网络就是将网络节点所要完成的数据的发送或转发、打包或拆包,控制信息的加载或拆出等工作,分别由不同的硬件和软件模块去完成来分层的。
分层的原因:是通过网络分层,将每一层负责一项具体的工作,然后把数据传送到下一层。可以将往来通信和网络互联这一复杂的问题变得较为简单化。
(1)移动网络分为哪五层扩展阅读:
网络层次的五层因特网协议栈
1、应用层:支持网络应用,应用协议仅仅是网络应用的一个组成部分,运行在不同主机上的进程则使用应用层协议进行通信。主要的协议有:http、ftp、telnet、smtp、pop3等。
2、传输层:负责为信源和信宿提供应用程序进程间的数据传输服务,这一层上主要定义了两个传输协议,传输控制协议即TCP和用户数据报协议UDP。
3、网络层:负责将数据报独立地从信源发送到信宿,主要解决路由选择、拥塞控制和网络互联等问题。
4、数据链路层:负责将IP数据报封装成合适在物理网络上传输的帧格式并传输,或将从物理网络接收到的帧解封,取出IP数据报交给网络层。
5、物理层:负责将比特流在结点间传输,即负责物理传输。该层的协议既与链路有关也与传输介质有关。
‘贰’ 移动网络分接入层,汇聚层,核心层,其中各层的主要设备是什么啊
核心层:核心层是网络的高速交换主干,对整个网络的连通起到至关重要的作用。核心层应该具有如下几个特性:可靠性、高效性、冗余性、容错性、可管理性、适应性、低延时性等。在核心层中,应该采用高带宽的千兆以上交换机。
因为核心层是网络的枢纽中心,重要性突出。核心层设备采用双机冗余热备份是非常必要的,也可以使用负载均衡功能,来改善网络性能。
汇聚层:汇聚层是网络接入层和核心层的“中介”,就是在工作站接入核心层前先做汇聚,以减轻核心层设备的负荷。
汇聚层具有实施策略、安全、工作组接入、虚拟局域网(VLAN)之间的路由、源地址或目的地址过滤等多种功能。在汇聚层中,应该选用支持三层交换技术和VLAN的交换机,以达到网络隔离和分段的目的。
接入层:接入层向本地网段提供工作站接入。在接入层中,减少同一网段的工作站数量,能够向工作组提供高速带宽。接入层可以选择不支持VLAN和三层交换技术的普通交换机。
(2)移动网络分为哪五层扩展阅读
三层网络结构基于性能瓶颈和网络利用率等等的原因,资深的网络设计师都在探索新的数据中心的拓扑结构。
三层网络结构数据中心网络传输模式是不断地改变的。大多数网络都是纵向(north-south)的传输模式---主机与网络中的其它非相同网段的主机通信都是设备-交换机-路由到达目的地。同时,三层网络结构在同一个网段的主机通常连接到同一个交换机,可以直接相互通讯。
然而,三层网络结构现代数据中心的计算和存储基础设施,主要网络流量模式从已经不止是单纯的不同网段之间通讯。三层网络结构内外网的通讯、网络段分布在多个接入交换机,要求主机通过网络互连等这些环境。这些三层网络结构网络环境的变化催生了两种技术趋势:网络收敛和虚拟化。
网络收敛:三层网络结构中,储存网络和通信网络在同一个物理网络中。主机和阵列之间的数据传输通过储存网络来传输,在逻辑拓扑上就像是直接连接的一样。如ISCSI等。
虚拟化:将物理客户端向虚拟客户端转化。虚拟化服务器是未来发展的主流和趋势,它将使三层网络结构的网络节点的移动变得非常简单。
横向网络(east-west)在纵向设计的三层网络结构中传输数据会带有传输的瓶颈,因为数据经过了许多不必要的节点(如路由和交换机等设备)。如果三层网络结构上主机需要通过高速带宽相互访问,但通过层层的uplink口,会导致潜在的、而且非常明显的性能衰减。
三层网络结构的原始设计更会加剧这种性能衰减,由于生成树协议会防止冗余链路存在环路,双上行链路接入交换机只能使用一个指定的网络接口链接。
虽然增大内部交换层的带宽有助于改善三层网络结构的传输阻塞,但这样受益的只是一个节点。E-W模式中主机之间的的数据传输并非同一时间只是存在两个节点之间。相反,三层网络结构数据中心中的主机之间在任何时间都有数据传输的。因此,三层网络结构增加带宽这种高成本低效率的投资只是治标不治本。
参考资料来源:网络-三层网络结构
参考资料来源:网络-汇聚层
参考资料来源:网络-接入层
‘叁’ 简要说明TCP/IP参考模型五个层次的名称,各层的传输格式和使用的设备是什么
TCP/IP参考模型是ARPANET及其后继的因特网使用的参考模型。其将协议分为:网络接入层、网际互连层、传输层以及应用层。
1.应用层:对应OSI参考模型的上层,为用户提供所需的各种服务,如FTP,Telnet,DNS,SMTP等。
2.传输层:传输层对应于OSI参考模型的传输层,为应用层实体提供端到端通信功能,确保数据包的顺序传输和数据的完整性。该层定义了两个主要协议:传输控制协议(TCP)和用户数据报协议(UDP)。
TCP协议提供可靠的,面向连接的数据传输服务;而UDP协议提供不可靠的无连接数据传输服务。
3.互联网互联层:互联网互联层对应OSI参考模型的网络层,主要解决从主机到主机的通信问题。它包含通过网络逻辑传输的协议设计数据包。重点是重新给主机一个IP地址来完成主机的寻址,它还负责在各种网络中路由数据包。
该层有三个主要协议:Internet协议(IP),Internet组管理协议(IGMP)和Internet控制消息协议(ICMP)。 IP协议是Internetworking层中最重要的协议。它提供可靠的无连接数据报传送服务。
4.网络接入层:网络接入层(即主机 - 网络层)对应于OSI参考模型中的物理层和数据链路层。它负责监视主机和网络之间的数据交换。
实际上,TCP / IP本身并没有定义该层的协议,但参与互连的每个网络都使用自己的物理层和数据链路层协议,然后与TCP / IP的网络接入层连接。地址解析协议(ARP)在此层(OSI参考模型的数据链路层)上工作。
(3)移动网络分为哪五层扩展阅读:
OSI参考模型与TCP/IP参考模型的异同点:
1. OSI参考模型和TCP / IP参考模型都使用分层结构,但OSI使用的七层模型和TCP / IP是四层结构。
2. TCP / IP参考模型的网络接口层实际上没有真正的定义,但是是概念性描述。 OSI参考模型不仅分为两层,而且每层的功能都非常详细。即使在数据链路层,也分离媒体访问子层以解决局域网中共享媒体的问题。
3. TCP / IP的网络互连层等同于OSI参考模型的网络层中的无连接网络服务。
4. OSI参考模型基本上类似于TCP / IP参考模型的传输层功能。它负责为用户提供真正的端到端通信服务,并且还从高层屏蔽底层网络的实现细节。
不同之处在于TCP / IP参考模型的传输层基于网络互连层,网络互连层仅提供无连接网络服务,因此面向连接的功能完全在TCP协议中实现,当然, TCP / IP的传输层还提供UDP等无连接服务;
相反,OSI参考模型的传输层基于网络层,它提供面向连接和无连接的服务,但传输层仅提供面向连接的服务。
5.在TCP / IP参考模型中,没有会话层和表示层。事实证明,这两层的功能可以完全包含在应用层中。
6. OSI参考模型具有高抽象能力,适用于描述各种网络。 TCP / IP是首先开发TCP / IP模型的协议。
7. OSI参考模型的概念明显不同,但它过于复杂;虽然TCP / IP参考模型在服务,接口和协议之间的区别中不清楚,但功能描述和实现细节是混合的。
8. TCP / IP参考模型的网络接口层不是真实层; OSI参考模型的缺点是层数太多,划分意义不大但增加了复杂性。
9.尽管OSI参考模型是乐观的,但由于缺乏时间安排,该技术尚不成熟且难以实施;相反,虽然TCP / IP参考模型有许多令人不满意的地方,但它非常成功。
‘肆’ 移动通信网络构成
第三代移动通信系统将提供能全球接入和全球漫游的广泛业务。第三代移动通信系统将适应各种无线环境,从城区到郊区,从丘陵地区到山区,微蜂窝,微微蜂窝和室内环境向任何人,在任何时间,任何地方提供业务。这就要求它能够全球漫游,各种通信网络能够互连互通,是第三代移动通信网络构成要解决的主要问题。3GPP所采用的网络结构是
UMTS,它主要由三部分组成,接入网,Iu接口和核心网。
‘伍’ 五层网络体系结构包括
五层网络体系结构包括应用层、传输层、网络层、数据链路层、物理层。
应用层是网络结构中的最高层,在互历知联网中,我们最先接触的就是各种应用程序,如web,app等等,它们就是处于网络最高层的存在,所以应用层的实体就是这些应用程序。应用层的协议包括http,ftp,smtp,pop等,这些协议规定了应用程序接收的数据格式。
传输层就是要解决端到端的传输问题,比如对方的主机地址是多少、端口号是多少、对方是否是否在线并处于可传散斗输数据的状态等等,这些都是传输层要解决的问题。而传输层协议就能解决这些问题,它规定了到达端口时数冲烂磨据的格式,这里的数据在应用层数据的基础上添加了一些新的数据,这些新的数据就包含了主机地址、端口号、传输是否成功等信息。
结构简述
每一层之间都有不同的形态和构成机制,比如最底层的实体层是光缆、双绞线这些硬件,最上层的应用层却是浏览器、邮箱等各种软件,所以如果想实现不同层之间的联系,必须遵守不同层之间的规则。这些规则统称为互联网协议,它们是互联网的核心。
传输层建立的是端口到端口之间的通信,相比之下网络层建立的是主机到主机之间的通信。主机加端口,叫做套接字,有了它就能进行网络程序间的通信。需要注意的是,在传输层我们还要在IP数据包的基础上加上端口信息,这时就需要用到新的协议,这种协议通常分为UDP和TCP两种。UDP协议新增了发出端口和接收端口的信息,TCP协议比较复杂。
网络的层级划分保证了数据传输的过程解耦,提升网络系统的稳定性,而各层级的服务及协议的稳定性,仍需分别在各层级中部署相应的设备或系统。应用层是互联网实现其功能性的最终层级,也是面临网络攻击最频繁的互联网层。