导航:首页 > 手机网络 > 下一代移动网络联盟会议

下一代移动网络联盟会议

发布时间:2023-07-28 12:50:19

❶ 华为5G技术在世界范围算啥水平与三星比哪一个更厉害

先回答你的问题,华为5G世界第一,比三星厉害。

现在你知道谁厉害了吗?

❷ 网络会议平台排名

1、ZOOM

Zoom(Zoom Cloud Meetings)是一款超级好用的视频会议软件,界面简洁大方,支持多种方式通知参会人员并智能签到,还提供多种会控功能,让你轻松开会,邮件会议备忘两不误。

❸ TCP/IP、SIP协议

TCP/IP协议 (传输控制协议/网间协议)

TCP/IP 协议集确立了 Internet 的技术基础。TCP/IP 的发展始于美国 DOD (国防部)方案。 IAB (Internet 架构委员会)的下属工作组 IETF (Internet 工程任务组)研发了其中多数协议。 IAB 最初由美国政府发起,如今转变为公开而自治的机构。IAB 协同研究和开发 TCP/IP 协议集的底层结构,并引导着 Internet 的发展。TCP/IP 协议集记录在请求注解(RFC)文件中,RFC 文件均由 IETF 委员会起草、讨论、传阅及核准。所有这些文件都是公开且免费的,且能在 IETF 网站上列出的参考文献中找到。
TCP/IP 协议覆盖了 OSI 网络结构七层模型中的六层,并支持从交换(第二层)诸如多协议标记交换,到应用程序诸如邮件服务方面的功能。TCP/IP 的核心功能是寻址和路由选择(网络层的 IP/IPV6 )以及传输控制(传输层的 TCP、UDP)。

IP (网际协议)

在网络通信中,网络组件的寻址对信息的路由选择和传输来说是相当关键的。相同网络中的两台机器间的消息传输有各自的技术协定。LAN 是通过提供6字节的唯一标识符(“MAC”地址)在机器间发送消息的。SNA 网络中的每台机器都有一个逻辑单元及与其相应的网络地址。DECNET、AppleTalk 和 Novell IPX 均有一个用来分配编号到各个本地网和工作站的配置。

除了本地或特定提供商的网络地址,IP 为世界范围内的各个网络设备都分配了一个唯一编号,即 IP 地址。IPV4 的 IP 地址为4字节,按照惯例,将每个字节转化成十进制(0-255)并以点分隔各字节。IPV6 的 IP 地址已经增加到16字节。关于 IP 和 IPV6 协议的详细说明,在相关文件中再另作介绍。

TCP (传输控制协议)

通过序列化应答和必要时重发数据包,TCP 为应用程序提供了可靠的传输流和虚拟连接服务。TCP 主要提供数据流转送,可靠传输,有效流控制,全双工操作和多路传输技术。可查阅 TCP 部分获取更多详细资料。

在下面的 TCP/IP 协议表格中,我们根据协议功能和其在 OSI 七层网络通信参考模型的映射关系将其全部列出。然而,TCP/IP 并不完全遵循 OSI 模型,例如:大多数 TCP/IP 应用程序是直接在传输层协议 TCP 和 UDP 上运行,而不涉及其中的表示层和会话层。

主要协议表

IP TCP UDP IPsec HTTP POP3 SNMP MPLS DNS SMTP

应用层(Application Layer)

--------------------------------------------------------------------------------

BOOTP:引导协议 (BOOTP:Bootstrap Protocol)
DCAP:数据转接客户访问协议 (DCAP:Data Link Switching Client Access Protocol)
DHCP:动态主机配置协议 (DHCP:Dynamic Host Configuration Protocol)
DNS:域名系统(服务)系统 (DNS:Domain Name Systems)
Finger:用户信息协议 (Finger:User Information Protocol)
FTP:文件传输协议 (FTP:File Transfer Protocol)
HTTP:超文本传输协议 (HTTP:Hypertext Transfer Protocol)
S-HTTP:安全超文本传输协议 (S-HTTP:Secure Hypertext Transfer Protocol)
IMAP & IMAP4:信息访问协议 & 信息访问协议第4版 (IMAP & IMAP4:Internet Message Access Protocol)
IPDC:IP 设备控制 (IPDC:IP Device Control)
IRCP/IRC:因特网在线聊天协议 (IRCP/IRC:Internet Relay Chat Protocol)
LDAP:轻量级目录访问协议 (LDAP:Lightweighted Directory Access Protocol)
MIME/S-MIME/Secure MIME:多用途网际邮件扩充协议 (MIME/S-MIME/Secure MIME:Multipurpose Internet Mail Extensions)
NAT:网络地址转换 (NAT:Network Address Translation)
NNTP:网络新闻传输协议 (NNTP:Network News Transfer Protocol)
NTP:网络时间协议 (NTP:Network Time Protocol)
POP&POP3:邮局协议 (POP & POP3:Post Office Protocol)
RLOGIN:远程登录命令 (RLOGIN:Remote Login in Unix)
RMON:远程监控 (RMON:Remote Monitoring MIBs in SNMP)
RWhois:远程目录访问协议 (RWhois Protocol)
SLP:服务定位协议 (SLP:Service Location Protocol)
SMTP:简单邮件传输协议 (SMTP:Simple Mail Transfer Protocol)
SNMP:简单网络管理协议 (SNMP:Simple Network Management Protocol)
SNTP:简单网络时间协议 (SNTP:Simple Network Time Protocol)
TELNET:TCP/IP 终端仿真协议 (TELNET:TCP/IP Terminal Emulation Protocol)
TFTP:简单文件传输协议 (TFTP:Trivial File Transfer Protocol)
URL:统一资源管理 (URL:Uniform Resource Locator)
X-Window/X Protocol:X 视窗 或 X 协议(X-Window:X Window or X Protocol or X System)

表示层(Presentation Layer)

--------------------------------------------------------------------------------

LPP:轻量级表示协议 (LPP:Lightweight Presentation Protocol)

会话层(Session Layer)

--------------------------------------------------------------------------------

RPC:远程过程调用协议 (RPC:Remote Procere Call protocol)

传输层(Transport Layer)

--------------------------------------------------------------------------------

ITOT:基于TCP/IP 的 ISO 传输协议 (ITOT:ISO Transport Over TCP/IP)
RDP:可靠数据协议 (RDP:Reliable Data Protocol)
RUDP:可靠用户数据报协议 (RUDP:Reliable UDP)
TALI:传输适配层接口 (TALI:Transport Adapter Layer Interface)
TCP:传输控制协议 (TCP:Transmission Control Protocol)
UDP:用户数据报协议 (UDP:User Datagram Protocol)
Van Jacobson:压缩 TCP 协议 (Van Jacobson:Compressed TCP)

网络层(Network Layer)

--------------------------------------------------------------------------------

路由选择(Routing)
BGP/BGP4:边界网关协议 (BGP/BGP4:Border Gateway Protocol)
EGP:外部网关协议(EGP:Exterior Gateway Protocol)
IP:网际协议 (IP:Internet Protocol)
IPv6:网际协议第6版 (IPv6:Internet Protocol version 6)
ICMP/ICMPv6:Internet 信息控制协议 (ICMP/ICMPv6:Internet Control Message Protocol)
IRDP:ICMP 路由器发现协议 (IRDP:ICMP Router Discovery Protocol)
Mobile IP: 移动 IP (Mobile IP:IP Mobility Support Protocol for IPv4 & IPv6)
NARP:NBMA 地址解析协议 (NARP:NBMA Address Resolution Protocol)
NHRP:下一跳解析协议 (NHRP:Next Hop Resolution Protocol)
OSPF:开放最短路径优先 (OSPF:Open Shortest Path First)
RIP/RIP2:路由选择信息协议 (RIP/RIP2:Routing Information Protocol)
RIPng:路由选择信息协议下一代 (RIPng:RIP for IPv6)
RSVP:资源预留协议 (RSVP:Resource ReSerVation Protocol)
VRRP:虚拟路由器冗余协议 (VRRP:Virtual Router Rendancy Protocol)

组播(Multicast)
BGMP:边界网关组播协议 (BGMP:Border Gateway Multicast Protocol)
DVMRP:距离矢量组播路由协议 (DVMRP:Distance Vector Multicast Routing Protocol)
IGMP:Internet 组管理协议 (IGMP:Internet Group Management Protocol)
MARS:组播地址解析服务 (MARS:Multicast Address Resolution Server)
MBGP:组播协议边界网关协议 (MBGP:Multiprotocol BGP)
MOSPF:组播OSPF (MOSPF:Multicast OSPF)
MSDP:组播源发现协议 (MSDP:Multicast Source Discovery Protocol)
MZAP:组播区域范围公告协议 (MZAP:Multicast Scope Zone Announcement Protocol)
PGM:实际通用组播协议 (PGM:Pragmatic General Multicast Protocol)
PIM-DM:密集模式独立组播协议 (PIM-DM:Protocol Independent Multicast - Dense Mode)
PIM-SM:稀疏模式独立组播协议 (PIM-SM:Protocol Independent Multicast - Sparse Mode)

MPLS 协议(MPLS Protocols)
CR-LDP:基于路由受限标签分发协议 (CR-LDP: Constraint-Based Label Distribution Protocol)
GMPLS:通用多协议标志交换协议 (GMPLS:Generalized Multiprotocol Label Switching)
LDP:标签分发协议 (LDP:Label Distribution Protocol)
MPLS:多协议标签交换 (MPLS:Multi-Protocol Label Switching)
RSVP-TE:基于流量工程扩展的资源预留协议 (RSVP-TE:Resource ReSerVation Protocol-Traffic Engineering)

数据链路层(Data Link Layer)

--------------------------------------------------------------------------------

ARP and InARP:地址转换协议和逆向地址转换协议 (ARP and InARP:Address Resolution Protocol and Inverse ARP)
IPCP and IPv6CP:IP控制协议和IPV6控制协议 (IPCP and IPv6CP:IP Control Protocol and IPv6 Control Protocol)
RARP:反向地址转换协议 (RARP:Reverse Address Resolution Protocol)
SLIP:串形线路 IP (SLIP:Serial Line IP)

SIP
介绍

新一代的服务

历史回顾

SIP 的优点:类似 Web 的可扩展开放通信

SIP 会话构成

介绍

通信提供商及其合作伙伴和用户越来越渴求新一代基于 IP 的服务。现在有了 SIP(会话启动协议),一解燃眉之急。SIP 是不到十年前在计算机科学实验室诞生的一个想法。它是第一个适合各种媒体内容而实现多用户会话的协议,现在已成了 Internet 工程任务组 (IETF) 的规范。

今天,越来越多的运营商、CLEC(竞争本地运营商)和 ITSP(IP 电话服务商)都在提供基于 SIP 的服务,如市话和长途电话技术、在线信息和即时消息、IP Centrex/Hosted PBX、语音短信、push-to-talk(按键通话)、多媒体会议等等。独立软件供应商 (ISV) 正在开发新的开发工具,用来为运营商网络构建基于 SIP 的应用程序以及 SIP 软件。网络设备供应商 (NEV) 正在开发支持 SIP 信令和服务的硬件。现在,有众多 IP 电话、用户代理、网络代理服务器、VOIP 网关、媒体服务器和应用服务器都在使用 SIP。

SIP 从类似的权威协议--如 Web 超文本传输协议 (HTTP) 格式化协议以及简单邮件传输协议 (SMTP) 电子邮件协议--演变而来并且发展成为一个功能强大的新标准。但是,尽管 SIP 使用自己独特的用户代理和服务器,它并非自成一体地封闭工作。SIP 支持提供融合的多媒体服务,与众多负责身份验证、位置信息、语音质量等的现有协议协同工作。

本白皮书对 SIP 及其作用进行了概括性的介绍。它还介绍了 SIP 从实验室开发到面向市场的过程。本白皮书说明 SIP 提供哪些服务以及正在实施哪些促进发展的方案。它还详细介绍了 SIP 与各种协议不同的重要特点并说明如何建立 SIP 会话。

返回页首

新一代的服务

SIP 较为灵活,可扩展,而且是开放的。它激发了 Internet 以及固定和移动 IP 网络推出新一代服务的威力。SIP 能够在多台 PC 和电话上完成网络消息,模拟 Internet 建立会话。

与存在已久的国际电信联盟 (ITU) SS7 标准(用于呼叫建立)和 ITU H.323 视频协议组合标准不同,SIP 独立工作于底层网络传输协议和媒体。它规定一个或多个参与方的终端设备如何能够建立、修改和中断连接,而不论是语音、视频、数据或基于 Web 的内容。

SIP 大大优于现有的一些协议,如将 PSTN 音频信号转换为 IP 数据包的媒体网关控制协议 (MGCP)。因为 MGCP 是封闭的纯语音标准,所以通过信令功能对其进行增强比较复杂,有时会导致消息被破坏或丢弃,从而妨碍提供商增加新的服务。而使用 SIP,编程人员可以在不影响连接的情况下在消息中增加少量新信息。

例如,SIP 服务提供商可以建立包含语音、视频和聊天内容的全新媒体。如果使用 MGCP、H.323 或 SS7 标准,则提供商必须等待可以支持这种新媒体的协议新版本。而如果使用 SIP,尽管网关和设备可能无法识别该媒体,但在两个大陆上设有分支机构的公司可以实现媒体传输。

而且,因为 SIP 的消息构建方式类似于 HTTP,开发人员能够更加方便便捷地使用通用的编程语言(如 Java)来创建应用程序。对于等待了数年希望使用 SS7 和高级智能网络 (AIN) 部署呼叫等待、主叫号码识别以及其他服务的运营商,现在如果使用 SIP,只需数月时间即可实现高级通信服务的部署。

这种可扩展性已经在越来越多基于 SIP 的服务中取得重大成功。Vonage 是针对用户和小企业用户的服务提供商。它使用 SIP 向用户提供 20,000 多条数字市话、长话及语音邮件线路。Deltathree 为服务提供商提供 Internet 电话技术产品、服务和基础设施。它提供了基于 SIP 的 PC 至电话解决方案,使 PC 用户能够呼叫全球任何一部电话。Denwa Communications 在全球范围内批发语音服务。它使用 SIP 提供 PC 至 PC 及电话至 PC 的主叫号码识别、语音邮件,以及电话会议、统一通信、客户管理、自配置和基于 Web 的个性化服务。

某些权威人士预计,SIP 与 IP 的关系将发展成为类似 SMTP 和 HTTP 与 Internet 的关系,但也有人说它可能标志着 AIN 的终结。迄今为止,3G 界已经选择 SIP 作为下一代移动网络的会话控制机制。Microsoft 已经选择 SIP 作为其实时通信策略并在 Microsoft XP、Pocket PC 和 MSN Messenger 中进行了部署。Microsoft 同时宣布 CE.net 的下一个版本将使用基于 SIP 的 VoIP 应用接口层,并承诺向用户 PC 提供基于 SIP 的语音和视频呼叫。

另外,MCI 正在使用 SIP 向 IP 通信用户部署高级电话技术服务。用户将能够通知主叫方自己是否有空以及首选的通信方式,如电子邮件、电话或即时消息。利用在线信息,用户还能够即时建立聊天会话和召开音频会议。使用 SIP 将不断地实现各种功能。

返回页首

历史回顾

SIP 出现于二十世纪九十年代中期,源于哥伦比亚大学计算机系副教授 Henning Schulzrinne 及其研究小组的研究。Schulzrinne 教授除与人共同提出通过 Internet 传输实时数据的实时传输协议 (RTP) 外,还与人合作编写了实时流传输协议 (RTSP) 标准提案,用于控制音频视频内容在 Web 上的流传输。

Schulzrinne 本来打算编写多方多媒体会话控制 (MMUSIC) 标准。1996 年,他向 IETF 提交了一个草案,其中包含了 SIP 的重要内容。1999 年,Shulzrinne 在提交的新标准中删除了有关媒体内容方面的无关内容。随后,IETF 发布了第一个 SIP 规范,即 RFC 2543。虽然一些供应商表示了担忧,认为 H.323 和 MGCP 协议可能会大大危及他们在 SIP 服务方面的投资,IETF 继续进行这项工作,于 2001 年发布了 SIP 规范 RFC 3261。

RFC 3261 的发布标志着 SIP 的基础已经确立。从那时起,已发布了几个 RFC 增补版本,充实了安全性和身份验证等领域的内容。例如,RFC 3262 对临时响应的可靠性作了规定。RFC 3263 确立了 SIP 代理服务器的定位规则。RFC 3264 提供了提议/应答模型,RFC 3265 确定了具体的事件通知。

早在 2001 年,供应商就已开始推出基于 SIP 的服务。今天,人们对该协议的热情不断高涨。Sun Microsystems 的 Java Community Process 等组织正在使用通用的 Java 编程语言定义应用编程接口 (API),以便开发商能够为服务提供商和企业构建 SIP 组件和应用程序。最重要的是,越来越多的竞争者正在借助前途光明的新服务进入 SIP 市场。SIP 正在成为自 HTTP 和 SMTP 以来最为重要的协议之一。

返回页首

SIP 的优点:类似 Web 的可扩展开放通信

使用 SIP,服务提供商可以随意选择标准组件,快速驾驭新技术。不论媒体内容和参与方数量,用户都可以查找和联系对方。SIP 对会话进行协商,以便所有参与方都能够就会话功能达成一致以及进行修改。它甚至可以添加、删除或转移用户。

不过,SIP

不是万能的。它既不是会话描述协议,也不提供会议控制功能。为了描述消息内容的负载情况和特点,SIP 使用 Internet 的会话描述协议 (SDP) 来描述终端设备的特点。SIP 自身也不提供服务质量 (QoS),它与负责语音质量的资源保留设置协议 (RSVP) 互操作。它还与若干个其他协议进行协作,包括负责定位的轻型目录访问协议 (LDAP)、负责身份验证的远程身份验证拨入用户服务 (RADIUS) 以及负责实时传输的 RTP 等多个协议。

SIP 规定了以下基本的通信要求:

1. 用户定位服务

2. 会话建立

3. 会话参与方管理

4. 特点的有限确定

SIP 的一个重要特点是它不定义要建立的会话的类型,而只定义应该如何管理会话。有了这种灵活性,也就意味着 SIP 可以用于众多应用和服务中,包括交互式游戏、音乐和视频点播以及语音、视频和 Web 会议。

下面是 SIP 在新的信令协议中出类拔萃的一些其他特点

SIP 消息是基于文本的,因而易于读取和调试。新服务的编程更加简单,对于设计人员而言更加直观。

SIP 如同电子邮件客户机一样重用 MIME 类型描述,因此与会话相关的应用程序可以自动启动。

SIP 重用几个现有的比较成熟的 Internet 服务和协议,如 DNS、RTP、RSVP 等。不必再引入新服务对 SIP 基础设施提供支持,因为该基础设施很多部分已经到位或现成可用。

对 SIP 的扩充易于定义,可由服务提供商在新的应用中添加,不会损坏网络。网络中基于 SIP 的旧设备不会妨碍基于 SIP 的新服务。例如,如果旧 SIP 实施不支持新的 SIP 应用所用的方法/标头,则会将其忽略。

SIP 独立于传输层。因此,底层传输可以是采用 ATM 的 IP。SIP 使用用户数据报协议 (UDP) 以及传输控制协议 (TCP),将独立于底层基础设施的用户灵活地连接起来。

SIP 支持多设备功能调整和协商。如果服务或会话启动了视频和语音,则仍然可以将语音传输到不支持视频的设备,也可以使用其他设备功能,如单向视频流传输功能。

返回页首

SIP 会话构成

SIP 会话使用多达四个主要组件:SIP 用户代理、SIP 注册服务器、SIP 代理服务器和 SIP 重定向服务器。这些系统通过传输包括了 SDP 协议(用于定义消息的内容和特点)的消息来完成 SIP 会话。下面概括性地介绍各个 SIP 组件及其在此过程中的作用。

SIP 用户代理 (UA) 是终端用户设备,如用于创建和管理 SIP 会话的移动电话、多媒体手持设备、PC、PDA 等。用户代理客户机发出消息。用户代理服务器对消息进行响应。

SIP 注册服务器是包含域中所有用户代理的位置的数据库。在 SIP 通信中,这些服务器会检索参与方的 IP 地址和其他相关信息,并将其发送到 SIP 代理服务器。

SIP 代理服务器接受 SIP UA 的会话请求并查询 SIP 注册服务器,获取收件方 UA 的地址信息。然后,它将会话邀请信息直接转发给收件方 UA(如果它位于同一域中)或代理服务器(如果 UA 位于另一域中)。

SIP 重定向服务器允许 SIP 代理服务器将 SIP 会话邀请信息定向到外部域。SIP 重定向服务器可以与 SIP 注册服务器和 SIP 代理服务器同在一个硬件上。

以下几个情景说明 SIP 组件之间如何进行协调以在同一域和不同域中的 UA 之间建立 SIP 会话:

在同一域中建立 SIP 会话

下图说明了在预订同一个 ISP 从而使用同一域的两个用户之间建立 SIP 会话的过程。用户 A 使用 SIP 电话。用户 B 有一台 PC,运行支持语音和视频的软客户程序。加电后,两个用户都在 ISP 网络中的 SIP 代理服务器上注册了他们的空闲情况和 IP 地址。用户 A 发起此呼叫,告诉 SIP 代理服务器要联系用户 B。然后,SIP 代理服务器向 SIP 注册服务器发出请求,要求提供用户 B 的 IP 地址,并收到用户 B 的 IP 地址。SIP 代理服务器转发用户 A 与用户 B 进行通信的邀请信息(使用 SDP),包括用户 A 要使用的媒体。用户 B 通知 SIP 代理服务器可以接受用户 A 的邀请,且已做好接收消息的准备。SIP 代理服务器将此消息传达给用户 A,从而建立 SIP 会话。然后,用户创建一个点到点 RTP 连接,实现用户间的交互通信。

1.呼叫用户 B

2.查询捻没?B 在哪里??br> 3.响应捻没?B 的 SIP 地址?br> 4.挚�顶呼叫

5. 响应

6. 响应

7. 多媒体通道已建立

返回页首

在不同的域中建立 SIP 会话

本情景与第一种情景的不同之处如下。用户 A 邀请正在使用多媒体手持设备的用户 B 进行 SIP 会话时,域 A 中的 SIP 代理服务器辨别出用户 B 不在同一域中。然后,SIP 代理服务器在 SIP 重定向服务器上查询用户 B 的 IP 地址。SIP 重定向服务器既可在域 A 中,也可在域 B 中,也可既在域 A 中又在域 B 中。SIP 重定向服务器将用户 B 的联系信息反馈给 SIP 代理服务器,该服务器再将 SIP 会话邀请信息转发给域 B 中的 SIP 代理服务器。域 B 中的 SIP 代理服务器将用户 A 的邀请信息发送给用户 B。用户 B 再沿邀请信息经由的同一路径转发接受邀请的信息。

1. 呼叫用户 B 2. 询问撑胰绾谓油ㄓ?B 中的用户 B?? 3. 响应挚�砜刂破鞯挠虻刂窋 4. 挚�顶呼叫域 B 的 SIP 代理 5. 查询捻没?B 在哪里?? 6. 用户 B 的地址 7. 代理呼叫 8. 响应 9. 响应 10.响应 11.多媒体通道已建立

无缝、灵活、可扩展:展望 SIP 未来

SIP 能够连接使用任何 IP 网络(有线 LAN 和 WAN、公共 Internet 骨干网、移动 2.5G、3G 和 Wi-Fi)和任何 IP 设备(电话、PC、PDA、移动手持设备)的用户,从而出现了众多利润丰厚的新商机,改进了企业和用户的通信方式。基于 SIP 的应用(如 VOIP、多媒体会议、push-to-talk(按键通话)、定位服务、在线信息和 IM)即使单独使用,也会为服务提供商、ISV、网络设备供应商和开发商提供许多新的商机。不过,SIP 的根本价值在于它能够将这些功能组合起来,形成各种更大规模的无缝通信服务。

使用 SIP,服务提供商及其合作伙伴可以定制和提供基于 SIP 的组合服务,使用户可以在单个通信会话中使用会议、Web 控制、在线信息、IM 等服务。实际上,服务提供商可以创建一个满足多个最终用户需求的灵活应用程序组合,而不是安装和支持依赖于终端设备有限特定功能或类型的单一分散的应用程序。

通过在单一、开放的标准 SIP 应用架构下合并基于 IP 的通信服务,服务提供商可以大大降低为用户设计和部署基于 IP 的新的创新性托管服务的成本。它是 SIP 可扩展性促进本行业和市场发展的强大动力,是我们所有人的希望所在。

❹ 6G强于5G网络100倍,预计2030年左右实现商用

6G强于5G网络100倍,预计2030年左右实现商用

6G强于5G网络100倍,预计2030年左右实现商用,以移动通信行业为代表的产学研界举办了第二届“全球6G技术大会”,成为全球6G发展的重要论坛。6G强于5G网络100倍,预计2030年左右实现商用。

6G强于5G网络100倍,预计2030年左右实现商用1

踩着“使用一代,建设一代,研发一代”的发展节奏,以移动通信产业为代表的产学研各界,已从初期对6G天马行空式的畅想、讨论和研究中,渐渐梳理出更为清晰、有针对性的推进思路。

3月22日-3月24日召开的第二届“全球6G技术大会”,将成为全球6G发展重要论道场。

中国工程院院士邬江兴指出,作为面向2030年之后的智能网联基础设施重要支撑技术,传统的追求覆盖、带宽、延迟等单项技术指标跃升的道路已不适合,6G必须探索和开辟技术性能、成本投入、能源消耗、安全可靠、持续高效等多目标可持续协同发展的新范式。

6G将走向人机物灵联结的智简网络

在昨日举行的全球6G技术大会“6G愿景与技术需求”圆桌论坛上,中国工程院院士、北京邮电大学教授张平发表演讲。

张平表示,从1G-4G,主要是人与人间的通信,是通信速率的线性提升;5G是面的提升,实现人与人、人与机器、机器与机器间的通信;6G 将拓展通信空间,使地面与卫星通信集成,实现“海陆空”一体化。

“4G改变生活,5G改变社会,6G改变世界。”张平表示,6G的通信指标相比5G将有10-100倍提升,也将实现厘米级的高精度定位。

6G将实现数字孪生、智慧泛在,未来的应用场景包括:全息交互、虚拟旅行、沉浸式社交等。

对于6G潜在的关键技术上,张平认为,一方面是传统技术增强,比如太赫兹、可见光等;另一方面是创新技术,比如量子通信、AI赋能等。

“6G将走向人机物灵联结的智简网络。”张平最后总结说,人机物灵中的灵是指灵境网,也就是中国版元宇宙。

当卫星网络加入成为普遍期待

6G从需求到标准,正在按照既定的步伐前行。业界普遍预测,6G将在2030年左右商用。

中国电信首席专家毕奇说:“愿望是好的,接下来怎么将真正有商业价值的愿景甄别出来,加快相关关键技术的研发,使其能在6G期间付诸实际部署,是未来几年科研的重要任务。”

对于6G,东南大学信息科学与工程学院教授洪伟的看法是,最革命性的进步将是中低轨卫星网络与地面后5G网络的融合。人类将第一次实现无线通信网络对整个地球表面和近地空间甚至部分外层空间的全覆盖,从而真正实现无处不在的信息互联。

对于6G广覆盖的期待,马斯克的低轨卫星“星链”起到了一定的刺激作用。

“目前马斯克的‘星链’是通过卫星锅接收和发射信号,目标用户群与移动通信大不相同。”毕奇指出,6G能否突破链路损耗及商业模式难题,把星链在6G期间连到手机而不需卫星锅型天线,以及有多少6G用户,愿意承担卫星服务的费用,目前挑战仍然很大。

中兴通讯首席科学家向际鹰亦表示:“卫星通讯是地面网络的重要补充,在稀疏场景下具有性价比优势,提供普遍服务,但它不能替代地面网络,在密集地区,其容量远远不能满足要求。未来,我们希望天基网络在关键技术上和地面网络在大的技术体系是融合协同的。”

6G竞争风起云涌

术研发工作启动会,正式启动6G研发工作。今年发布的《“十四五”数字经济发展规划》明确提出,前瞻布局第六代移动通信(6G)网络技术储备,加大6G技术研发支持力度,积极参与推动6G 国际标准化工作。

国际上,2020年2月,国际电信联盟召开第34次国际电信联盟工作组会议,正式启动6G的研究工作,明确了2023年底前国际电信联盟6G 早期研究的时间表。

美国的苹果、谷歌、微软等11家公司于2020年宣布成立6G联盟;欧盟已启动为期3年的6G 基础技术研究项目。

日本官民联盟准备在6月向国际会议提交6G国际标准草案。日本希望能够在6G网络技术发展争取更多主导权,并且在技术规范制定方面有更多话语权,以优势地位推进技术开发,共同为未来的6G无线通信提出技术要求。

此外,英国、芬兰和韩国也开展了6G技术的研发,期望在未来的全球6G技术标准竞争中取得有利地位。

工业和信息化部总工程师韩夏曾表示,未来6G业务将呈现出沉浸化、智慧化、全域化等新发展趋势,形成沉浸式云XR、全息通信、感官互联、智慧交互、通信感知、普惠智能、数字孪生、全域覆盖等业务应用,最终将助力人类社会实现“万物智联、数字孪生”的美好愿景。

6G强于5G网络100倍,预计2030年左右实现商用2

3月22日至24日,以移动通信行业为代表的产学研界举办了第二届“全球6G技术大会”,成为全球6G发展的重要论坛。

中国工程院院士吴江兴指出,作为2030年后智能网络基础设施的重要支撑技术,追求覆盖、带宽、时延等单一技术指标跨越的传统路径已不适用。

6G必须探索和开拓多目标可持续协调发展的新范式,如技术性能、成本投资、能源消耗、安全性、可靠性和可持续效率。

据报道,6G正在按照既定的步伐从需求向标准迈进。业内普遍预测,6G将在2030年左右上市。

对于6G,东南大学信息科学与工程学院教授洪伟认为,最具革命性的进展将是LEO卫星网络和地面5g后网络的集成。

人类将首次实现无线通信网络在整个地球表面、近地空间乃至部分外层空间的全覆盖,真正实现无处不在的信息互联。

中兴首席科学家项继英也表示,卫星通信是地面网络的重要补充。它在稀疏场景中具有成本效益优势,并提供通用服务,但不能取代地面网络。

在人口稠密地区,其产能远远达不到要求。未来,我们希望天基网络和地面网络的关键技术能够在一个大的技术体系中得到整合和协调。

根据之前的相关预测,6G的网络速度可以达到1000gbps,延迟小于100US(即0.1ms),速度是5g网络的50倍,延迟仅为后者的十分之一。它在峰值速率、延迟、流量密度、连接密度、移动性、频谱效率和定位能力等方面远优于5g。

6G强于5G网络100倍,预计2030年左右实现商用3

随着5G网络建设加快推进,相关应用开始遍地开花,深入到千行百业。按照移动通信产业“使用一代,建设一代,研发一代”的发展节奏,全球业界已开启对下一代移动通信(6G)的探索研究。

“中国有望在2030年左右实现6G商用。”3月22日,第二届全球6G技术大会正式召开,中国工程院院士、北京邮电大学教授张平在6G愿景与技术需求论坛上预测说。

6G在路上

4G改变生活,5G改变社会,6G改变世界。

“6G将走向人机物灵充分联结、虚实结合、智慧涌现的泛在至简网络。”张平指出,其中的“灵”是指灵境网,即中国版元宇宙。6G和至简无线网络将有力支持数字孪生,数字孪生也将进一步为至简网络演进提供持续的自主内生优化。

张平解释说,4G前移动通信追求的是通信速率,而5G对通信和可靠性、时延方面提出了要求,未来6G将拓展通信空间,实现地面与卫星通信集成、空天地海一体化,通信指标相比5G将有10-100倍提升,将实现厘米级的高精度定位,走向人机物灵充分联合、虚拟结合、智慧涌现的泛在智简网络。

在场景上,张平认为,6G将实现数字孪生、智慧泛在,未来的应用场景包括全息交互、虚拟旅行,沉浸式社交等,而对于6G潜在关键技术,一方面是传统技术增强,如太赫兹、可见光等;另一方面是创新技术,如量子通信、AI赋能等。

张平介绍,目前,世界主要国家和地区均已启动6G研究,通过加大资金投入布局科研项目等措施,加速6G创新技术研发。

欧盟提出相对清晰的规划路线图,在2020年三季度完成了6G产学研框架项目;芬兰发布了6G白皮书《面向6G泛在无线智能的驱动与主要研究挑战》,对于6G愿景和技术应用进行了系统性展望;韩国政府提出“引领6G商业化”目标,计划2028年实现全球第一个6G商业用;

日本发布B5G推进战略目标2025年完成6G基础技术研究,2030年商用;美国也从2018年开始6G研究,前期研究包括对6G芯片的研究,并在空天海地一体化通信特别是卫星互联网通信开展研究实践。

“中国高度重视6G发展,在‘十四五’规划中明确提出,要‘前瞻布局6G网络技术储备’,先后成立国家6G技术研发推进工作组和总体专家组、IMT2030(6G)推进组,扎实推进6G各项工作,取得了积极进展。”张平说。

6G改变世界

面向2030年及未来,6G网络将助力实现真实物理世界与虚拟数字世界的深度融合,构建万物智联、数字孪生的全新世界。

“6G‘数字孪生、智慧泛在’,是大家的美好愿景。”中国移动通信研究院绿色通信研究中心主任崔春风认为,6G的典型用例包括全息交互、数字孪生人、通感互联、智能交通、智慧生产以及元宇宙等,这些应用对6G网络提出更高要求:一是极致的能力,二是软件定义的分布式网络,三是全域覆盖,四是智慧泛在,五是内生安全。

“对运营商而言,我们希望实现数字孪生运营、零触碰、自动化运维的'网络,在提升效率的同时降低成本,并且能够‘自生自灭自演进’。” 崔春风说。

中兴通讯无线研究院射频系统高级工程师彭琳同样认为,6G时代将诞生新的服务模式,比如沉浸式的云XR的体验、全息通讯、数字孪生新业态等,将进一步扩展到AI的互联网,感知互联网,迈入万物智联的6G时代。

“6G的愿景和能力需求,驱动着行业进一步开发空口资源。比如,挖掘新的频谱资源,以及向更高的毫米波以及太赫兹的频段迈进。”彭琳说。

在华为无线技术实验室技术专家王俊看来,6G将进一步发展超越通信的能力,在5G三大应用场景基础上,扩展人工智能和通信感知两大应用场景。

6G如何融合物理世界与数字世界?王俊指出,从物理世界到数字世界是典型的下行通道,将深度学习、机器学习和大数据分析等AI能力,通过AR/VR等沉浸式体验传递给用户;从物理世界到数字世界是典型的上升通道,主要应用全场景感知和面向机器学习的大数据采集,增强数字世界中大模型的完善程度和能力。

“在此过程中,6G将融合连接、感知和AI能力,成为关键的桥梁。”王俊说。

探索技术路径

目前,IMT-2030(6G)愿景研究已经形成的共识,包括:沉浸式云XR、全息通信,感官互联、智慧交互、通信感知、数字孪生、普惠智能、全域覆盖等新型应用。

为满足未来6G更加丰富的业务应用以及极致的性能需求,需要在探索新型网络架构的基础上,在关键核心技术领域实现突破。当前,全球业界对6G关键技术仍在探索中,并提出了一些潜在的关键技术方向以及新型网络技术。

东南大学教授许威认为,未来的6G技术发展趋势,是在更多的频段、更宽的带宽以及更深的维度进行更广泛的覆盖,最终实现速率更快、传输更稳定,以及更双碳化、更智能化的智能网络的融合体。

“中国电信认为,内生外拓,绿色泛在是6G网络的总体愿景,并以此打造和谐发展的新引擎。”中国电信研究院移动通信研究所所长王庆扬表示,将来的IMT2030是内生智能与安全、外拓感知与体验,构建人、机、物智慧互联的新型系统,是人类社会和自然环境和谐发展的引擎。

“6G技术的创新发展,也因此应该以绿色节能为基本原则,提升系统的能量效率,实施生态运营;与此同时,还要考虑6G技术如何赋能千行百业,助力各行业深化数字化转型,实现绿色低碳发展。”王庆扬说。

中国科学院院士、上海交通大学教授毛军发指出,6G要在3个维度对5G实现质的提升,即更多连接、更广覆盖、更大带宽,前两者可以通过补充基站数量等方式实现连接与覆盖不足的缺陷,然而面向6G的大带宽需求,唯有毫米波太赫兹技术才能实现目标。

与会专家在6G毫米波与太赫兹技术论坛上也表示,尽管现阶段6G毫米波太赫兹技术的发展面临诸多技术挑战,但随着相关技术的不断突破和高频器件产业的持续发展,毫米波和太赫兹将凭借其丰富的频率带宽资源等天然优势,与其他低频段网络融合组网,广泛应用于多维度多尺度通信场景,做为未来6G通信的重要支撑技术。

“6G网络必须成为智能的、分布式的、可伸缩的程序平台,使其能够满足不断增加的应用需求。”英特尔实验室、IEEE Fellow Rath Vannithamby指出,5G和AI正在改变无线网络,推动着无线的分布式智能发展,6G网络需要将通信、技术、AI实现无缝集成,来实现统一体验质量(QoE)。“目前,关于智能网络分布式集成技术的研究需要交叉学科的学术研究,进行协同设计。”

阅读全文

与下一代移动网络联盟会议相关的资料

热点内容
网络安全即网络边界 浏览:764
免费wifi网络科技有限公司 浏览:757
在哪个网络平台上买二手机好呢 浏览:916
手机网络商显示无服务 浏览:143
怎样共享省外网络信号 浏览:999
长虹网络机顶盒设置 浏览:312
手机和电脑文件无网络互传 浏览:824
4g网络异常限速怎么弄 浏览:903
我的网络密码是多少怎么查看 浏览:45
怎么测试电信网络 浏览:477
移动无线网络没有信号怎么办 浏览:357
vivox9网络共享在哪设置 浏览:476
ios网络连接已中断 浏览:580
手机网络突然变成了g 浏览:156
青年网络安全联盟 浏览:562
联通网络发展国外的国家有哪些 浏览:328
电脑能上网微信网络连接不可用 浏览:15
正定区网络营销公司 浏览:612
计算机网络应用技术涉及编程吗 浏览:729
小米共享网络不稳定 浏览:641

友情链接