導航:首頁 > 無線網路 > 無線感測網路協議

無線感測網路協議

發布時間:2024-10-19 01:21:28

『壹』 無線感測器網路通信協議的目錄

第1章 無線感測器網路概述
1.1 引言
1.2 無線感測器網路介紹
1.2.1 無線感測器網路體系結構
1.2.2 無線感測器網路的特點和關鍵技術
1.2.3 無線感測器網路的應用
1.3 無線感測器網路路由演算法
1.3.1 無線感測器網路路由演算法研究的主要思路
1.3.2 無線感測器網路路由演算法的分類
1.3.3 無線感測器網路QoS路由演算法研究的基本思想
1.3.4 無線感測器網路QoS路由演算法研究的分類
1.3.5 平面路由的主流演算法
1.3.6 分簇路由的主流演算法
1.4 ZigBee技術
1.4.1 ZigBee技術的特點
1.4.2 ZigBee協議框架
1.4.3 ZigBee的網路拓撲結構
1.5 無線感測器安全研究
1.5.1 無線感測器網路的安全需求
1.5.2 無線感測器網路安全的研究進展
1.5.3 無線感測器網路安全的研究方向
1.6 水下感測器網路
1.7 無線感測器網路定位
1.7.1 存在的問題
1.7.2 性能評價
1.7.3 基於測距的定位方法
1.7.4 非測距定位演算法
1.7.5 移動節點定位
第2章 無線感測器網路的分布式能量有效非均勻成簇演算法
2.1 引言
2.2 相關研究工作
2.2.1 單跳成簇演算法
2.2.2 多跳成簇演算法
2.3 DEEUC成簇路由演算法
2.3.1 網路模型
2.3.2 DEEUC成簇演算法
2.3.3 候選簇頭的產生
2.3.4 估計平均能量
2.3.5 最終簇頭的產生
2.3.6 平衡簇頭區節點能量
2.3.7 演算法分析
2.4 模擬和分析
2.5 結論及下一步工作
參考文獻
第3章 無線感測器網路分簇多跳能量均衡路由演算法
3.1 無線傳輸能量模型
3.2 無線感測器網路路由策略研究
3.2.1 平面路由
3.2.2 單跳分簇路由演算法研究
3.2.3 多跳層次路由演算法研究
3.3 LEACH-L演算法
3.3.1 LEACH-L的改進思路
3.3.2 LEACH-L演算法模型
3.3.3 LEACH-L描述
3.4 LEACH-L的分析
3.5 實驗模擬
3.5.1 評價參數
3.5.2 模擬環境
3.5.3 模擬結果
3.6 總結及未來的工作
3.6.1 總結
3.6.2 未來的工作
參考文獻
第4章 基於生成樹的無線感測器網路分簇通信協議
4.1 引言
4.2 無線傳輸能量模型
4.3 基於時間延遲機制的分簇演算法(CHTD)
4.3.1 CHTD的改進思路
4.3.2 CHTD簇頭的產生
4.3.3 CHTD簇頭數目的確定
4.3.4 CHTD最優簇半徑
4.3.5 CHTD描述
4.3.6 CHTD的特性
4.4 CHTD簇數據傳輸研究
4.4.1 引言
4.4.2 改進的CHTD演算法(CHTD-M)
4.4.3 CHTD-M的分析
4.5 模擬分析
4.5.1 生命周期
4.5.2 接收數據包量
4.5.3 能量消耗
4.5.4 負載均衡
4.6 總結及未來的工作
4.6.1 總結
4.6.2 未來的工作
參考文獻
第5章 基於自適應蟻群系統的感測器網路QoS路由演算法
5.1 引言
5.2 蟻群演算法
5.3 APAS演算法的信息素自適應機制
5.4 APAS演算法的揮發系數自適應機制
5.5 APAS演算法的QoS改進參數
5.6 APAS演算法的信息素分發機制
5.7 APAS演算法的定向廣播機制
5.8 模擬實驗及結果分析
5.8.1 模擬環境
5.8.2 模擬結果及分析
5.9 總結及未來的工作
5.9.1 總結
5.9.2 未來的工作
參考文獻
第6章 無線感測器網路簇頭選擇演算法
6.1 引言
6.2 LEACH NEW演算法
6.2.1 網路模型
6.2.2 LEACH NEW簇頭選擇機制
6.2.3 簇的生成
6.2.4 簇頭間多跳路徑的建立
6.3 模擬實現
6.4 結論及未來的工作
參考文獻
第7章 水下無線感測網路中基於向量的低延遲轉發協議
7.1 引言
7.2 相關工作
7.3 網路模型
7.3.1 問題的數學描述
7.3.2 網路模型
7.4 基於向量的低延遲轉發協議
7.4.1 基於向量轉發協議的分析
7.4.2 基於向量的低延遲轉發演算法
7.5 模擬實驗
7.5.1 模擬環境
7.5.2 模擬分析
7.6 總結
參考文獻
第8章 無線感測器網路數據融合演算法研究
8.1 引言
8.2 節能路由演算法
8.2.1 平面式路由演算法
8.2.2 層狀式路由演算法
8.3 數據融合模型
8.3.1 數據融合系統
8.3.2 LEACH簇頭選擇演算法
8.3.3 簇內融合路徑
8.3.4 環境設定和能耗公式
8.4 數據融合模擬
8.4.1 模擬分析
8.4.2 模擬結果分析
8.5 結論
參考文獻
第9章 無線感測器網路相關技術
9.1 超寬頻技術
9.1.1 系統結構的實現比較簡單
9.1.2 空間傳輸容量大
9.1.3 多徑分辨能力強
9.1.4 安全性高
9.1.5 定位精確
9.2 物聯網技術
9.2.1 物聯網原理
9.2.2 物聯網的背景與前景
9.3 雲計算技術
9.3.1 SaaS軟體即服務
9.3.2 公用/效用計算
9.3.3 雲計算領域的Web服務
9.4 認知無線電技術
9.4.1 傳統的Ad-hoc方式中無線感測器網路的不足
9.4.2 在ZigBee無線感測器網路中的應用
參考文獻
第10章 無線感測器網路應用
10.1 軍事應用
10.2 農業應用
10.3 環保監測
10.4 建築應用
10.5 醫療監護
10.6 工業應用
10.6.1 工業安全
10.6.2 先進製造
10.6.3 交通控制管理
10.6.4 倉儲物流管理
10.7 空間、海洋探索
10.8 智能家居應用

『貳』 無線感測器網路MAC協議有哪些基本分類

目前,由於研究人員針對不同的無線感測器網路應用,沒有採用統一的MAC協議分類方式,但是大體依據標准分為三種,一種是基於競爭的MAC層協議:無線信道隨機競爭接入方式(CSMA),節點需要發送數據時採用隨機方式使用無線信道,典型的如採用載波監聽多路訪問(CSMA)的MAC協議,需要注意隱藏終端和暴露終端問題,盡量減少節點間的干擾。一種是基於固定分配的MAC層協議:無線信道時分復用無競爭接入方式(TDMA),採用時分復用(TDMA)方式給每個節點分配了一個固定的無線信道使用時段,可以有效避免節點間的干擾。還有就是前兩者混合的MAC協議:無線信道時分/頻分/碼分等混合復用接入方式(TDMA/FDMA/CDMA) ,通過混合採用時分和頻分或碼分等復用方式,實現節點間的無沖突信道分配策略。
這是我畢業設計弄的,您要是有更多的資料我們可以繼續交流下

『叄』 感測器協議有哪幾種

問題一:當一個感測器支持多種協議用什麼區別 RFID是射頻識別技術,不是感測器。它主要通過標簽對應的唯一ID號識別標志物。 RFID是一種簡單的無線系統,只有兩個基本器件,該系統用於控制、檢測和跟蹤物體。
感測器是一種檢測裝置,能感受到被測量的信息,並能將檢測感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。它是實現自動檢測和自動控制的首要環節。
兩者都是物聯網技術,不同的是感測器技術可以對感知到的物品進行處理,RFID只是識別,沒有處理的能力。
希望對你有幫助。

問題二:單片機與感測器的通信協議是什麼? 需要閱讀感測器的使用手冊,各種感測器都有自己的通訊方式。

問題三:感測器的測量方式有哪幾種 深圳現代豪方儀器儀表科技有限公司 感測器技術現場對感測器測量得到以下結論:
在系統檢測過程中,需要運用到各種各樣的感測器,感測器的測量方法以及性能是檢測任務是否能夠順利完成的關鍵性因素。
直接測量
直接測量就是在使用感測器儀表進行測量時,對儀表讀數不需要經過任何運算,就能直接表示測量所需要的結果。
間接測量
在有些測量場合,被測量無法或不便於直接測量,這就要求在使用感測器進行測量時,首先對與被測物理量有確定函數關系的幾個量進行測量,然後將測量值代入函數關系式,經過計算得到所需的結果,這種方法稱為間接測量。
組合測量
在應用感測器儀表進行測量時,若被測物理量必須經過求解聯立方程組,才能得到最後結果,則稱這樣的測量為組合測量。在進行組合測量時,一般需要改變測試條件,才能獲得一組聯立方程所需要的數據。

問題四:無線感測器網路MAC協議有哪些基本分類 目前,由於研究人員針對不同的無線感測器網路應用,沒有採用統一的MAC協議分類方式,但是大體依據標准分為三種,一種是基於競爭的MAC層協議:無線信道隨機競爭接入方式(CSMA),節點需要發送數據時採用隨機方式使用無線信道,典型的如採用載波監聽多路訪問(CSMA)的MAC協議,需要注意隱藏終端和暴露終端問題,盡量減少節點間的干擾。一種是基於固定分配的MAC層協議:無線信道時分復用無競爭接入方式(TDMA),採用時分復用(TDMA)方式給每個節點分配了一個固定的無線信道使用時段,可以有效避免節點間的干擾。還有就是前兩者混合的MAC協議:無線信道時分/頻分/碼分等混合復用接入方式(TDMA/FDMA/CDMA) ,通過混合採用時分和頻分或碼分等復用方式,實現節點間的無沖突信道分配策略。
這是我畢業設計弄的,您要是有更多的資料我們可以繼續交流下

問題五:無線感測器網路的訪問控制協議有哪些 HTTP協議肯定有。
感測器網路用來感知客觀物理世界,獲取物理世界的信息量。客觀世界的物理量多種多樣,不可窮盡。不同的感測器網路應用關心不同的物理量,因此對感測器的應用系統也有多種多樣的要求。
無線感測器網路
不同的應用對感測器網路的要求不同,其硬體平台、軟體系統和網路協議必然會有很大差別。所以感測器網路不能像網際網路一樣,有統一的通信協議平台。對於不同的感測器網路應用雖然存在一些共性問題,但在開發感測器網路應用中,更關心感測器網路的差異。只有讓系統更貼近應用,才能做出最高效的目標系統。針對每一個具體應用來研究感測器網路技術,這是感測器網路設計不同於傳統網路的顯著特徵。
無線感測網路有著許多不同的應用。在工業界和商業界中,它用於監測數據,而如果使用有線感測器,則成本較高且實現起來困難。無線感測器可以長期放置在荒蕪的地區,用於監測環境變數,而不需要將他們重新充電再放回去。

問題六:無線感測器網路採用什麼協議 ZIGBEE協議。最適合感測器網路的無線通信技術。相應的就是ZIGBEE協議,實現是ZIGBEE協議棧。此外無線通信技術還有WIFI,藍牙,GPRS等

問題七:電感式感測器主要有哪幾種類型?? 可以分類為:
1、變磁阻式感測器――自感式
2、差動變壓器式感測器――互感式
3、電渦流式感測器――電渦流式
如果還有問題請到大比特論壇問我,如果幫上了你的忙還望採納答案!

問題八:PM2.5感測器有幾種類型?分別是什麼? 5分 PM2.5監測是有3種原理分別是:
稱重法
β射線法
光散射法
對於感測器來說,光散射法才是真正能應於在測量PM2.5的方法(其它方法過於復雜)
光散射法(MIE米式)又有兩種典型:激光和紅外光
紅外光:日本的PPD42NS無非是其鼻祖,早在2003年,神榮公司就注冊了光散射法的發明專利!其後夏普公司也以低成本方式發明了GP2Y1010AU,均取得了一些成績
激光:對於激光是基於紅外光採用了投射更加強的光束即激光,並加上「風扇」設計獨特的風道,我司型號「AS01-T」不難理解一束強光跟弱光區別,投射越強,計數的誤差就會越小,草率的說技術還沒有達到爐火純青的時候(因其壽命較短和對比紅外的精度優勢並不明顯),不過卻從應用上彌補了紅外原理的一些不足(需要氣流,精度較低)

問題九:無線感測器網路路由協議有哪些基本分類 我知道的有MODBUS RTU協議,WSNXL協議(信立協議),其餘的沒什麼了解,可以到網路中找找

問題十:無線感測器網路路由協議是什麼?? (1)能量優先 傳統路由協議在選擇最優路徑時,很少考慮節點的能量消耗問題。而無線感測器網路中節點的能量有限,延長整個網路的生存期成為感測器網路路由協議設計的重要目標,因此需要考慮節點的能量消耗以及網路能量均衡使用的問題。 (2)基於局部拓撲信息 無線感測器網路為了節省通信能量,通常採用多跳的通信模式,而節點有限的存儲資源和計算資源,使得節點不能存儲大量的路由信息,不能進行太復雜的路由計算。在節點只能獲取局部拓撲信息和資源有限的情況下,如何實現簡單高效的路由機制是無線感測器網路的一個基本問題。 (3)以數據為中心 傳統的路由協議通常以地址作為節點的標識和路由的依據,而無線感測器網路中大量節點隨機部署,所關注的是監測區域的感知數據,而不是具體哪個節點獲取的信息,不依賴於全網唯一的標識。感測器網路通常包含多個感測器節點到少數匯聚節點的數據流,按照對感知數據的需求、數據通信模式和流向等,以數據為中心形成消息的轉發路徑。 (4)應用相關 感測器網路的應用環境千差萬別,數據通信模式不同,沒有一個路由機制適合所有的應用,這是感測器網路應用相關性的一個體現。設計者需要針對每一個具體應用的需求,設計與之適應的特定路由機制。 針對感測器網路路由機制的上述特點,在根據具體應用設計路由機制時,感測器網路需滿足一定的路由機制。

『肆』 什麼是無線感測器網路

品牌型號:聯想拯救者Y9000P
系統:Windows11
無線感測器網路是一種分布式感測網路;無線感測器網路是一項通過無線通信技術把數以萬計的感測器節點以自由式進行組織與結合進而形成的網路形式,因此網路設置靈活,設備位置可以隨時更改,還可以跟互聯網進行有線或無線的方式連接,通過無線通信方式形成的一個多跳自組織網路。
無線感測器網路是一項通過無線通信技術把數以萬計的感測器節點以自由式進行組織與結合進而形成的網路形式。構成感測器節點的單元分別為:數據採集單元、數據傳輸單元、數據處理單元以及能量供應單元。
其中數據採集單元通常都是採集監測區域內的信息並加以轉換,比如光強度跟大氣壓力與濕度等;數據傳輸單元則主要以無線通信和交流信息以及發送接收那些採集進來的數據信息為主;數據處理單元通常處理的是全部節點的路由協議和管理任務以及定位裝置等;能量供應單元為縮減感測器節點占據的面積,會選擇微型電池的構成形式。
無線感測器網路當中的節點分為兩種,一個是匯聚節點,一個是感測器節點。匯聚節點主要指的是網關能夠在感測器節點當中將錯誤的報告數據剔除,並與相關的報告相結合將數據加以融合,對發生的事件進行判斷。匯聚節點與用戶節點連接可藉助廣域網路或者衛星直接通信,並對收集到的數據進行處理。

『伍』 無線感測器網路中cps是什麼意思

CPS是集合物理、生物及工程學的綜合性系統,具有局部操控、全局控制的特點,這種新興的網路系統引起了研究界極大的興趣,也是未來通信網路的一種重要發展方向。
CPS通常廣泛用於重要基礎設施的監測與控制、國防武器系統、醫療保健和智能交通等諸多安全攸關領域。網路架構與協議是影響CPS系統實用性與效率的關鍵因素之。
CPS系統由感知系統、控制系統等子系統組成,由於工作環境和系統自身構造所限,使得無線感測網路技術成為了CPS中的一部分,以往成熟的無線感測器網路(Wireless Sensor Networks,WSN)相關技術在CPS中依然適用。在一些極端的環境中,由於CPS感知系統的工作需要,以及網路中的感知節點的自身構造的限制,使得在網路的運行過程中一些極端的問題難以被有效地處理。因此,盡量減少網路中感知節點的能耗從而有效地延長網路的生命周期,成為CPS感知系統中的無線感測網路協議所要研究的一個主要目標。

『陸』 無線感測器網路的理論及應用的目錄

第1篇總論
第1章無線感測器網路概述
1.1無線感測器網路介紹1
1.1.1無線感測器網路的概念1
1.1.2無線感測器網路的特徵2
1.1.3無線感測器網路的應用4
1.2無線感測器網路的體系結構7
1.2.1無線感測器網路的系統架構7
1.2.2感測器節點的結構7
1.2.3無線感測器網路的體系結構概述8
1.3無線感測器網路的研究進展10
1.3.1無線感測器網路的發展歷程10
1.3.2無線感測器網路的關鍵技術14
1.3.3無線感測器網路所面臨的挑戰14
參考文獻16
第2篇無線感測器網路的通信協議
第2章無線感測器網路的物理層
2.1無線感測器網路物理層概述19
2.1.1無線感測器網路物理層的研究內容19
2.1.2無線感測器網路物理層的研究現狀20
2.1.3無線感測器網路物理層的主要技術挑戰22
2.2無線感測器網路的調制與編碼方法22
2.2.1Mary調制機制22
2.2.2差分脈沖位置調制機制23
2.2.3自適應編碼位置調制機制24
2.3超寬頻技術在無線感測器網路中的應用25
2.3.1超寬頻技術概述25
2.3.2超寬頻技術的基本原理26
2.3.3超寬頻技術的研究現狀29
2.3.4基於超寬頻技術的無線感測器網路31
參考文獻35
第3章無線感測器網路的數據鏈路層
3.1無線感測器網路數據鏈路層概述37
3.1.1無線感測器網路數據鏈路層的研究內容37
3.1.2無線感測器網路數據鏈路層的研究現狀38
3.1.3無線感測器網路數據鏈路層的主要技術挑戰39
3.2無線感測器網路的MAC協議40
3.2.1基於競爭機制的MAC協議40
3.2.2基於時分復用的MAC協議47
3.2.3其他類型的MAC協議54
參考文獻58
第4章IEEE802.15.4標准
4.1IEEE802.15.4標准概述60
4.2IEEE802.15.4的物理層60
4.2.1物理層概述60
4.2.2物理層服務規范61
4.2.3物理層幀結構65
4.3IEEE802.15.4的MAC子層65
4.3.1MAC層概述65
4.3.2MAC層的服務規范66
4.3.3MAC幀結構69
4.3.4MAC層的功能描述70
4.4基於IEEE802.15.4標準的無線感測器網路70
4.4.1組網類型70
4.4.2數據傳輸機制71
參考文獻72
第5章無線感測器網路的網路層
5.1無線感測器網路網路層概述73
5.1.1網路層的研究內容73
5.1.2網路層的研究現狀74
5.1.3網路層的主要技術挑戰75
5.2無線感測器網路的路由協議75
5.2.1以數據為中心的平面路由75
5.2.2網路分層路由77
5.2.3基於查詢的路由79
5.2.4地理位置路由81
5.2.5能量感知路由84
5.2.6基於QoS的路由87
5.2.7路由協議的優化88
5.3無線感測器網路中的數據包轉發策略90
5.3.1包轉發策略的研究背景90
5.3.2基於價格機制的包轉發博弈模型91
5.3.3自發合作的包轉發博弈模型93
參考文獻94
第6章無線感測器網路的傳輸層
6.1無線感測器網路傳輸層概述97
6.1.1無線感測器網路傳輸層的研究內容97
6.1.2無線感測器網路傳輸層的研究現狀98
6.1.3無線感測器網路傳輸層的主要技術挑戰99
6.2無線感測器網路的傳輸協議99
6.2.1PSFQ傳輸協議99
6.2.2ESRT傳輸協議101
6.3無線感測器網路與其他網路的互聯103
6.3.1無線感測器網路與Internet互聯103
6.3.2無線感測器網路接入到網格105
參考文獻109
第7章ZigBee協議規范
7.1ZigBee概述111
7.1.1ZigBee與IEEE802.15.4111
7.1.2ZigBee協議框架112
7.1.3ZigBee的技術特點113
7.2網路層規范113
7.2.1網路層概述113
7.2.2服務規范114
7.2.3幀結構與命令幀115
7.2.4功能描述116
7.3應用層規范117
7.3.1應用層概述117
7.3.2ZigBee應用支持子層117
7.3.3ZigBee應用層框架結構118
7.3.4ZigBee設備協定(profile)119
7.3.5ZigBee目標設備(ZDO)119
7.4ZigBee系統的開發119
7.4.1開發條件和注意事項119
7.4.2軟體開發120
7.4.3硬體開發121
7.5基於ZigBee規范的無線感測器網路122
7.5.1無線感測器的構建122
7.5.2無線感測器網路的構建123
7.5.3基於ZigBee的無線感測器網路與RFID技術的融合124
參考文獻124
第3篇無線感測器網路的核心支撐技術
第8章無線感測器網路的拓撲控制
8.1無線感測器網路的拓撲控制技術概述125
8.1.1無線感測器網路拓撲控制的研究內容125
8.1.2無線感測器網路拓撲控制的研究現狀126
8.1.3無線感測器網路拓撲控制的主要技術挑戰126
8.2無線感測器網路的拓撲控制演算法127
8.2.1功率控制演算法127
8.2.2層次拓撲結構控制演算法129
8.3無線感測器網路的密度控制135
8.3.1連通支配集構造演算法135
8.3.2基於概率覆蓋模型的無線感測器網路密度控制演算法138
參考文獻140
第9章無線感測器網路的節點定位
9.1無線感測器網路的節點定位技術概述142
9.1.1無線感測器網路節點定位的研究內容142
9.1.2無線感測器網路節點定位的研究現狀143
9.1.3無線感測器網路節點定位的主要技術挑戰146
9.2無線感測器網路的定位機制147
9.2.1基於測距的定位演算法147
9.2.2非基於測距的定位演算法151
9.3一種基於測距的協作定位策略159
9.3.1剛性圖理論簡介159
9.3.2基於剛性圖的協作定位理論160
9.3.3LCB定位演算法161
9.4節點位置估計更新策略162
9.4.1動態網路問題162
9.4.2更新策略163
參考文獻164
第10章無線感測器網路的時間同步
10.1無線感測器網路的時間同步概述167
10.1.1無線感測器網路時間同步的研究內容167
10.1.2無線感測器網路時間同步的研究現狀168
10.1.3無線感測器網路時間同步的主要技術挑戰169
10.2無線感測器網路的時間同步機制170
參考文獻180
第11章無線感測器網路的網內信息處理
11.1無線感測器網路的網內信息處理概述182
11.1.1無線感測器網路網內信息處理的研究內容182
11.1.2無線感測器網路網內信息處理的研究現狀183
11.1.3無線感測器網路網內信息處理的主要技術挑戰184
11.2無線感測器網路的數據融合技術184
11.2.1與路由相結合的數據融合184
11.2.2基於反向組播樹的數據融合186
11.2.3基於性能的數據融合187
11.2.4基於移動代理的數據融合189
11.3無線感測器網路的數據壓縮技術191
11.3.1基於排序編碼的數據壓縮演算法191
11.3.2分布式數據壓縮演算法192
11.3.3基於數據相關性的壓縮演算法194
11.3.4管道數據壓縮演算法194
11.4無線感測器網路的協作信號信息處理技術195
11.4.1網元層的CSIP技術195
11.4.2網路層的CSIP技術196
11.4.3應用層的CSIP技術196
11.4.4CSIP技術展望197
參考文獻198
第12章無線感測器網路的安全技術
12.1無線感測器網路的安全問題概述201
12.1.1無線感測器網路安全技術的研究內容201
12.1.2無線感測器網路安全技術的研究現狀202
12.1.3無線感測器網路安全技術的主要技術挑戰205
12.2無線感測器網路的安全問題分析205
12.2.1無線感測器網路物理層的安全策略206
12.2.2無線感測器網路鏈路層的安全策略207
12.2.3無線感測器網路網路層的安全策略207
12.2.4無線感測器網路傳輸層和應用層的安全策略209
12.3無線感測器網路的密鑰管理和入侵檢測技術209
12.3.1無線感測器網路的密鑰管理209
12.3.2無線感測器網路的入侵檢測技術211
參考文獻214
第4篇無線感測器網路的自組織管理技術
第13章無線感測器網路的節點管理
13.1無線感測器網路的節點管理概述216
13.1.1無線感測器網路節點管理的研究內容216
13.1.2無線感測器網路節點管理的研究現狀217
13.1.3無線感測器網路節點管理的主要技術挑戰218
13.2無線感測器網路的節點休眠/喚醒機制218
13.2.1PEAS演算法218
13.2.2基於網格的調度演算法219
13.2.3基於局部圓周覆蓋的節點休眠機制220
13.2.4基於隨機休眠調度的節能機制221
13.3無線感測器網路的節點功率管理222
13.3.1動態功率管理和動態電壓調節222
13.3.2基於節點度的演算法224
13.3.3基於鄰近圖的演算法224
13.3.4基於二分法的功率控制224
13.3.5網路負載自適應功率管理演算法226
參考文獻227
第14章無線感測器網路的資源與任務管理
14.1無線感測器網路的資源與任務管理概述229
14.1.1無線感測器網路資源與任務管理的研究內容229
14.1.2無線感測器網路資源與任務管理的研究現狀230
14.1.3無線感測器網路資源與任務管理的主要技術挑戰230
14.2無線感測器網路的資源管理技術231
14.2.1自組織資源分配方式231
14.2.2計算資源分配232
14.2.3帶寬資源分配235
14.3無線感測器網路的任務管理技術237
14.3.1任務分配237
14.3.2任務調度239
14.3.3負載均衡243
參考文獻245
第15章無線感測器網路的數據管理
15.1無線感測器網路的數據管理概述248
15.1.1無線感測器網路數據管理的研究內容248
15.1.2無線感測器網路數據管理的研究現狀249
15.1.3無線感測器網路數據管理的主要技術挑戰249
15.2無線感測器網路的數據管理系統250
15.2.1TinyDB系統250
15.2.2Cougar系統251
15.2.3Dimensions系統252
15.3無線感測器網路數據管理的基本方法253
15.3.1數據模式253
15.3.2數據存儲254
15.3.3數據索引255
15.3.4數據查詢257
參考文獻260
第16章無線感測器網路的部署、初始化和維護管理
16.1無線感測器網路的部署、初始化和維護管理概述261
16.1.1無線感測器網路部署、初始化和維護管理的研究內容261
16.1.2無線感測器網路部署、初始化和維護管理的研究現狀262
16.1.3無線感測器網路部署、初始化和維護管理的主要技術挑戰263
16.2無線感測器網路的部署技術264
16.2.1採用確定放置的部署技術264
16.2.2採用隨機拋撒且節點不具移動能力的部署技術265
16.2.3採用隨機拋撒且節點具有移動能力的部署技術265
16.3無線感測器網路的初始化技術266
16.3.1UDG模型266
16.3.2基於MIS的初始化演算法266
16.3.3基於MDS的初始化演算法268
16.4無線感測器網路的維護管理技術270
16.4.1覆蓋與連接維護技術270
16.4.2性能監測技術271
參考文獻272
第5篇無線感測器網路的開發與應用
第17章無線感測器網路的模擬技術
17.1無線感測器網路的模擬技術概述275
17.1.1網路模擬概述275
17.1.2無線感測器網路模擬研究概述275
17.2常用網路模擬軟體276
17.2.1OPNET簡介276
17.2.2NS279
17.2.3TOSSIM280
17.3OMNeT++模擬軟體281
17.3.1OMNeT++概述281
17.3.2NED語言282
17.3.3簡單模塊/復合模塊287
17.3.4消息290
17.3.5類庫291
17.4模擬示例296
參考文獻303
第18章無線感測器網路的硬體開發
18.1無線感測器網路的硬體開發概述304
18.1.1硬體系統的設計特點與要求304
18.1.2硬體系統的設計內容304
18.1.3硬體系統設計的主要挑戰305
18.2感測器節點的開發305
18.2.1數據處理模塊設計305
18.2.2換能器模塊設計307
18.2.3無線通信模塊設計307
18.2.4電源模塊設計309
18.2.5外圍模塊設計309
18.3感測器節點原型的開發實例Mica310
18.3.1Mica系列節點簡介310
18.3.2Mica系列處理器/射頻板設計分析313
18.3.3Mica系列感測板設計分析315
18.3.4編程調試介面板介紹317
參考文獻318
第19章無線感測器網路的操作系統
19.1無線感測器網路操作系統概述320
19.1.1無線感測器網路操作系統的設計要求320
19.1.2幾種典型的無線感測器網路操作系統介紹321
19.1.3無線感測器網路操作系統設計的主要技術挑戰321
19.2TinyOS操作系統322
19.2.1TinyOS的設計思路322
19.2.2TinyOS的組件模型322
19.2.3TinyOS的通信模型324
19.3基於TinyOS的應用程序運行過程解析324
19.3.1Blink程序的配件分析325
19.3.2BlinkM模塊分析327
19.3.3ncc編譯nesC程序的過程329
19.3.4Blink程序的運行跟蹤解析329
19.3.5TinyOS的任務調度機制的實現338
19.3.6TinyOS的事件驅動機制的實現342
19.4TinyOS的使用346
19.4.1TinyOS的安裝346
19.4.2創建應用程序348
19.4.3使用TOSSIM模擬調試應用程序348
19.4.4使用TinyViz進行可視化調試349
19.4.5將應用程序導入節點運行350
參考文獻351
第20章無線感測器網路的軟體開發
20.1無線感測器網路軟體開發概述353
20.1.1無線感測器網路軟體開發的特點與設計要求353
20.1.2無線感測器網路軟體開發的內容354
20.1.3無線感測器網路軟體開發的主要技術挑戰355
20.2nesC編程語言355
20.2.1nesC語言介紹355
20.2.2nesC的語法規范356
20.2.3nesC應用程序開發364
20.3無線感測器網路的應用軟體開發367
20.3.1無線感測器網路的編程模式367
20.3.2無線感測器網路的中間件設計370
20.3.3無線感測器網路的服務發現372
參考文獻373
第21章無線感測器網路應用於環境監測
21.1環境監測應用概述375
21.1.1環境監測應用的場景描述375
21.1.2環境監測應用中無線感測器網路的體系架構375
21.2關鍵技術377
21.2.1節點部署377
21.2.2能量管理377
21.2.3通信機制378
21.2.4任務的分配與控制379
21.2.5數據采樣與收集379
21.3無線感測器網路用於環境監測的實例380
21.3.1公路交通監測380
21.3.2建築物健康狀況監測384
21.3.3「狼群計劃」385
參考文獻387
第22章無線感測器網路應用於目標追蹤
22.1目標追蹤應用概述388
22.1.1目標追蹤應用的場景描述388
22.1.2目標追蹤應用的特點與技術挑戰388
22.1.3目標追蹤應用中的無線感測器網路系統架構389
22.2無線感測器網路用於目標追蹤的關鍵技術390
22.2.1追蹤步驟390
22.2.2追蹤演算法392
22.2.3面向目標追蹤的網路布局優化400
22.3基於無線感測器網路的車輛追蹤系統實例402
22.3.1系統架構402
22.3.2關鍵問題403
22.3.3關鍵技術404
參考文獻407
附錄英漢縮略語對照表410

閱讀全文

與無線感測網路協議相關的資料

熱點內容
怎麼能加強網路接收信號 瀏覽:465
路由器有信號網路卻總中斷 瀏覽:667
無線網路顯示10087怎麼解決 瀏覽:561
蘋果7無網路維修市場價多少錢 瀏覽:528
弓箭傳說關卡資源下載網路異常 瀏覽:227
新買的騰訊路由器怎麼連接上網路 瀏覽:574
政府網路安全聯盟 瀏覽:791
網路機頂盒刷機用usb哪個 瀏覽:852
港版蘋果網路怎麼那麼差 瀏覽:582
技術服務網路設置狀況怎麼填 瀏覽:625
連接手機網路時總是斷網 瀏覽:308
北京企業網路電話軟體 瀏覽:839
網路限速額度設置多少快 瀏覽:800
移動網路能不能投屏電視 瀏覽:389
蘋果更新系統網路突然斷了 瀏覽:962
益陽哪裡有移動td網路 瀏覽:862
蘋果台式電腦網路怎麼設置 瀏覽:134
小度網路信號是多少 瀏覽:648
汕頭有線網路電視如何交費 瀏覽:846
無線感測網路協議 瀏覽:674

友情鏈接