人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型BP网络,即误差逆传播神经网络是最常用,最流行的神经网络.BP网络的输入和输出关系可以看成是一种映射关系,即每一组输入对应一组输出.BP算法是最着名的多层前向网络训练算法,尽管存在收敛速度慢,局部极值等缺点,但可通过各种改进措施来提高它的收敛速度,克服局部极值现象,而且具有简单,易行,计算量小,并行性强等特点,目前仍是多层前向网络的首选算法.
多层前向BP网络的优点:
网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题;
网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;
网络具有一定的推广、概括能力。
多层前向BP网络的问题:
从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;
网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。
难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;
网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题;
新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;
网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律
由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;
存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;
为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。
Ⅱ 前馈神经网络、BP神经网络、卷积神经网络的区别与联系
一、计算方法不同
1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。
2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。
3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。
二、用途不同
1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。
2、BP神经网络:
(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;
(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;
(3)分类:把输入向量所定义的合适方式进行分类;
(4)数据压缩:减少输出向量维数以便于传输或存储。
3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。
联系:
BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。
三、作用不同
1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。
2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。
3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。
(2)bp神经网络全连接优点扩展阅读:
1、BP神经网络优劣势
BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。
②容易陷入局部极小值。
③网络层数、神经元个数的选择没有相应的理论指导。
④网络推广能力有限。
2、人工神经网络的特点和优越性,主要表现在以下三个方面
①具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。
②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
③具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
Ⅲ 什么是BP神经网络
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。
Ⅳ BP神经网络(误差反传网络)
虽然每个人工神经元很简单,但是只要把多个人工
神经元按一定方式连接起来就构成了一个能处理复杂信息的神经网络。采用BP算法的多层前馈网络是目前应用最广泛的神经网络,称之为BP神经网络。它的最大功能就是能映射复杂的非线性函数关系。
对于已知的模型空间和数据空间,我们知道某个模型和他对应的数据,但是无法写出它们之间的函数关系式,但是如果有大量的一一对应的模型和数据样本集合,利用BP神经网络可以模拟(映射)它们之间的函数关系。
一个三层BP网络如图8.11所示,分为输入层、隐层、输出层。它是最常用的BP网络。理论分析证明三层网络已经能够表达任意复杂的连续函数关系了。只有在映射不连续函数时(如锯齿波)才需要两个隐层[8]。
图8.11中,X=(x1,…,xi,…,xn)T为输入向量,如加入x0=-1,可以为隐层神经元引入阀值;隐层输出向量为:Y=(y1,…,yi,…,ym)T,如加入y0=-1,可以为输出层神经元引入阀值;输出层输出向量为:O=(o1,…,oi,…,ol)T;输入层到隐层之间的权值矩阵用V表示,V=(V1,…,Vj,…,Vl)T,其中列向量Vj表示隐层第j个神经元的权值向量;隐层到输出层之间的权值矩阵用W表示,W=(W1,…,Wk,…,Wl)T,
其中列向量Wk表示输出层第k个神经元的权值向量。
图8.11 三层BP网络[8]
BP算法的基本思想是:预先给定一一对应的输入输出样本集。学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经过各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播。将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有神经元,获得各层的误差信号,用它们可以对各层的神经元的权值进行调整(关于如何修改权值参见韩立群着作[8]),循环不断地利用输入输出样本集进行权值调整,以使所有输入样本的输出误差都减小到满意的精度。这个过程就称为网络的学习训练过程。当网络训练完毕后,它相当于映射(表达)了输入输出样本之间的函数关系。
在地球物理勘探中,正演过程可以表示为如下函数:
d=f(m) (8.31)
它的反函数为
m=f-1(d) (8.32)
如果能够获得这个反函数,那么就解决了反演问题。一般来说,难以写出这个反函数,但是我们可以用BP神经网络来映射这个反函数m=f-1(d)。对于地球物理反问题,如果把观测数据当作输入数据,模型参数当作输出数据,事先在模型空间随机产生大量样本进行正演计算,获得对应的观测数据样本,利用它们对BP网络进行训练,则训练好的网络就相当于是地球物理数据方程的反函数。可以用它进行反演,输入观测数据,网络就会输出它所对应的模型。
BP神经网络在能够进行反演之前需要进行学习训练。训练需要大量的样本,产生这些样本需要大量的正演计算,此外在学习训练过程也需要大量的时间。但是BP神经网络一旦训练完毕,在反演中的计算时间可以忽略。
要想使BP神经网络比较好地映射函数关系,需要有全面代表性的样本,但是由于模型空间的无限性,难以获得全面代表性的样本集合。用这样的样本训练出来的BP网络,只能反映样本所在的较小范围数据空间和较小范围模型空间的函数关系。对于超出它们的观测数据就无法正确反演。目前BP神经网络在一维反演有较多应用,在二维、三维反演应用较少,原因就是难以产生全面代表性的样本空间。
Ⅳ BP人工神经网络
人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。
岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。
BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。
BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:
(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。但在实际操作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。
(2)BP网络模型其计算速度较慢、无法表达预测量与其相关参数之间亲疏关系。
(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。
(4)BP人工神经网络系统具有非线性、智能的特点。较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。
Ⅵ BP神经网络应用最为广泛 可比起其他网络的特殊优势在哪呢
泛化性好,鲁棒性强,有理论验证