⑴ 什麼是 網路的異構性
異構網路(Heterogeneous Network)是一種類型的網路,其是由不同製造商生產的計算機,網路設備和系統組成的,大部分情況下運行在不同的協議上支持不同的功能或應用。
所謂異構是指兩個或以上的無線通信系統採用了不同的接入技術,或者是採用相同的無線接入技術但屬於不同的無線運營商。利用現有的多種無線通信系統,通過系統間融合的方式源脊並,使多系統之間取長補短是滿足未來移動通信業務需求一種有效手段,能雹跡夠綜合發揮各自的優勢。
(1)異構無線網路應用擴展閱讀:
異構網路的融合結構中,通常野談有三種類型的融合方案,分別是松耦合結構、緊耦合結構、超緊耦合結構。
超緊耦合是通過連接到相同的BSC上與不同的無線接入技術(Radio Access Technology,RAT)進行融合。網路的狀態信息是局部的,不需要通過額外的請求來獲得信息,可以應用在當網路之間是重疊覆蓋的情況下。
與其他的耦合方案相比,超緊耦合方案的切換時延很短,因為中間涉及到的網路實體少。但是由於這兩種RAT完全不同,因此實現超緊耦合方式就需要對應用在BSC上的處理過程進行很多修改。
在緊耦合結構中,不同的RATs通過CN進行融合,耦合結點可以是MSC或者PDSN。在圖2.2中,MSC或者PDSN都是負責WWAN和WLAN的連接管理、認證和定價,因此WLAN路由器需要實現相關的WWAN協議。
與超緊耦合相比,這個系統僅需要對現有接入網路進行很小的修改,因此它非常容易實現。與超緊耦合相比,在切換過程中,由於涉及到很多網路的實體,因此這種方案的VHO時延增加了。
在松耦合的異構網路中,MSC與WLAN都經過通用介面與公共的Internet進行交互信息,來保持服務的連續性。但是由於每個網路需要執行網路的連接和會話的激活過程,因此這種方案執行切換時會導致時延很大。
對於超緊耦合和緊耦合方式的異構網路融合結構中,網路選擇演算法通常可以安排在耦合節點上,即分別是BSC和CN。但是對於松耦合方式,網路選擇演算法可以應用在移動終端。
⑵ 異構網路的介紹
異構網路(Heterogeneous Network)是一種類型的網路,其是由不同製造商生產的計算機,網路設備和系統組成的,大部分情況下運行在不同的協議上支持不同的功能或應用。關於異構網路的研究最早追溯到1995的美國加州大學伯克利分校發起的BARWAN(Bay Area Research Wireless Access Network)項目,該項目負責人R.H. Katz在文獻1中首次將相互重疊的不同類型網路融合起來以構成異構網路,從而滿足未來終端的業務多樣性需求。為了可以同時接入到多個網路,移動終端應當具備可以接入多個網路的介面,這種移動終端被稱為多模終端。由於多模終端可以接入到多個網路中,因此肯定會涉及到不同網路之間的切換,與同構網路(Homogeneous Wireless Networks)中的水平切換(Horizontal Handoff, HHO)不同,這里稱不同通信系統之間的切換為垂直切換(Vertical Handoff,VHO)。在此後的十幾年中,異構網路在無線通信領域引起了普遍的關注,也成為下一代無線網路的發展方向。很多組織和研究機構都對異構網路進行了深入廣泛的研究,如3GPP、MIH、ETSI、Lucent實驗室、Ericsson研究所、美國的Georgia理工大學和芬蘭的Oulu大學等。下一代無線網路將是無線個域網(如Bluetooth)、無線區域網(如Wi-Fi)、無線城域網(如WiMAX)、公眾移動通信網(如2G、3G)以及Ad Hoc網路等多種接入網共存的異構無線網路2。
⑶ 異構網路的網路選擇演算法的研究
異構網路中無線資源管理的一個重要研究方向就是網路選擇演算法,網路選擇演算法的研究很廣泛,這里給出了幾個典型的無線網路選擇演算法的類別。 預切換可以有效的減少不必要的切換,並為是否需要執行切換做好准備。通常情況下可以通過當前接收信號強度來預測將來接收信號強度的變化趨勢,來判斷是否需要執行切換。
文獻 中利用多項式回歸演算法對接收信號的強度進行預測,這種方法的計算復雜度較大。文獻 中,利用模糊神經網路來對接收信號強度進行預測,模糊神經網路的演算法最大的問題,收斂較慢,而且計算的復雜度高。文獻 中,利用的是最小二乘演算法(LMS)來預測接收的信號強度,通過迭代的方法,能夠達到快收斂,得到較好的預測。還有在文獻 中,直接採用接收信號強度的斜率來預測接收信號強度,用來估計終端在該網路中的生存時間,但是這種方法太簡單,精度不是很高。 在垂直切換的過程中,對於相同的切換場景,通常會出現現在的已出現過的切換條件,對於其垂直切換的結果,可以應用到當前條件下,這樣可以有效避免的重新執行切換決策所帶來的時延。
文獻[33]中,提出利用用戶連接信息(User Connection Profile,UCP)資料庫用來存儲以前的網路選擇事件。在終端需要執行垂直切換時,首先檢查資料庫中是否存在相同的網路選擇記錄,如果存在可以直接接入最合適的網路。在文獻[34]中,提出了將切換到該網路的持續服務時間和距離該網路的最後一次阻塞時間間隔作為歷史信息記錄下來,根據這些信息,選擇是否有必要進行切換。 由於用戶對網路參數的判斷往往是模糊的,而不是確切的概念,所以通常採用模糊邏輯對參數進行定量分析,將其應用到網路選擇中顯得更加合理。模糊系統組成通常有3個部分組成,分別是模糊化、模糊推理和去模糊化。對於去模糊化的方法通常採用中心平均去模糊化,最後得到網路性能的評價值,根據模糊系統所輸出的結果,選擇最適合的網路。
通常情況下,模糊邏輯與神經網路是相互結合起來應用的,通過模糊邏輯系統的推理規則,對神經網路進行訓練,得到訓練好的神經網路。在垂直切換的判決的時候,利用訓練好的神經網路,輸入相應網路的屬性參數,選擇最適合的網路接入。
基於模糊邏輯和神經網路的策略,可以對多種因素(尤其動態因素)進行動態地控制,並做出自適應的決策,可以有效提高網路選擇的合理性,但該策略最大的缺點是,演算法的實現較為復雜,在電池容量和處理能力均受限的移動設備上是不合適的。 在異構網路選擇中,博弈論是一個重要的研究方向。在博弈論的模型中,博弈中的參與者在追求自身利益最大化的同時,保證自身付出的代價盡量小。參與者的這兩種策略可以通過效用函數和代價函數來衡量。因此通過最大化效用函數和最小化代價函數,來追求利益的最大化。
文獻[36]中提出一種基於博弈論的定價策略和網路選擇方案,該方案中服務提供商(Service Providers,SPs)為了提高自己的利潤需要面臨競爭,它是通過用戶間的合作或者非合作博弈來獲得,在實際的異構網路場景下,用戶和服務提供商SPs之間可以利用博弈模型來表示。Dusit Niyato在文獻[37]中,通過競價機制來進行異構網路資源的管理,這里將業務分成兩種類型,一種是基本業務,另一種類似高質量業務,基本業務的價格是固定的,而高質量業務的價格是動態變化的,它是隨著服務提供商的競爭和合作而變化的。因此這里從合作博弈和非合作博弈兩方面來討論定價機制。Dusit Niyato在文獻[38]中基於進化博弈理論,來解決在帶寬受限情況下,用戶如何在重疊區域進行網路選擇。 網路選擇的目標通常是通過合理分配無線資源來最大化系統的吞吐量,或者最小化接入阻塞概率等,這樣就會涉及網路優化問題。
網路選擇演算法往往是一種多目標決策,用戶希望得到好的服務質量、價格便宜的網路、低的電池功率消耗等。對於多目標決策演算法,通常是不可能使得每個目標同時達到最優,通常的有三種做法:其一,把一些目標函數轉化為限制條件,從而減少目標函數數目;其二,將不同的目標函數規范化後,將規范化後的目標函數相加,得到一個目標函數,這樣就可以利用最優化的方法,得到最優問題的解;其三,將兩者結合起來使用。例如文獻[39]中,採用的是讓系統的帶寬受限,最大化網路內的所有用戶的手機使用時間,即將部分目標函數轉化為限制條件。文獻[40]中,採用的是讓用戶的使用的費用受限,最大化用戶的利益和最小化用戶的代價,這里採用的是上面介紹的第三種方法。 基於策略的網路選擇指的是按照預先規定好的策略進行相應的網路操作。在網路選擇中,通常需要考慮網路負荷、終端的移動性和業務特性等因素。如對於車載用戶通常選擇覆蓋范圍大的無線網路,如WCDMA、WiMAX等;對於實時性要求不高的業務,並且非車載用戶通常選擇WLAN接入。這些均是通過策略來進行網路選擇。
文獻[41, 42]提出了基於業務類型的網路選擇演算法,根據用戶的業務類型為用戶選擇合適的網路。文獻[35]提出基於負載均衡的網路選擇演算法,用戶選擇接入或切換到最小負載因子的網路。[43]提出了一種考慮用戶移動性和業務類型的網路選擇演算法。 多屬性判決策略(Multiple Attribute Decision Making,MADM)是目前垂直切換方面研究最多的領域。多屬性判決策略主要分為基於代價函數的方法和其他方法。
基於代價函數的方法
代價函數一般有兩種構造形式,一種是多屬性參數值的線性組合,如(2.1)式所示;另一種是多屬性參數值的權重指數乘積或者是屬性參數值的對數線性組合,如(2.2)式所示。
(2.1)
(2.2)
其中代表規范化的第個網路的第個屬性值,代表第個屬性的權值。對於屬性的規范化,首先對屬性進行分類,分為效益型、成本型等,然後根據不同的類型的,對參數進行歸一化,採用最多的是線性規范化、極差規范化和向量變換法。關於權值的確定可以分為簡單賦權法(Simple Additive Weighting,SAW)、層次分析法(Analytic Hierarchy Process,AHP)、熵權法、基於方差和均值賦權法。
(1) SAW:用戶根據自己的偏好,確定每個屬性的重要性,通常給出每個參數取值的具體參數值。
(2) AHP:首先分析評價系統中各要素之間關系,建立遞階層次結構;其次對同一層次的各要素之間的重要性進行兩兩比較,構造判斷矩陣;接著由每層判斷矩陣計算相對權重;最後計算系統總目標的合成總權重。
(3) 熵權法:通過求解候選網路中的同一屬性的熵值,熵值的大小表明網路同一屬性的參數值的差異,差別越大,說明該屬性對決策影響越大,相應權值的取值就越大。
(4) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
其他方法
(1) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
(2) 逼近理想解排序法(TOPSIS):首先對參數進行歸一化,從網路的每組屬性參數值里選擇最好的參數組成最優的一組屬性參數,同樣也可以得到最差的一組屬性參數。將每個網路與這兩組參數比較,距離最優參數組越近,並且與最差組越遠,該網路為最合適的網路。
(3) 灰度關聯分析法(GRA):首先對參數進行歸一化,再利用GRA方法,求得每個網路的每個屬性的關聯系數,然後求出每個網路總的關聯系數。根據每個網路總的關聯系數,選擇最適合的網路。
(4) 消去和選擇轉換法(ELECTRE):首先對參數進行歸一化,構造加權的規范化矩陣,確定屬性一致集和不一致集。然後計算一致指數矩陣和劣勢矩陣,最後得到一致指數矩陣和不一致指數矩陣。根據這兩個矩陣,確定網路的優劣關系,選擇最適合的網路。
VIKOR:首先對參數進行歸一化,首先確定最優和最差屬性參數組,然後計算得到每個網路屬性的加權和屬性中最大的參數值,然後利用極差規范化對網路的加權和以及最大屬性值進行歸一化,最後利用歸一化的參數進行加權求和,依據這個值,選擇最合適的網路。
⑷ 互聯網接入技術論文(2)
互聯網接入技術論文篇二
移動互聯網接入 網路技術
摘 要:移動互聯網是當前信息技術領域的熱門話題之一,而接入網路則是移動互聯網的重要基礎設施。對目前的接入網路技術:衛星通信網路、無線城域網、無線區域網、無線個域網、蜂窩網路的特點及應用進行了分析,提出了接入網路技術未來的發展趨勢是各種網路的融合演進, 報告 了異構 無線網路 融合的特點及應用。
關鍵詞:移動互聯網 接入網路技術
中圖分類號:TN92 文獻標識碼:A 文章 編號:1672-3791(2013)03(b)-0009-02
移動通信技術和互聯網技術是信息技術領域中重要的組成部分,這兩項技術的發展直接影響著人們的生活和工作方式。移動互聯網是一個新型的融合型網路,是移動通信技術和互聯網技術充分融合的產物。在移動互聯網環境下,人們可以通過智能手機、PDA、車載終端等設備通過移動網訪問互聯網,隨時隨地的享受互聯網提供的服務。
2011年中國工業和信息化部電信研究院在《移動互聯網白皮書》中指出:“移動互聯網是以移動網路作為接入網路的互聯網及服務,包括三個要素:移動終端、移動網路和應用服務[1]。”簡而言之,移動終端是移動互聯網的前提,接入網路是移動互聯網的基礎,而應用服務則成為移動互聯網的核心。本文詳細描述了接入網路技術的現狀及發展趨勢。
1 接入網路技術現狀
現有的無線接入網路主要有五類:衛星通信網路、無線城域網(WMAN)、無線區域網(WLAN)、無線個域網(WPAN)、蜂窩網路(2G網路、3G網路等)[2]。它們在帶寬、覆蓋、移動性支持能力和部署成本等方面各有利弊。
1.1 衛星通信網路
1.1.1 概述
簡單來講,衛星通信就是把衛星作為中繼站,在地球上(包括地面和低層大氣中)的通信站點間進行通信。衛星和地球站就是衛星通信系統的重要組成部分。衛星通信新技術主要包括VSAT系統,即甚小口徑終端;中低軌道的移動衛星通信系統等。
1.1.2 特點及應用
衛星通信具有通信區域大、距離遠、頻段寬、容量大的特點,即只要是在衛星發射電波覆蓋范圍內的任意兩點間,都可以互相通信。其次,衛星通信的可靠性高、質量好、雜訊小、可移動性強,即不容易受自然災害的影響;但是,衛星通信存在傳輸時延大、回聲大、費用高的問題[3]。
目前,衛星通信主要用於電視廣播、遠距離的越洋電話、軍事通信、應急通信等。衛星通信作為一種特殊的通信技術,其基本定位必然是地面系統的有效支持、補充與延伸[4],對於農村及偏遠地區的通信發揮重要的作用,使實現全球通信海陸空一體化的無縫覆蓋成為可能。衛星通信的廣播與多播等技術優勢,結合現代Internet技術,在地面互聯網路擁塞的狀態下,可充分發揮以IP為基礎的多媒體遠距離傳送與高速連接,將寬頻高速數據業務進行有效地傳送。伴隨著移動互聯網的發展,衛星通信與3G、4G技術的相互融合將成為衛星通信發展的必然趨勢。
1.2 無線城域網(WMAN)
1.2.1 概述
無線城域網主要用於解決整個城市區域的接入問題,以微波等無線傳輸為介質,以無線方式為主要接入手段,提供同城數據高速傳輸,以及 其它 如圖像、視頻等多媒體通信業務和Internet接入服務[5]。而WiMax是受到較多關注的無線城域網通信技術。WiMax(World Interoperability for Microwave Access)即全球微波互聯接入,是一項基於IEEE 802.16標準的無線接入技術[6],它採用有線方式為企業、家庭提供“最後一英里”的無線接入。覆蓋范圍大於無線區域網,可以覆蓋幾千米到幾十千米的范圍。
1.2.2 特點及應用
WiMax具有傳輸距離遠、覆蓋面積大、接入速度快等特點。WiMax所能實現的50 km的無線信號傳輸距離是無線區域網所不能比擬的,網路覆蓋面積是3G發射塔的10倍[7],最高接入速度70M是3G所能提供的寬頻速度的30倍。此外,WiMax具有高效、靈活、經濟的組網方式,以及較為完備的Qos機制。支持移動和固定寬頻無線接入的特點,使它集成了無線接入技術的移動性與靈活性以及DSL等傳統寬頻接入技術的高帶寬特性,為用戶提供了優良的最後一公里網路接入服務及廣泛的多媒體通信服務。但是,WiMax技術目前無法支持用戶在移動過程中無縫切換。性能與3G的主流標准相比,仍存在差距。
基於WiMax特點,它可以被用於遠程醫療衛生、遠程 教育 、物流、金融、交通等行業,提供一定條件下的高速數據通信服務。從業務應用來看,WiMax在逐步實現寬頻業務的移動化,而3G實現的是移動業務的寬頻化。越來越多的多媒體通信服務大量消耗現有的3G網路資源,使網路的建設投資遠遠超過了收入的增加。WiMAX可以在保證服務質量的基礎上,有效降低運營成本。WiMax不可能完全取代3G,但是WiMax在以IP為主的高速數據應用方面的優勢使它成為了3G網路的補充手段,兩種網路的融合程度會越來越高。
1.3 無線區域網(WLAN)
1.3.1 概述
無線區域網(Wireless Local Area Networks,WLAN)是工作於2.5 GHz或5 GHz頻段,以無線、或無線與有線相結合的方式構成的區域網。它利用射頻技術及簡單的存取架構取代傳統電纜線,以提供傳統有線區域網的功能,是非常便利的數據傳輸系統。簡而言之,無線區域網仍然是以有線區域網為基礎的,它只是在有線區域網的基礎上通過無線HUB、無線訪問節點(AP)、無線網橋、無線網卡等設備構建了無線通信網路[8],是有線區域網的擴展和替換。
1.3.2 特點及應用
無線區域網具有布網便捷,網路規劃調整可操作性強,網路易於擴展的特點。只需要一個或多個接入點設備,就可以搭建覆蓋整個區域的網路,搭建網路所需的基礎設施也不需要隱藏在地下或牆里,便於網路優化配置、改造和維護。只要在無線信號能夠覆蓋的范圍內,用戶都可以在任意位置接入網路,並隨時改變位置,具有較強的靈活性和移動性。由於無線區域網多採用無線電波作為傳輸介質以及其工作在S頻段的特點,使其具備良好的抗干擾性和保密性,不會對人體造成輻射傷害。但是任何障礙物都會成為電磁傳播的阻礙,任何外部其他電信號都會成為區域網的干擾源。所以,無線區域網在性能、速率、安全性方面還有一定的不足之處。 無線區域網的最大傳輸速率為54 Mbit/s[9],較適合應用於有限空間、小規模網路等,如機場貴賓廳、股票大廳。其次,對於難以進行有線網路布線的環境、需要暫時使用網路的環境、實時通信要求很高的特殊場合,如人跡罕至的邊關、港口等都有較好的應用。無線區域網並不能作為一個完備的全網解決方案,但是隨著無線區域網技術的成熟應用,它可以與廣域網結合為用戶提供移動互聯網應用,成為3G網路有益的補充。
1.4 無線個域網(WPAN)
1.4.1 概述
無線個域網(Wireless Personal Area Network,WPAN)是面向特定群體活動半徑小、業務種類豐富、無縫連接的新興無線通信技術,相對於無線廣域網、無線城域網、無線區域網,它的覆蓋范圍更小,進而有效全面解決“最後幾米電纜”的問題。目前,藍牙(Bluetooth)是WPAN應用的主流技術,其它的還有家庭射頻(HomeRF)、紅外技術(IrDA)、射頻識別(RFID)、超帶寬(UWB)等。
1.4.2 特點及應用
無線個域網具有低功耗、低成本、體積小等特點。設備與組網都簡單方便、易於操作,且支持點對點、點對多點的應用。WPAN所覆蓋的范圍一般在10 m半徑以內,是短距離、個人專用的無線網路。具有代表性的Bluetooth技術,在全球范圍內的可操作性都很強,因為其使用了2.4 GHz頻段在全球都是可以自由使用的有效頻段。通過鑒權、加密等 措施 確保設備識別碼在全球的唯一性和設備的安全性。但是WPAN的技術標准多樣,都需要不斷的完善和創新。
WPAN主要應用於個人、家庭和辦公設備的無線通信,它可以在小范圍內將各種移動通信設備、固定通信設備、計算機及其終端設備、各種數字數據系統(例如數字照相機、數字攝像機等)甚至各種家用電器,使用一種廉價的無線 方法 建立它們之間的信息傳輸[10]。WPAN可以使用戶隨時隨地的進行設備間的無縫通訊,可以通過移動網路、區域網、城域網方便快捷的接入到互聯網Internet。未來,WPAN和WLAN一起為用戶提供完備的短距離無線通信環境。
1.5 蜂窩網路
1.5.1 概述
蜂窩網路是把行動電話的服務區分為一個個正六邊形的小區,每個小區設置一個基站,這樣的結構酷似一個個“蜂窩”。 蜂窩技術是移動通信的基礎,所以把這種移動通信方式稱為蜂窩移動通信。蜂窩移動通信系統由移動站、基站子系統、網路子系統組成,採用蜂窩網路作為無線組網方式,通過無線信道將移動終端和網路設備進行連接,使用戶在移動中進行語音、數據通信業務。
1.5.2 特點及應用
宏蜂窩、微蜂窩是蜂窩移動通信系統應用較多的蜂窩技術,宏蜂窩覆蓋半徑大,多在1~25 km,但是存在盲區,小區半徑縮小時會產生干擾。微蜂窩相對於宏蜂窩覆蓋范圍小,一般覆蓋半徑為30~300 m,傳輸功率低、安裝方便靈活,主要用於提高覆蓋率和容量,作為宏蜂窩的補充和延伸,為用戶提供更好的網路覆蓋。它的主要特徵是終端的可移動性,並具有成熟的切換和漫遊方案,頻率復用技術、多址技術、移動性管理技術促進了移動通信業務的發展。伴隨著網路的發展,蜂窩網路從第一代蜂窩移動通信系統發展到現在的第三代蜂窩移動通信系統(3rd Generation,3G),成為實現網路融合和業務融合的統一平台,也是公認的下一代網路的核心網架構。3G網路把語音通信和多媒體通信巧妙結合,能支持更多的用戶,提供更高的數據傳輸速率。如HSPA的速率已經達到7.2 Mbit/s。但高成本、低帶寬的問題越發凸顯。
蜂窩系統或許是當今社會最重要的通信媒體。目前,3G網路可以為用戶提供豐富的應用服務,除電信業務、承載業務在內的基本業務外,還可以提供如呼叫前轉、呼叫等待、多方通話等補充業務。支持的增值服務應用包括網頁瀏覽、圖像、音樂、移動游戲、移動沖浪、視頻會議、視頻點播、各類信息服務等。
2 接入網路技術發展趨勢
目前的接入網路技術能為用戶提供豐富的通信接入手段以及無處不在的接入網路服務,但是各有利弊。例如,蜂窩網路覆蓋的范圍大,移動性管理技術成熟,但帶寬低、建設成本高;相反,WLAN高帶寬、低成本,但其覆蓋范圍有限。為解決此問題,需要充分利用不同網路技術的互補性,網路的融合將成為促進移動互聯網未來發展的關鍵要素,接入網路正在經歷一個動態的轉型過程,異構無線網路融合應運而生。
2.1 定義
異構網路是一種網路的類型,是不同的計算機、手持終端等網路設備及相關系統組成,運行在不同的協議上,支持不同的功能和應用。異構無線網路融合是將現有的多種無線接入技術有機的進行結合,符合下一代無線通信網路(4G網路)中多系統融合演進的設計思路和發展方向。
2.2 特點及應用
異構無線網路融合技術具有成本低、風險低的優點,它是現有接入技術的融合,可以充分利用現有網路資源,降低建設運營成本。其次可以增加網路的覆蓋范圍,利用不同接入技術的特點使網路進行有效地延伸。對於用戶來說,可以享受更加全面、豐富、便捷的移動互聯網服務,是下一代網路發展的必然趨勢。
近年來,業界和學術界不斷的在進行異構無線網路融合的應用研究,BARWAN計劃提出並實現了多模移動終端在無線區域網和無線廣域網之間的垂直切換方案。ETSI和3GPP對3G網路與WLAN之間的互連互通進行了深入的應用研究[2]。MOBYDICK對IPv6網路中WLAN和移動網路的融合應用進行了探討。國內各運營商為緩解大量數據業務對3G網路的沖擊,也開始進行網路的改造,主要是把3G+WLAN方式應用到網路中,例如將WLAN作為3G網路的一個無線接入網,通過網關連接到3G核心網[2],共享核心網路提供的計費認證功能及信令協議,實現WLAN和3G網路的互聯互通,以促進移動互聯網的發展。但是,異構無線網路融合還存在很多需要解決的問題,比如各種接入網路的互聯互通問題、無縫切換等移動性管理問題,網路中各個功能實體的位置及網路架構也直接決定了網路的融合程度及實際應用效果。 3 結語
移動互聯網可以提供除傳統互聯網迷你主頁之外的幾乎所有業務,在韓國、日本等應用較好的國家,移動互聯網的ARPU值可以達到10美元[11]。截至2012年6月底,中國手機網民規模達到3.88億,相比台式電腦上網的3.80億,手機首次超越台式電腦成為第一大上網終端。手機視頻用戶規模激增,已經超過一億人。手機微博用戶漲幅明顯,使用率提升5.3個百分點至43.8%[12]。種種數據表明,“無處不在的網路、無所不能的業務”已深入人心。
伴隨著用戶規模的快速增長,移動互聯網產業將飛躍式的發展,必將推進接入網路技術的融合演進,各種無線網路接入形式和應用成為研究和開發的 熱點 。相信未來各種獨立的無線網路將與整個有線Internet相互聯,為用戶提供覆蓋范圍更廣,應用更豐富,服務更完善的下一代移動互聯網服務。
參考文獻
[1]移動互聯網白皮書[R].北京:工業和信息化部電信研究院,2011.
[2]羅軍舟,吳文甲,楊明.移動互聯網:終端、網路與服務[J].計算機學報,2011(11):30-51.
[3]張更新.VSAT衛星通信[J].電信科學,1996(7):54-61.
[4]陳如明.衛星通信存在的問題、進展與發展前景[J].世界電信,2001(11):3-7.
[5]王驪波.寬頻無線城域網的設計[J].西安郵電學院學報,2000(9):26-29.
[6]曾春亮,張寧,王旭瑩.WiMAX/802.16原理與應用[M].北京:機械工業出版社,2007.
[7]孫哲.無線城域網通信技術IEEE802.16協議架構及技術特點[J].計算機光碟軟體與應用,2011(22):9-10.
[8]陳錦山.無線區域網的現狀及前景展望[J].電子商務,2007(5):53-55.
[9]李妍.無線區域網技術探討[J].電大理工,2011(6):36-37.
[10]蔡駿.無線個域網(WPAN)協議概述[J].廣東通信技術,2002(12):21-23.
[11]楊慶廣.3G催熟移動互聯網 商業模式 需創新[J].中國電子報,2007(10):5-7.
[12]第30次中國互聯網路發展狀況統計報告[R].北京:中國互聯網路信息中心,2012(7).
看了“互聯網接入技術論文”的人還看:
1. 光纖接入技術論文
2. 淺談網路技術的論文3篇
3. 淺議互聯網的相關形勢與政策論文
4. 關於網路資訊理論文
5. 關於網路技術方面的論文
⑸ 簡述網路DNC系統
DNC(Distributed Numerical Control)稱為分布式數控,是網路化數控機床常用的製造術語。其本質是計算機與具有數控裝置的機床群使用計算機網路技術組成的分布在車間中的數控系統。該系統對用戶來說 就像一個統一的整體,系統對多種通用的物理和邏輯資源整合,可以動態的分配數控加工任務給任一加工設備。是提高設備利用率,降低生產成本的有力手段,是未來製造業的發展趨勢。
1.實現車間的完全網路化管理,為不同車間生產需求搭建多樣的車間網路系統,消除車間數控設備之間的信息孤島。徹底改變以前數控設備的單機通訊方式,全面實現數控設備的集中管理與控制。
2.NC程序管理更加規范化。DNC系統完善的程序傳輸流程、嚴謹的用戶許可權管理、方便的程序版本管理以及良好的可追溯性,實現對NC程序全生命周期的跟蹤管理。
3.大幅提高數控設備利用率,減少數控設備准備時間。DNC系統方便、可靠、全自動的NC程序傳輸功能,可最大程度地提高數控設備的有效利用率。
4.產品質量得到進一步提高,明顯降低產品廢品率。DNC系統可從最大程度上避免程序錯誤,從管理手段與措施上使產品質量有了根本的保障。
5.明顯降低工作人員的勞動強度。伺服器端無人職守、設備端全自動遠程傳輸,操作者不用離開設備就能完成程序的遠程調用、遠程比較和遠程上傳等全部工作,明顯減少了操作者因程序傳輸而在車間現場來回奔波的時間。
6.車間現場更加整潔。DNC系統實現了NC程序的集中管理與集中傳輸,車間現場不再需要大量的台式計算機及桌椅板凳,取而代之的是少量美觀大方的現場觸摸屏,整個車間顯得更整潔,更符合車間精益生產管理的要求。