流、文件交换、分布计算等方面大有前途。

��简单的说,P2P直接将人们联系起来,让人们通过互联网直接交互。P2P使得网络上的沟通变得容易、更直接共享和交互,真正地消除中间商。P2P就是人可以直接连接到其他用户的计算机、交换文件,而不是像过去那样连接到服务器去浏览与下载。P2P另一个重要特点是改变互联网现在的以大网站为中心的状态、重返"非中心化",并把权力交还给用户。 P2P看起来似乎很新,但是正如B2C、B2B是将现实世界中很平常的东西移植到互联网上一样,P2P并不是什么新东西。在现实生活中我们每天都按照P2P模式面对面地或者通过电话交流和沟通。

��即使从网络看,P2P也不是新概念,P2P是互联网整体架构的基础。互联网最基本的协议TCP/IP并没有客户机和服务器的概念,所有的设备都是通讯的平等的一端。在十年之前,所有的互联网上的系统都同时具有服务器和客户机的功能。当然,后来发展的那些架构在TCP/IP之上的软件的确采用了客户机/服务器的结构:浏览器和Web服务器,邮件客户端和邮件服务器。但是,对于服务器来说,它们之间仍然是对等联网的。以email为例,互联网上并没有一个巨大的、唯一的邮件服务器来处理所有的email,而是对等联网的邮件服务器相互协作把email传送到相应的服务器上去。另外用户之间email则一直对等的联络渠道。

��事实上,网络上现有的许多服务可以归入P2P的行列。即时讯息系统譬如ICQ、AOL Instant Messenger、Yahoo Pager、微软的MSN Messenger以及国内的QQ是最流行的P2P应用。它们允许用户互相沟通和交换信息、交换文件。用户之间的信息交流不是直接的,需要有位于中心的服务器来协调。但这些系统并没有诸如搜索这种对于大量信息共享非常重要的功能,这个特征的缺乏可能正为什么即时讯息出现很久但是并没有能够产生如Napster这样的影响的原因之一。

下面试图用三句话来揭示P2P的影响:

对等联网:是只读的网络的终结(Peer-to-peer is the end of the read-only Web)

对等联网:使你重新参与互联网(Peer-to-peer allows you to participate in the Internet again)

对等联网:使网络远离电视(Peer-to-peer steering the Internet away from TV)如上文所言,P2P不是一个新思想,从某些角度看它甚至是整个最初创建互联网的最基本的思想。我们不妨花时间作一点回顾。

一、横空出世---P2P 身为何物?

互联网能够发展至今,根本原因在于其布建的任何一根血脉都是为人与人之间的交流而设置的。而现在能够引起互联网震动的,无非也只有交流方式的变革本身。 如今,在基于网络的各种技术充斥于我们周围之时,恐怕只有很少人不知道P2P的概念了,即便您没有深入探究,但您每日在互联网间进行的活动几乎没有不沾P2P技术的。一个简单的例子,在你使用QQ尽情聊天之时,实际上就享受着P2P技术给你带来的快感与兴奋。P2P技术究竟意味着什么呢?关于P2P技术的两种解释或许可以说明这个问题。

一种解释是,P2P即peer-to-peer。而peer在英语里是“(地位、能力等)同等者”、“同事”和“伙伴”的意思。这样一来,P2P也就可以理解为“伙伴对伙伴”的意思,或称为对等联网,我甚至觉得解释成为person-to-person更好一些。反正交流也都是人的交流。

而另一种解释是,P2P就是一种思想,有着改变整个互联网基础的潜能的思想。客观讲,单从技术角度而言,P2P并未激发出任何重大的创新,而更多的是改变了人们对因特网的理解与认识。正是由于这个原因,IBM早就宣称P2P不是一个技术概念,而是一个社会和经济现象。

不管是技术还是思想,P2P是直接将人们联系了起来,让人们通过互联网直接交流。它使得网络上的沟通变得更容易、更直接,真正地消除中间环节。这听起来仿佛全新的概念,但其实并不是什么新鲜事。我们每天见面,或者通过电话直接交流都是P2P最直接的例子。而这个时候你有没有从电话的发展的历史中隐约感觉到,P2P必将在互联网时代有着突飞猛进的发展,因为他可以改变现在的Internet以大网站为中心的状态、重返“非中心化”,并把权力交还给用户,让我们的语言影像以最直接的方式传递到对方身边。它最符合互联网络设计者的初衷,给了人们一个完全自主的超级网络资源库。现在在业界,比较认同的P2P计算应用系统的目标主要有以下几类:

1.信息、服务的共享与管理

2.协作

3.构建充当基层架构的互联系统

二、生机勃勃--窥探P2P的发展历程

如果说涉及此种特点便称之为信息技术中的P2P的诞生,那么它的历史这可就远了。P2P 本身的基本技术的存在时间和我们曾经熟悉的USENET、FidoNet 这两种非常成功的分布式对等网络技术几乎是一同的,甚至更长些。翻翻资料就可以知道,USENET 产生于 1979 年,FidoNet创建1984年,它们都是一个分散、分布的信息交换系统。在最初的 P2P 应用出现时,许多使用该技术的人们甚至不会使用计算机。然而正是这种孕育着思想的网络技术为P2P的出现搭建了温床。

P2P正式步入发展的历史可以追溯到1997年7月,那几乎就是互联网在中国起步的阶段。在一段介绍此时P2P技术的时间表中这样写着:“Hotline Communications is founded, giving consumers software that lets them offer files for download from their own computers.”(1997年7月,Hotline Communications公司成立,并且研制了一种可以使其用户从别人电脑中直接下载东西的软件)

或许有人还记得,早在1998年,美国东北波士顿大学的一年级新生、18岁的肖恩?范宁为了能够解决他的室友的一个问题——如何在网上找到音乐而编写的一个简单的程序,这个程序能够搜索音乐文件并提供检索,把所有的音乐文件地址存放在一个集中的服务器中,这样使用者就能够方便地过滤上百的地址而找到自己需要的MP3文件。到了1999年,令他们没有想到的是,这个叫做Napster的程序成为了人们争相转告的“杀手程序”——它令无数散布在互联网上的音乐爱好者美梦成真,无数人在一夜之内开始使用Napster。在最高峰时Napster网络有8000万的注册用户,这是一个让其他所有网络望尘莫及的数字。这大概可以作为P2P软件成功进入人们生活的一个标志。

时间表中这样记录着这一段历史:

January 1999:

Shawn Fanning, 18, creates the Napster application and service while a freshman at Northeastern University.

(1999年1月,18岁的美国东北波士顿大学的一年级新生肖恩?范宁开始了Napster程序的服务)

May 1999:

Napster Inc. is founded.

(1999年5月,Napster公司宣告成立)

之所以我们注重开端,是因为这是一个非同意义上的起始,也正是从这天起,P2P开始了它曲折但极富生命力的发展。

到了2000年,P2P技术的发展就得使用月甚至日来记载了。直到现在使用P2P技术的软件比比皆是,人们也在不知不觉中感受到了P2P作为高科技发展载体的快乐。平常我们使用的QQ 、MSN就不提了,其他软件更是铺天盖地,让人目不暇接。简单罗列一下,以飨读者。

软件名称 简介

eMule eMule 是以 eDonkey2000 网络为基础的新型 P2P 文件分享工具。

OPENEXT 一款P2P软件。通过它,Internet用户之间可以直接建立点对点的连接。

迅雷Thunder “光速般”的智能下载软件——迅雷(thunder2.2.0)。迅雷它拥有比目前用户常用的下载软件快7—10倍的下载速度。

易载ezpeer 易载ezPeer简体中文版,免费注册使用!ezPeer 是一个革命性的P2P(点对点)文件共享软件。

Kuro M3 Kuro-全球第一款全中文界面的火爆MP3超强抓歌软件!

酷狗(KuGoo) “KuGoo”是酷狗的简称,是基于中文平台专业的P2P音乐及文件传输软件。通过KuGoo,用户可以方便、快捷、安全地实现国内最大的音乐搜索查找。

APIA APIA 是一个正在发展中的 P2P 网络系统,如同目前熟知的 eDonkey、Gnutella 与 Kazaa 等软件。

iMesh 能够让你设定分享文件的类型,音乐、影片或其他文件;也能够让你搜寻并且下载你想要的文件。

BearShare BearShare 是一个非常好的文件分享软件,它让你、你的朋友、在世界上的每一个人都可以分享文件。

三、珠联璧合---P2P和BT

说到P2P,就不能不提BT,这个被人戏称为“变态”的词几乎在大多数人感觉中与P2P成了对等的一组概念,而它也将P2P技术发展到了近乎完美的地步。实际上BitTorrent(中文全称比特流,简称BT)原先是指是一个多点下载的P2P软件。它不象FTP那样只有一个发送源,BT有多个发送点,当你在下载时,同时也在上传,使大家都处在同步传送的状态。应该说,BT是当今P2P最为成功的一个应用。

如果解释一下的话,BT首先在上传者端把一个文件分成了多个部分,客户端甲在服务器随机下载了第N部分,客户端乙在服务器随机下载了第M部分。这样甲的BT就会根据情况到乙的电脑上去拿乙已经下载好的第M部分,乙的BT就会根据情况去到甲的电脑上去拿甲已经下载好的第N部分。

有一句话可以作为BT最为形象的解释就是:“我为人人,人人为我”。而最初听到此概念时,有人对我说,别用BT,会坏你的硬盘的!大概指的就是前一句。现在看来,没有贡献怎么会有获取?这大概最可以概括BT下载传输的精髓。工具软件BTJoy,将这一技术以软件的形式完美起来,这个诞生仅有一年的软件已经迅速热遍了整个网络——对于BT下载的爱好者来说,120G的硬盘都可以被迅速塞满!我的同学在不长的时间里竟然用他的刻录机完成了一百来部的电视剧的保存,拿他的话来说,可以开一个小店面了!

四、风生水起---P2P是盗版者最好的温床?

在我们尽在说P2P的好时,也不得不想到,就如同历史总是在曲折中前进,任何新事物的发展总不会是一帆风顺的。我们来看下面的日程表:

1999 年 5 月,由范宁和帕克共同创办的文件共享社区网站—Napster正式成立,他们面临的麻烦就由此而起。

12 月 7 日,美国唱片业协会(RIAA)代表环宇音乐、索尼音乐、华纳音乐、百代唱片、BMG等七大唱片公司以违反版权保护法为由把Napster公司推向法庭。他们称Napster向网民提供MP3文件共享软件侵犯了音乐版权,要求法院关闭该公司并赔偿损失1亿美元。

2000 年 4 月 13 日,重金属乐队Metallica起诉 Napster,称其侵犯了自己的版权,并涉嫌诈骗。

6 月 12 日,美国唱片协会(RIAA)和美国音乐出版协会(NMPA)向加利福尼亚州北地区联邦地方法院起诉Napster公司,请求法院禁止在社会上流通Napster公司的MP3文件交换软件“Napster”。

7 月 11 日,参议院就围绕Napster展开的诉讼召开听证会,无果而终。一些议员敦促国会立法,以澄清Napster公司是否违反了知识产权法;而支持Napster一方的人却认为国会不应该现在介入双方的争端,以免影响新技术的发展。

7 月 26 日,Patel同意美国RIAA的要求,作出初步判决,命令Napster立即停止服务。

2001 年 2 月 12 日,美国第九巡回上诉庭作出决定,Napster必须终止其免费互联网服务,并不再向音乐迷提供共享版权保护音乐的服务。

3 月 6 日,美国地区法官Marilyn Hall Patel做出判决, 责令Napster在五个工作日内删除所有存在争议的歌曲。

……

就在今天,就在此时,争议仍然不绝于耳。国外有关于P2P技术的纠纷一发而不可收拾,这种全新的极富生命力的传输方式从一诞生就和音乐,和版权联系在一起。为什么会引起音乐制作商们这么大恐慌?显然是其前所未有的传输速度挑起了他们的不安。在他们极力拦截还没有来得及开始的时候,一首歌曲便以迅雷不及掩耳之势传遍了整个互联网,而更加确切的说应该是全球,这显然是传统的盗版方式所不能比拟的。

五、风景这边独好—P2P在中国

同样,在传统的方法不能奏效的情况下,出版商们便只有从源头上遏制了。不知道国外关于此的争闹还会继续多久,然而在中国却又是另一种风景。众所周知,现阶段中国的版权保护制度和国外还有实质上的差距,这实际上使P2P技术的运用在相当长的一段时间内可以规避版权问题的困扰。按照国内我们的理解,P2P软件提供的只是一个资源共享平台,并不需要对其中传播的内容负主要责任,只要适当地监督引导当然可以大胆运作。从这方面来说,国内的P2P软件厂商处境要比国外的同行幸福很多,路已经有前人开好,又不必像国外的先行者如Napster一样面临官司的压力。而我们面对现状,一个形象的比喻是:你愿意挥汗如雨在天桥淘碟,还是愿意轻松候意在家享受宽带视频下载? 网络传输这种传播方式迟早有一天会取代传统的以磁带、光盘为载体的影视音乐发行渠道,从而成为人们获取影音资源的主要渠道,这似乎已经成了一个不争的事实。看看国外已经进行了多少年的争端,能不能给我们一些启示。在中国这样一个走进任何一家音像店,你都可以用低廉的价格获取几乎与正版没有任何区别的音像制品的情况下,利用新技术的无穷魅力与优势建立一个全新的发行渠道,打破以往那种发行模式才有可能避免切肤之痛。或许,国内的P2P行业有可能比国外的同行更有优势率先实现成熟的商业模式。

★grid★
有一篇报告
http://202.203.132.242/~hukunrong/TechniqueStudy/Grid/GridFundamental/《基于高速网络的网格Grid计算技术》.ppt

‘肆’ 什么是p2p能举一个例子么

P2P是peer-to-peer的缩写,peer在英语里有"(地位、能力等)同等者"、"同事"和"伙伴"等意义。这样一来,P2P也就可以理解为"伙伴对伙伴"的意思,或称为对等联网。目前人们认为其在加强网络上人的交流、文件交换、分布计算等方面大有前途。

P2P还是point to point 点对点下载的意思,他是下载术语,意思是在你自己下载的同时,自己的电脑还要继续做主机上传,这种下载方式,人越多速度越快,但缺点是对你的硬盘损伤比较大(在写的同时还要读),还有就是对你内存利用率占很高,影响整机速度!
参考资料:bk..com/view/3280.htm

‘伍’ P2P是什么哦很爱看到这个字,

P2P是 peer to peer (个人对个人的服务)的简称,一般指的是一种商业模式,比如,个人把钱存入银行或者从银行中贷款,事实上,银行只充当担保者,提供个人对个人的存取或借贷的服务,银行就是P2P中的典型例子。

P2P也指对等计算(Peer to Peer,简称p2p)可以简单的定义成通过直接交换来共享计算机资源和服务,而对等计算模型应用层形成的网络通常称为对等网络。在P2P网络环境中,成千上万台彼此连接的计算机都处于对等的地位,整个网络一般来说不依赖专用的集中服务器。网络中的每一台计算机既能充当网络服务的请求者,又对其它计算机的请求作出响应,提供资源和服务。通常这些资源和服务包括:信息的共享和交换、计算资源(如CPU的共享)、存储共享(如缓存和磁盘空间的使用)等。

‘陆’ 什么叫P2P网络技术

p2p P2P是peer-to-peer的缩写,peer在英语里有"(地位、能力等)同等者"、"同事"和"伙伴"等意义。这样一来,P2P也就可以理解为"伙伴对伙伴"的意思,或称为对等联网。目前人们认为其在加强网络上人的交流、文件交换、分布计算等方面大有前途。 简单的说,P2P直接将人们联系起来,让人们通过互联网直接交互。P2P使得网络上的沟通变得容易、更直接共享和交互,真正地消除中间商。P2P就是人可以直接连接到其他用户的计算机、交换文件,而不是像过去那样连接到服务器去浏览与下载。P2P另一个重要特点是改变互联网现在的以大网站为中心的状态、重返"非中心化",并把权力交还给用户。 P2P看起来似乎很新,但是正如B2C、B2B是将现实世界中很平常的东西移植到互联网上一样,P2P并不是什么新东西。在现实生活中我们每天都按照P2P模式面对面地或者通过电话交流和沟通。 即使从网络看,P2P也不是新概念,P2P是互联网整体架构的基础。互联网最基本的协议TCP/IP并没有客户机和服务器的概念,所有的设备都是通讯的平等的一端。在十年之前,所有的互联网上的系统都同时具有服务器和客户机的功能。当然,后来发展的那些架构在TCP/IP之上的软件的确采用了客户机/服务器的结构:浏览器和Web服务器,邮件客户端和邮件服务器。但是,对于服务器来说,它们之间仍然是对等联网的。以email为例,互联网上并没有一个巨大的、唯一的邮件服务器来处理所有的email,而是对等联网的邮件服务器相互协作把email传送到相应的服务器上去。另外用户之间email则一直对等的联络渠道。 事实上,网络上现有的许多服务可以归入P2P的行列。即时讯息系统譬如ICQ、AOL Instant Messenger、Yahoo Pager、微软的MSN Messenger以及国内的QQ是最流行的P2P应用。它们允许用户互相沟通和交换信息、交换文件。用户之间的信息交流不是直接的,需要有位于中心的服务器来协调。但这些系统并没有诸如搜索这种对于大量信息共享非常重要的功能,这个特征的缺乏可能正为什么即时讯息出现很久但是并没有能够产生如Napster这样的影响的原因之一。 下面试图用三句话来揭示P2P的影响: 对等联网:是只读的网络的终结(Peer-to-peer is the end of the read-only Web) 对等联网:使你重新参与互联网(Peer-to-peer allows you to participate in the Internet again) 对等联网:使网络远离电视(Peer-to-peer steering the Internet away from TV)如上文所言,P2P不是一个新思想,从某些角度看它甚至是整个最初创建互联网的最基本的思想。我们不妨花时间作一点回顾。 一、横空出世---P2P 身为何物? 互联网能够发展至今,根本原因在于其布建的任何一根血脉都是为人与人之间的交流而设置的。而现在能够引起互联网震动的,无非也只有交流方式的变革本身。 如今,在基于网络的各种技术充斥于我们周围之时,恐怕只有很少人不知道P2P的概念了,即便您没有深入探究,但您每日在互联网间进行的活动几乎没有不沾P2P技术的。一个简单的例子,在你使用QQ尽情聊天之时,实际上就享受着P2P技术给你带来的快感与兴奋。P2P技术究竟意味着什么呢?关于P2P技术的两种解释或许可以说明这个问题。 一种解释是,P2P即peer-to-peer。而peer在英语里是“(地位、能力等)同等者”、“同事”和“伙伴”的意思。这样一来,P2P也就可以理解为“伙伴对伙伴”的意思,或称为对等联网,我甚至觉得解释成为person-to-person更好一些。反正交流也都是人的交流。 而另一种解释是,P2P就是一种思想,有着改变整个互联网基础的潜能的思想。客观讲,单从技术角度而言,P2P并未激发出任何重大的创新,而更多的是改变了人们对因特网的理解与认识。正是由于这个原因,IBM早就宣称P2P不是一个技术概念,而是一个社会和经济现象。

‘柒’ 什么是p2p技术,版权谁所有

摘要 P2P(Peer to Peer)网络结构区别于Client/Server结构或Browser/Server结构最显着的特点是整个网络不存在中心节点(或中心服务器),其中的每一个节点(peer)大都同时具有信息消费者、信息提供者和信息通讯等三方面的功能。随着各类数字终端、服务器资源、网络带宽等资源持续保持类摩尔定律式的增长,通过更直接的共享方式来提高沟通效率、减少资源浪费并保障信息服务安全将为信息社会带来新一轮的发展高潮。P2P正是这种新共享方式的主要候选者之一。目前看来,P2P技术为服务共享、分布式计算和信息交流提供了更灵活高效的模式,也为信息安全带来了新挑战和新的安全保障手段。本文将对此作简要介绍。
P2P简介
P2P(Peer-to-Peer,即对等网络)是近年来广受IT业界关注的一个概念。由于广大的网络终端节点(普通用户拥有的节点,即通常意义上的终端设备)的计算和存储能力以及连接带宽随着摩尔定理不断地增长,使用P2P技术将大大提高这些节点的利用率,从而进一步提升网络、设备和信息服务的效能。
P2P之所以吸引人主要在于其在以下两个方面的突出表现:
• 低成本、高可用的超大规模计算和存储资源共享;
• 强大的网络联通性,更直接、更灵活的信息沟通。

目前P2P在加强网络上人的交流、文件交换、分布式计算、服务共享等方面已经充分显示出了其强大的技术优势。

1.1 什么是P2P
大多数人最初是从Napster的品牌中知道P2P网络的。在这种应用中,P2P网络概念用于共享文件。但是,P2P不仅仅是用于文件共享,它还包括建立基于P2P形式的通讯网络、P2P计算或其它资源的共享等很多方面。P2P最根本的思想,同时也是它与C/S最显着的区别在于网络中的节点(peer)既可以获取其它节点的资源或服务同时又是资源或服务的提供者,即兼具Client和Server的双重身份。一般P2P网络中每一个节点所拥有的权利和义务都是对等的,包括通讯、服务和资源消费。
P2P是这样一种分布式网络,其中的参与者共享他们所拥有的一部分硬件资源(处理能力、存储能力、网络连接能力、打印机……),这些共享资源需要由网络提供服务和内容,能被其他peer直接访问而无需经过中间实体。在此网络中的参与者既是资源(服务和内容)提供者,又是资源(服务和内容)获取者。
可以将P2P分为纯(Pure)P2P和混合(Hybrid)P2P两种模式。纯P2P网络中不存在中心实体或服务器,从网络中移去任何一个单独的、任意的终端实体,都不会给网络中的服务带来大的损失。而混合P2P网络中则需要有中心实体来提供部分必要的网络服务,如保存元信息、提供索引或路由、提供安全检验等。

1.2 P2P发展历史
从网络P屠纯矗琍2P并不是新概念,它可以说是互联网整体架构的基础。互联网最基本的协议TCP/IP并没有客户机和服务器的概念,所有的设备都是通讯的平等的一端。在十几年前,所有的互联网上的系统都同时具有服务器和客户机的功能。然而,由于受早期计算机性能、资源等因素的限制,随着互联网规模的迅速扩大,大多数连接到互联网上的普通用户并没有能力提供网络服务,从而逐步形成了以少数服务器为中心的客户机/服务器(Client/Server)架构。WWW的风靡,正是这一应用潮流的体现。在客户机/服务器架构下,对客户机的资源要求非常少,因而可以使用户以非常低廉的成本方便地连接互联网,推动了互联网的快速普及。
但是,随着互联网对人们生活的联系日益紧密和深入,人们需要更直接、更广泛的信息交流。普通用户希望能够更全面地参与到互联网的信息交互中,而计算机和网络性能的提升也使其具有了现实的可能性。在此背景下,P2P再一次受到了广泛的关注。
将P2P带入了网络世界的一个着名例子是Napster。该公司成立于1999年,它提供服务允许音乐迷们交流MP3文件。它与提供免费音乐下载MP3.com的不同就是在Napster服务器没有一首歌曲,Napster提供了一个新的软件供音乐迷在自己的硬盘上共享歌曲文件,搜索其他用户共享的歌曲文件,并到其他也使用Napster服务的用户硬盘上去下载歌曲。Napster在短时间里吸引了5000万用户。最终,它被五大唱片商以侵犯版权推上被告席而成为世界的焦点。Napster的成功促使人们认识到把P2P拓展到整个互联网范围的可能性。
另一个采用P2P方式实现计算资源共享的例子是SETI@home。这是一个寻找外星球文明的大型科研工程。为了快速处理大规模天文数据,该工程将互联网上300万台以上的计算机通过P2P方式组织起来,充分共享这些节点的空闲计算资源(CPU),从而达到了甘瓯Flops的计算能力。
事实上,网络上现有的许多服务可以归入P2P的行列。即时通信系统如ICQ、Yahoo Messenger、MSN Messenger以及OICQ等是都最流行的P2P应用。它们允许用户互相沟通和交换信息、交换文件。但这些系统缺少对于大量信息共享非常重要的一些功能,如搜索。这可能正是为什么即时通讯出现很久但是并没有能够产生如Napster这样的影响的原因之一。
1.3 P2P网络的特点
与其它网络模型相比,P2P具有以下特点:
1.3.1 分散化(Decentralization)
网络中的资源和服务分散在所有节点上,信息的传输和服务的实现都直接在节点之间进行,可以无需中间环节和服务器的介入,避免了可能的瓶颈。
即使是在混合P2P中,虽然在查找资源、定位服务或安全检验等环节需要集中式服务器的参与,但主要的信息交换最终仍然在节点中间直接完成。这样就大大降低了对集中式服务器的资源和性能要求。
分散化是P2P的基本特点,由此带来了其在可扩展性、健壮性等方面的优势。

1.3.2 可扩展性
在传统的C/S架构中,系统能够容纳的用户数量和提供服务的能力主要受服务器的资源限制。为支持互联网上的大量用户,需要在服务器端使用大量高性能的计算机,铺设大带宽的网络。为此机群、cluster等技术纷纷上阵。在此结构下,集中式服务器之间的同步、协同等处理产生了大量的开销,限制了系统规模的扩展。
而在P2P网络中,随着用户的加入,不仅服务的需求增加了,系统整体的资源和服务能力也在同步地扩充,始终能较容易地满足用户的需要。即使在诸如Napster等混合型架构中,由于大部分处理直接在节点之间进行,大大减少了对服务器的依赖,因而能够方便地扩展到数百万个以上的用户。而对于纯P2P来说,整个体系是全分布的,不存在瓶颈。理论上其可扩展性几乎可以认为是无限的。
P2P可扩展性好这一优点已经在一些得到应用的实例中得以证明,如Napster,Gnutella,Freenet等。

1.3.3 健壮性
在互联网上随时可能出现异常情况,网络中断、网络拥塞、节点失效等各种异常事件都会给系统的稳定性和服务持续性带来影响。在传统的集中式服务模式中,集中式服务器成为整个系统的要害所在,一旦发生异常就会影响到所有用户的使用。
而P2P架构则天生具有耐攻击、高容错的优点。由于服务是分散在各个节点之间进行的,部分节点或网络遭到破坏对其它部分的影响很小。而且P2P模型一般在部分节点失效时能够自动调整整体拓扑,保持其它节点的连通性。事实上,P2P网络通常都是以自组织的方式建立起来的,并允许节点自由地加入和离开。一些P2P模型还能够根据网络带宽、节点数、负载等变化不断地做自适应式的调整。

1.3.4 隐私性
随着互联网的普及和计算/存储能力飞速增长,收集隐私信息正在变得越来越容易。隐私的保护作为网络安全性的一个方面越来越被大家所关注。目前的Internet通用协议不支持隐藏通信端地址的功能。攻击者可以监控用户的流量特征,获得IP地址。甚至可以使用一些跟踪软件直接从IP地址追踪到个人用户。
在P2P网络中,由于信息的传输分散在各节点之间进行而无需经过某个集中环节,用户的隐私信息被窃听和泄漏的可能性大大缩小。此外,目前解决Internet隐私问题主要采用中继转发的技术方法,从而将通信的参与者隐藏在众多的网络实体之中。在传统的一些匿名通信系统中,实现这一机制依赖于某些中继服务器节点。而在P2P中,所有参与者都可以提供中继转发的功能,因而大大提高了匿名通讯的灵活性和可靠性,能够为用户提供更好的隐私保护。

1.3.5 高性能
性能优势是P2P被广泛关注的一个重要原因。
随着硬件技术的发展,个人计算机的计算和存储能力以及网络带宽等性能依照摩尔定理高速增长。而在目前的互联网上,这些普通用户拥有的节点只是以客户机的方式连接到网络中,仅仅作为信息和服务的消费者,游离于互联网的边缘。对于这些边际节点的能力来说,存在极大的浪费。
采用P2P架构可以有效地利用互联网中散布的大量普通节点,将计算任务或存储资料分布到所有节点上。利用其中闲置的计算能力或存储空间,达到高性能计算和海量存储的目的。这与当前高性能计算机中普遍采用的分布式计算的思想是一致的。但通过利用网络中的大量空闲资源,可以用更低的成本提供更高的计算和存储能力。

2.P2P技术研究现状
2.1 P2P分类
P2P是一个相对底层的技术,一些共性的问题如节点表示、资源路由、可扩展性、安全性等受到人们的普遍关注。但是,由于应用需求不同,相关的研究侧重点还是有所不同的。从应用角度来看,目前P2P技术研究主要涉及到以下几个领域:
• 提供文件和其它内容共享的P2P网络,例如Napster、Gnutella、CAN、eDonkey、BitTorrent等;
• 挖掘P2P对等计算能力和存储共享能力,例如SETI@home、Avaki、Popular Power等;
• 基于P2P方式的协同处理与服务共享平台,例如JXTA、Magi、Groove、.NET My Service等;
• 即时通讯交流,包括ICQ、OICQ、Yahoo Messenger等;
• 安全的P2P通讯与信息共享,例如CliqueNet、Crowds、Onion Routing等。
上述的分类并不是绝对的。一些系统兼顾了多类功能。
惠普实验室的一篇技术报告[1]中提到的针对P2P研究体系的分类方法也有较好的参考价值。具体如下:

图1. P2P分类参考体系
2.2 P2P网络的共性问题
2.2.1 资源的定位
P2P网络中进行资源定位是首先要解决问题。一般采用三种方式:
• 集中方式索引:每一个节点将自身能够提供共享的内容注册到一个或几个集中式的目录服务器中。查找资源时首先通过服务器定位,然后两个节点之间再直接通讯。例如早期的Napster;这类网络实现简单,但往往需要大的目录服务器的支持,并且系统的健壮性不好。
• 广播方式:没有任何索引信息,内容提交与内容查找都通过相邻接节点直接广播传递。例如Gnutella。一般情况下,采取这种方式的P2P网络对参与节点的带宽要求比较高;
• 动态哈希表的方式: 动态哈希表(Distributed Hash Table, DHT)是大多数P2P网络所采取的资源定位方式。首先将网络中的每一个节点分配虚拟地址(VID),同时用一个关键字(KEY)来表示其可提供的共享内容。取一个哈希函数,这个函数可以将KEY转换成一个哈希值H(KEY)。网络中节点相邻的定义是哈希值相邻。发布信息的时候就把(KEY, VID)二元组发布到具有和H(KEY)相近地址的节点上去,其中VID指出了文档的存储位置。资源定位的时候,就可以快速根据H(KEY)到相近的节点上获取二元组(KEY, VID),从而获得文档的存储位置。不同的DHT算法决定了P2P网络的逻辑拓扑,比如CAN就是一个N维向量空间,而CHORD是一个环形拓扑,TAPESTRY则是一个网状的拓扑。
上述的资源定位方式可以依据不同的P2P应用环境中进行选择,但是人们普遍看好DHT方法。基于DHT的P2P网络在一定程度上可以直接实现内容的定位。一个矛盾的问题是:如果一个节点提供共享的内容表示越复杂,则哈希函数越不好选择,相应的,网络的拓扑结构就越复杂。而如果内容表示简单,则又达不到真正实现依据内容定位的能力。目前大多数DHT方式的P2P网络对节点所提供共享内容的表示都很简单,一般仅仅为文件名。
2.2.2 P2P网络与小世界现象
统计发现,动态更新的P2P网络拓扑结构在一定程度上满足某种规律。如果把握好这种规律,则对P2P网络的健壮性、快速查询及可扩展性都将有非常大的帮助。这种规律近年来在生物学、社会学、生态学等领域也同时存在。很多科学家将这种规律称之为“小世界现象”(SMALL WORLD)[21]。
基于已有的经验和理论成果,可把复杂的网络分成两类,其依据是网络的连通性分布P(k)。P(k)是指网络中一个节点与其他k个节点连通的概率。第一类称为指数网络(exponential networks),是指P(k)成指数分布,例如Watts和Strogatz建议的small world模型。这类网络节点的连接度比较均匀,即基本上每个节点的联结数都近似相等。在这种网络内,网络的分离度(degree of separation)都很小,即任意两个节点之间建立连接的长度都很小;第二类称为可扩展网络(scale-free networks),是指P(k)呈幂数分布(power law)。很多网络,如World-Wide Web,Internet,Gnutella等都属于这一类。这类网络中大多数节点的连接度都不高,少数节点的连接度很高。可以将这些少数节点看成中心节点。这类网络连通性和可扩展性很好,而且非常健壮和可靠,即使有部分节点失效,也不会对整个网络造成过大的影响。但是,它的抗攻击性并不好。攻击者只需对连接度很高的少数节点攻击,就能造成网络的瘫痪。不过,这种攻击的代价很大。小世界现象的另外一个规律是,网络结构与系统性质来自于自组织、成长与竞争。
分离度与幂数分布对P2P网络拓扑结构的构建与发现、动态更新、资源定位(Content Routing)等都有很好的利用价值。

2.2.3 P2P的安全问题
P2P网络系统的开发,除了涉及传统的安全性的领域:身份识别认证、授权、数据完整性、保密性和不可否认性,还有一系列特殊问题亟待解决:
• 在P2P共享网络中普遍存在的知识产权保护问题。
n 在一个无中心的环境中如何选择可靠的资源,即如何建立节点之间的信誉问题;
• P2P带来的新型网络病毒传播模式防阻断问题;
• 基于P2P的隐蔽通讯与隐私保护问题;
• P2P网络服务健壮性与抗毁能力等等。
相关问题的具体论述在后面给出。

2.3 P2P文件共享、存储及检索
内容共享和文件交换是到目前为止最引人注目的P2P应用。高效的大规模内容共享直接推动了P2P技术研究的热潮。基于P2P的内容共享包括P2P文件共享与检索、高速下载、P2P存储等。

2.3.1 P2P文件共享
这一类应用中,每个对等的节点都提供文件内容的共享,同时也可以在整个点对点网络中检索获得其他的节点上存储的资源。这类系统可以分为三类:
• 非结构化P2P系统:这类系统的特点是文件的发布和网络拓扑松散相关。该类方法包括Napster,KaZaA,Morpheus,Gnutella。Napster是包含有中心索引服务器的最早的P2P文件共享系统,存在扩展性和单点失败问题。 Gnutella、Morpheus是纯P2P文件共享系统,后者如今并入前者中;KaZaA是包含有超级节点的混合型P2P文件共享系统。KaZaA、Morpheus、Gnutella等系统采用广播或者受限广播来进行资源定位,具有较好的自组织性和扩展性,适用于互联网个人信息共享。缺点是稀疏资源的召回率低。
• 结构化P2P系统:这类系统的特点是文件的发布和网络拓扑紧密相关。文件按照P2P拓扑中的逻辑地址精确的分布在网络中。这类系统包括CAN、TAPESTRY、CHORD、PASTRY,以及基于这些系统的一些其它文件共享和检索方面的研究实验系统。在这类系统中每个节点都具有虚拟的逻辑地址,并根据地址使所有节点构成一个相对稳定而紧致的拓扑结构。在此拓扑上构造一个存储文件的分布式哈希表DHT,文件根据自身的索引存储到哈希表中。每次检索也是根据文件的索引在DHT中搜索相应的文件。生成文件的索引的方法有三种:根据文件的信息生成的哈希值(HASH),如CFS,OCEANSTORE,PAST,Mnemosyne等;根据文件包含的关键字生成关键字索引;还有根据文件的内容向量索引,如PSearch。
• 松散结构化P2P系统:此类系统介乎结构化和非结构化之间。系统中的每个节点都有分配有虚拟的逻辑地址,但整个系统仍然是松散的网络结构。文件的分布根据文件的索引分配到相近地址的节点上。随着系统的使用,文件被多个检索路径上的节点加以缓存。类似的系统包括Freenet,Freehaven等。相关系统非常强调共享服务的健壮性(安全性)。

2.3.2 P2P分布式存储
P2P分布式存储系统具有类似于上一类系统的功能和构造,但侧重于分布式系统中文件系统管理。此类系统主要包括两个类型:
• 非结构化P2P系统:例如Farsite就属于此类系统。Farsite通过使用密钥加密文件的内容,并把密文的备份发布到可信任的节点上。每个节点根据获得的文件内容,组织成编目的文件系统。
• 结构化P2P系统。此类分布式文件系统基于DHT的思想,将文件发布到DHT上,并组织成树状的文件系统。每个目录都组织成一个描述块的形式,每个描述块都对应一个块的Hash值,每个块中包含有所有子目录描述块的hash值,叶子节点是文件的描述块,所有这些描述块分布在DHT中以供检索。此类系统包括基于CHORD的CFS、基于Tapestry的Oceanstore等。
2.3.3 P2P搜索技术
P2P文件共享首先要解决文件定位的问题。但是基于P2P的文件搜索技术可以独立出来,成为传统的搜索引擎等系统强大的搜索工具。P2P搜索技术使用户能够深度搜索文档。而且这种搜索无需通过Web服务器,也可以不受信息文档格式和宿主设备的限制,可达到传统目录式搜索引擎(只能搜索到20%-30%的网络资源)无可比拟的深度(理论上将包括网络上的所有开放的信息资源)。以P2P技术发展的另一先锋Gnutella进行的搜索为例:一台PC上的Gnutella软件可将用户的搜索请求同时发给网络上另外10台PC。如果搜索请求未得到满足,这10台PC中的每一台都会把该搜索请求转发给另外10台PC。理论上,搜索范围将在几秒钟内以几何级数增长,几分钟内就可搜遍几百万台PC上的信息资源。当然实际环境中还需要考虑网络带宽以及路由优化方面的问题。P2P为互联网的信息搜索提供了一个全新的解决之道。

2.3.4 资源共享的新境界
采用P2P方式实现信息的共享和高速下载蕴含着巨大的商机。Napster由于一开始的知识产权问题而暂时陷入低谷之后,Gnutella紧随其后推出了更具有P2P架构的文件服务模式。为了激发更多的人来提供内容,随后的eDonkey和eMule定义了更方便的交互协议。为了充分利用分布在全球的网络带宽,实现大数据量的信息能够快速大面积下载,由美国旧金山的软件工程师布莱姆•科亨(Bram Cohen)开发的BT(BitTorrent,比特涡流)系统2003年一经推出就产生了很大影响。有人预言BT将领导P2P资源共享的新潮流。
P2P文件共享技术自身在快速发展的同时,相关的应用机会将越来越大。包括基于各种目的的网络内容分发、在线流媒体服务、游戏或其它软件分发等等都开始引入这种新的技术。同时,新应用的引入也将进一步推进P2P文件共享技术的创新步伐。

2.4 对等计算
对等计算是分布式计算的思想在广域网上的延伸,目的是将网络上的CPU资源共享,把网络中众多的普通计算机中暂时不用的计算能力累计起来,用以执行以往需要超级计算机来完成的任务。
在对等计算中,大型的计算任务被分解成很多个小的分片,分别分配给网络中的节点独立执行。实际上可以将P2P看作一个松耦合的分布式计算系统,可以有集中控制节点,也可以是纯P2P架构。受互联网的限制,其子任务之间的同步和数据交换比较少,基本是相互独立的。因而对于那些可以分解的计算密集性任务来说,对等计算是再适合不过的了。在2002年9月破解了RSA公司悬赏的RC5-64密码的组织,正是利用对等计算技术集合了互联网上的331252台计算机才完成了这一巨大的计算量。对等计算的威力由此可见一斑。
许多需要大量数据处理的行业都可以从对等计算中获利,如天气预报、动画制作、基因组的研究等。有了对等计算之后,很多时候就不再需要配备专门的超级计算机了,可以大大降低计算成本。Intel也采用对等计算技术、利用其办公室内的数百台PC机来完成CPU设计的工作,节省了大量的费用。同时对等计算的发展是以PC机资源的有效利用为出发点,自然也受到Intel的极力推崇。SETI@Home利用对等计算技术完成天文方面的运算,也是一个成功的范例。

2.5 协同工作与在线交流
协同工作依托在网络之上。但以传统的WEB方式实现,往往给服务器带来极大的负担,并造成了昂贵的成本支出。而采用P2P技术,可以在互联网上任意两个用户之间建立实时的联系和信息传输,避免了中央服务器产生的网络和处理延迟及性能瓶颈,因而能够更方便、高效地实现用户之间的协同。
最近几年方兴未艾的即时通(Instant Messaging,简称IM)正是实现了用户之间的直接交流,受到了互联网用户的极大欢迎,可以说已经是无处不在。目前很多公司正努力将这种方式应用到企业级的协同工作平台中来,已经推出了一些产品。由于其具有成本低廉、平均事务处理能力较高、可动态扩展等优良品性,并能够有效地提高信息交流和沟通效率,未来P2P技术在企业级协同工作领域有着很好的应用前景。
另外一个很有前景的应用就是基于P2P方式的网络游戏。目前已经有一些公司开始关注这方面的研发工作。
3 与P2P相关的几个信息安全问题
3.1 P2P信息共享与知识产权保护
在P2P共享网络中普遍存在着知识产权保护问题。尽管目前Gnutella、Kazaa等P2P共享软件宣传其骨干服务器上并没有存储任何涉及产权保护的内容的备份,而仅仅是保存了各个内容在互联网上的存储索引。但无疑的是,P2P共享软件的繁荣加速了盗版媒体的分发,提高了知识产权保护的难点。美国唱片工业协会RIAA(Recording Instry Association of America)与这些共享软件公司展开了漫长的官司拉锯战,着名的Napster便是这场战争的第一个牺牲者。另一个涉及面很关的战场则是RIAA和使用P2P来交换正版音乐的平民。从2004年1月至今RIAA已提交了1000份有关方面的诉讼。尽管如此,至今每个月仍然有超过150,000,000的歌曲在网络上被自由下载。后Napster时代的P2P共享软件较Napster更具有分散性,也更难加以控制。即使P2P共享软件的运营公司被判违法而关闭,整个网络仍然会存活,至少会正常工作一段时间。
另一方面,Napster以后的P2P共享软件也在迫切寻找一个和媒体发布厂商的共生互利之道。如何更加合法合理的应用这些共享软件,是一个新时代的课题。毕竟P2P除了共享盗版软件,还可以共享相当多的有益的信息。
网络社会与自然社会一样,其自身具有一种自发地在无序和有序之间寻找平衡的趋势。P2P技术为网络信息共享带来了革命性的改进,而这种改进如果想要持续长期地为广大用户带来好处,必须以不损害内容提供商的基本利益为前提。这就要求在不影响现有P2P共享软件性能的前提下,一定程度上实现知识产权保护机制。目前,已经有些P2P厂商和其它公司一起在研究这样的问题。这也许将是下一代P2P共享软件面临的挑战性技术问题之一。

3.2 对等诚信
为使得P2P技术在更多的商业环境里发挥作用,必须考虑到网络节点之间的信任问题。集中式的节点信任管理既复杂又不一定可靠。所以在P2P网络中应该考虑对等诚信模型。实际上,对等诚信由于具有灵活性、针对性并且不需要复杂的集中管理,可能是未来各种网络加强信任管理的必然选择,而不仅仅局限于对等网络。
对等诚信的一个关键是量化节点的信誉度。或者说需要建立一个基于P2P的信誉度模型。信誉度模型通过预测网络的状态来提高分布式系统的可靠性。一个比较成功的信誉度应用例子是在线拍卖系统eBay。在eBay的信誉度模型中,买卖双方在每次交易以后可以相互提升信誉度;一名用户的总的信誉度为过去6个月中这些信誉度的总和。eBay依靠一个中心来管理和存储信誉度。同样,在一个分布式系统中,对等点也可以在每次交易以后相互提升信誉度,就象在eBay中一样。例如,对等点i每次从j下载文件时,它的信誉度就提升(+1)或降低(-1)。如果被下载的文件是不可信的,或是被篡改过的,或者下载被中断等,则对等点i会把本次交易的信誉度记为负值(-1)。就象在eBay中一样,我们可以把局部信誉度 定义为对等点i从对等点j下载文件的所有交易的信誉度之和。
每个对等点i可以存贮它自身与对等点j的满意的交易数 ,以及不满意的交易数 ,则 可定义为:
= -
文献[2][3]对P2P系统的信誉度讨论所采用的方法类似于局部信誉度方法。文献[4]对信誉度信息进行了更为综合的考虑,然而并没有给出任何具体的算法以计算每个对等点的信誉度值。文献[5]讨论了在P2P匿名系统中如何采用信誉度模型以选择可靠的资源,并对匿名环境中如何应用信誉度模型给出了一些建议。对分布式环境中信誉度机制的挑战是如何在无中央管理的情况下对局部信誉度 进行聚合。在聚合过程中经常出现的两个问题,一是如果对对等节点的信誉度聚合仅限于某个局部范围内,就不能得到节点的更为全面的信誉度值;二是如果在全局范围内聚合,由于要查询每个对等点的局部信誉度会导致网络拥塞。

3.3 P2P带来的新型网络病毒传播问题
随着计算机网络应用的深入发展,计算机病毒对信息安全的威胁日益增加。特别是在P2P环境下,方便的共享和快速的选路机制,为某些网络病毒提供了更好的入侵机会。
由于P2

‘捌’ P2P是什么意思在计算机中有什么应用

1、对等计
算(Peer to
Peer,简称p2p)可以简单的定义成通过直接交换来共享计算机资源和服务,而对等计算模型应用层形成的网络通常称为对等网络。在P2P网络环境中,成
千上万台彼此连接的计算机都处于对等的地位,整个网络一般来说不依赖专用的集中服务器。网络中的每一台计算机既能充当网络服务的请求者,又对其它计算机的
请求作出响应,提供资源和服务。通常这些资源和服务包括:信息的共享和交换、计算资源(如CPU的共享)、存储共享(如缓存和磁盘空间的使用)等。
2、网络特点
(1)网络中计算机的数量比较少,一般对等网络的计算机数目在10台以内,所以对等网络比较简单。
(2)对等网络分布范围比较小,通常在一间办公室或一个家庭内。
(3)网络安全管理分散,因此数据保密性差。
(4)通过最直接交换来共享资源和服务、采用非集中式,各结点地位平等,兼作服务器和客户机。由于对等网络不需要专门的服务器来做网络支持,也不需要其他的组件来提高网络的性能,因而组网成本较低、适用于人员少,故常用于网络较少的中小型企业或家庭中。

‘玖’ 通俗的解释一下什么是p2p软件,(百度太长了看不懂),举个例子讲讲有什么用

1.p2p软件是指运用了P2P原理的软件
2.P2P为对等技术,点对点等有几种说法,不必关心
3.举个例子:平时我们下载东西,一般都认为是从服务器上下载,但是运用了P2P以后我们在下载的同时我们也会上传,即别人也会从我们的计算机上下载东西,网络上的任何一台电脑都有可能在扮演服务器的角色,这也就是下载的人越多,速度会越快的道理。
希望你能理解,谢谢!

‘拾’ 举例说明什么是P2P技术

P2P是英文person-to-person(或peer-to-peer)的缩写,意即个人对个人(伙伴对伙伴)。又称点对点网络借款,是一种将小额资金聚集起来借贷给有资金需求人群的一种民间小额借贷模式。属于互联网金融(ITFIN)产品的一种。属于民间小额借贷,借助互联网、移动互联网技术的网络信贷平台及相关理财行为、金融服务。
2016年8月,银监会向各家银行下发了《网络借贷资金存管业务指引(征求意见稿)》(以下简称《征求意见稿》)。《征求意见稿》不仅对开展存管业务的银行提出了一定的资质要求,对于接入的平台也提出了在工商登记注册地地方金融监管部门完成备案登记、按照通信主管部门的相关规定申请获得相应的电信业务经营许可等五项要求。最受业内关注的一条是,存管银行不应外包或由合作机构承担,不得委托网贷机构和第三方机构代开出借人和借款人交易结算资金账户。2016年10月13日,国务院办公厅发布《互联网金融风险专项整治工作实施方案的通知》。

阅读全文

与p2p计算机网络例子相关的资料

热点内容
思科ccna和网络工程师哪个好 浏览:43
王者荣耀网络用哪个dns 浏览:927
如何在虚拟机里面拼接网络 浏览:660
设置更多的网络在哪里 浏览:361
网络机顶盒wifi连接上 浏览:553
网络文化学校的学费是多少 浏览:198
网络电话app软件 浏览:849
中国移动网络电视怎么连接无线 浏览:110
形容无线网络好的词语 浏览:574
路由器装好后电脑没网络 浏览:355
天津大学网络教育工商管理本科学的哪些科目 浏览:906
网购网络安全宣传 浏览:374
联想的无线网络开关 浏览:261
重庆看电视网络哪个好 浏览:54
嵊州移动网络服务来电咨询 浏览:147
台式电脑怎样查看网络图 浏览:225
网络接收机改成路由器 浏览:367
网络的运营者包括哪些 浏览:919
网络机顶盒如何备份原系统 浏览:1001
电视怎么连接隐藏无线网络 浏览:914

友情链接