A. 無線感測器網路的優缺點
一、優點
(1) 數據機密性
數據機密性是重要的網路安全需求,要求所有敏感信息在存儲和傳輸過程中都要保證其機密性,不得向任何非授權用戶泄露信息的內容。
(2)數據完整性
有了機密性保證,攻擊者可能無法獲取信息的真實內容,但接收者並不能保證其收到的數據是正確的,因為惡意的中間節點可以截獲、篡改和干擾信息的傳輸過程。通過數據完整性鑒別,可以確保數據傳輸過程中沒有任何改變。
(3) 數據新鮮性
數據新鮮性問題是強調每次接收的數據都是發送方最新發送的數據,以此杜絕接收重復的信息。保證數據新鮮性的主要目的是防止重放(Replay)攻擊。
二、缺點
根據網路層次的不同,無線感測器網路容易受到的威脅:
(1)物理層:主要的攻擊方法為擁塞攻擊和物理破壞。
(2)鏈路層:主要的攻擊方法為碰撞攻擊、耗盡攻擊和非公平競爭。
(3)網路層:主要的攻擊方法為丟棄和貪婪破壞、方向誤導攻擊、黑洞攻擊和匯聚節點攻擊。
(4)傳輸層:主要的攻擊方法為泛洪攻擊和同步破壞攻擊。
(1)多感測器網路和無線感測器網路擴展閱讀:
一、相關特點
(1)組建方式自由。
無線網路感測器的組建不受任何外界條件的限制,組建者無論在何時何地,都可以快速地組建起一個功能完善的無線網路感測器網路,組建成功之後的維護管理工作也完全在網路內部進行。
(2)網路拓撲結構的不確定性。
從網路層次的方向來看,無線感測器的網路拓撲結構是變化不定的,例如構成網路拓撲結構的感測器節點可以隨時增加或者減少,網路拓撲結構圖可以隨時被分開或者合並。
(3)控制方式不集中。
雖然無線感測器網路把基站和感測器的節點集中控制了起來,但是各個感測器節點之間的控制方式還是分散式的,路由和主機的功能由網路的終端實現各個主機獨立運行,互不幹涉,因此無線感測器網路的強度很高,很難被破壞。
(4)安全性不高。
無線感測器網路採用無線方式傳遞信息,因此感測器節點在傳遞信息的過程中很容易被外界入侵,從而導致信息的泄露和無線感測器網路的損壞,大部分無線感測器網路的節點都是暴露在外的,這大大降低了無線感測器網路的安全性。
二、組成結構
無線感測器網路主要由三大部分組成,包括節點、感測網路和用戶這3部分。其中,節點一般是通過一定方式將節點覆蓋在一定的范圍,整個范圍按照一定要求能夠滿足監測的范圍。
感測網路是最主要的部分,它是將所有的節點信息通過固定的渠道進行收集,然後對這些節點信息進行一定的分析計算,將分析後的結果匯總到一個基站,最後通過衛星通信傳輸到指定的用戶端,從而實現無線感測的要求。
B. 無線感測器網路的特點與應用
無線感測器網路的特點與應用
無線感測器網路簡稱WSN,它綜合了現代無線網路通信技術、感測器技術、計算機技術等,其應用十分廣泛。下面是我為大家搜索整理的關於無線感測器網路的特點與應用,歡迎參考閱讀,希望對大家有所幫助!想了解更多相關信息請持續關注我們應屆畢業生培訓網!
無線感測器網路是一種新型的感測器網路,其主要是由大量的感測器節點組成,利用無線網路組成一個自動配置的網路系統,並將感知和收集到的信息發給管理部門。目前無線感測器網路在軍事、生態環境、醫療和家居方面都有一定應用,未來無線感測器網路的發展前景將是不可估量的。
一、無線感測器網路的特點
(一)節點數量多
在監測區通常都會安置許多感測器節點,並通過分布式處理信息,這樣就能夠提高監測的准確性,有效獲取更加精確的信息,並降低對節點感測器的精度要求。此外,由於節點數量多,因此存在許多冗餘節點,這樣就能使系統的容錯能力較強,並且節點數量多還能夠覆蓋到更廣闊的監測區域,有效減少監測盲區。
(二)動態拓撲
無線感測器網路屬於動態網路,其節點並非固定的。當某個節電出現故障或是耗盡電池後,將會退出網路,此外,還可能由於需要而被轉移添加到其他的網路當中。
(三)自組織網路
無線感測器的節點位置並不能進行精確預先設定。節點之間的相互位置也無法預知,例如通過使用飛機播散節點或隨意放置在無人或危險的區域內。在這種情況下,就要求感測器節點自身能夠具有一定的組織能力,能夠自動進行相關管理和配置。
(四)多跳路由
無線感測網路中,節點之間的距離通常都在幾十到幾百米,因此節點只能與其相鄰的節點進行直接通信。如果需要與范圍外的節點進行通信,就需要經過中間節點進行路由。無線感測網路中的多跳路由並不是專門的路由設備,所有傳輸工作都是由普通的節點完成的。
(五)以數據為中心
無線感測網路中的節點均利用編號標識。由於節點是隨機分布的,因此節點的編號和位置之間並沒有聯系。用戶在查詢事件時,只需要將事件報告給網路,並不需要告知節點編號。因此這是一種以數據為中心進行查詢、傳輸的方式。
(六)電源能力局限性
通常都是用電池對節點進行供電,而每個節點的能源都是有限的,因此一旦電池的能量消耗完,就是造成節點無法再進行正常工作。
二、無線感測器網路的應用
(一)環境監測應用
無線感測器可以用於進行氣象研究、檢測洪水和火災等,在生態環境監測中具有明顯優勢。隨著我國市場經濟的不斷發展,生態環境污染問題也越來越嚴重。我國是一個幅員遼闊、資源豐富的農業大國,因此在進行農業生產時利用無線感測器進行對生產環境變化進行監測能夠為農業生產帶來許多好處,這對我國市場經濟的不斷發展有著重要意義。
(二)醫療護理應用
無線感測器網路通過使用互聯網路將收集到的信息傳送到接受埠,例如一些病人身上會有一些用於監測心率、血壓等的感測器節點,這樣醫生就可以隨時了解病人的`病情,一旦病人出現問題就能夠及時進行臨時處理和救治。在醫療領域內感測器已經有了一些成功案例,例如芬蘭的技術人員設計出了一種可以穿在身上的無線感測器系統,還有SSIM(Smart Sensors and Integrated Microsystems)等。
(三)智能家居建築應用
文物保護單位的一個重要工作就是要對具有意義的古老建築實行保護措施。利用無線感測器網路的節點對古老建築內的溫度是、濕度、關照等進行監測,這樣就能夠對建築物進行長期有效的監控。對於一些珍貴文物的保存,對保護地的位置、溫度和濕度等提前進行檢測,可以提高展覽品或文物的保存品質。例如,英國一個博物館基於無線感測器網路設計了一個警報系統,利用放在溫度底部的節點檢測燈光、振動等信息,以此來保障文物的安全[5]。
目前我國基礎建設處在高速發展期,建設單位對各種建設工程的安全施工監測越來越關注。利用無線感測器網路使建築能夠檢測到自身狀況並將檢測數據發送給管理部門,這樣管理部門就能夠及時掌握建築狀況並根據優先等級來處理建築修復工作。
另外,在傢具或家電匯中設置無線感測器節點,利用無線網路與互聯網路,將家居環境打造成一個更加舒適方便的空間,為人們提供更加人性化和智能化的生活環境。通過實時監測屋內溫度、濕度、光照等,對房間內的細微變化進行監測和感知,進而對空調、門窗等進行智能控制,這樣就能夠為人們提供一個更加舒適的生活環境。
(四)軍事應用
無線感測器網路具有低能耗、小體積、高抗毀等特性,且其具有高隱蔽性和高度的自組織能力,這為軍事偵察提供有效手段。美國在20世紀90年代就開始在軍事研究中應用無線感測器網路。無線感測器網路在惡劣的戰場內能夠實時監控區域內敵軍的裝備,並對戰場上的狀況進行監控,對攻擊目標進行定位並能夠檢測生化武器。
目前無線感測器網路在全球許多國家的軍事、研究、工業部門都得到了廣泛的關注,尤其受到美國國防部和軍事部門的重視,美國基於C4ISR又提出了C4KISR的計劃,對戰場情報的感知和信息綜合能力又提出新的要求,並開設了如NSOF系統等的一系列軍事無線感測器網路研究。
總之,隨著無線感測器網路的研究不斷深入和擴展,人們對無線感測器的認識也越來越清晰,然而目前無線感測器網路的在技術上還存在一定問題需要解決,例如存儲能力、傳輸能力、覆蓋率等。盡管無線感測器網路還有許多技術問題待解決使得現在無法廣泛推廣和運用,但相信其未來發展前景不可估量。
;C. 什麼是無線感測器網路
無線感測器的無線傳輸功能,常見的無線傳輸網路有RFID、ZigBee、紅外、藍牙、GPRS、4G、2G、Wi-Fi、NB-IoT。
與傳統有線網路相比,無線感測器網路技術具有很明顯的優勢特點,主要的要求有: 低能耗、低成本、通用性、網路拓撲、安全、實時性、以數據為中心等。
D. 無線感測器在網路中的應用設計
下面是由整理的畢業設計論文《無線感測器在網路中的應用設計》,歡迎閱讀。
1引言
無線感測器網路(Wireless Sensor Networks,簡稱WSNs)是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信形成一個多跳自組織網路系統,能夠實時監測、感知和採集網路分布區域內監視對象的各種信息,並加以處理,完成數據採集和監測任務。WSNs綜合了感測器、嵌入式計算、無線通訊、分布式信息處理等技術,具有快速構建、自配置、自調整拓撲、多跳路由、高密度、節點數可變、無統一地址、無線通信等特點,特別適用於大范圍、偏遠距離、危險環境等條件下的實時信息監測,可以廣泛應用於軍事、交通、環境監測和預報、衛生保健、空間探索等各個領域。
2節點的總體設計和器件選型
2.1節點的總體設計
WSNs微型節點應用數量比較大,更換和維護比較困難,要求其節點成本低廉和工作時間盡可能長;功能上要求WSNs中不應該存在專門的路由器節點,每個節點既是終端節點,又是路由器節點。節點間採用移動自組織網路聯系起來,並採用多跳的路由機制進行通信。因此,在單個節點上,一方面硬體必須低能耗,採用無線傳輸方式;另一方面軟體必須支持多跳的路由協議。基於這些基本思想,設計了以高檔8位AVR單片機ATmega128L為核心,結合外圍感測器和2.4 GHz無線收發模塊CC2420的WSNs微型節點。這兩款器件的體積非常小,加上外圍電路,其整體體積也很小,非常適合用作WSNs節點的元件。
圖1給出WSNs微型節點結構。它由數據採集單元、數據處理單元、數據傳輸單元和電源管理單元4部分組成。數據採集單元負責監測區域內信息的採集和數據轉換,設計中包括了可燃性氣體感測器和濕度感測器;數據處理單元負責控制整個節點的處理操作、路由協議、同步定位、功耗管理、任務管理等;數據傳輸單元負責與其他節點進行無線通信,交換控制消息和收發採集數據;電源管理單元選通所用到的感測器,節點電源由幾節AA電池組成,實際工業應用中採用微型紐扣電池,以進一步減小體積。為了調試方便及可擴展性,可將數據採集單元獨立出來,做成兩塊能相互套接的可擴展主板。
2.2處理器選型
處理器的選型要求和指標是功耗低,保證長時間不更換電源也能順利工作,供給電壓小於5 V,有較快的處理速度和能力,由於節點是需要大量安置的,所以價格也要相對便宜。選用AVR單片機,考慮到電路中I/O的個數不多,功耗低、成本低、適合與無線器件介面配合等多方面因素,綜合對比後,選用Atmel公司的ATmega128L。該微型控制器擁有豐富的片上資源,包括4個定時器、4 KB SRAM、128KB Flash和4 KBEEPROM;擁有UART、SPI、I2C、JTAG介面,方便無線器件和感測器的接入;有6種電源節能模式,方便低功耗設計。
2.3無線通信器件選型 CC2420是一款符合ZigBee技術的高集成度工業用射頻收發器,其MAC層和PHY層協議符合802.15.4規范,工作於2.4 GHz頻段。該器件只需極少外部元件,即可確保短距離通信的有效性和可靠性。數據傳輸單元模塊支持數據傳輸率高達250 Kb/s,即可實現多點對多點的快速組網,系統體積小、成本低、功耗小,適於電池長期供電,具有硬體加密、安全可靠、組網靈活、抗毀性強等特點。
2.4感測器選型
由於WSNs是用於礦下安全監測,常要檢測礦下可燃氣體的濃度(預防瓦斯氣體濃度過高)和空氣濕度,所以要選擇測量氣體濃度和濕度的感測器。
2.4.1 HIH-4000系列測濕感測器
HIH-4000系列測濕感測器作為一個低成本、可軟焊的單個直插式組件(SIP)能提供儀表測量質量的相對濕度(RH)感測性能。RH感測器可用在二引線間有間距的配量中,它是一個熱固塑料型電容感測元件,其內部具有信號處理功能。感測器的多層結構對應用環境的不利因素,諸如潮濕、灰塵、污垢、油類和環境中常見的化學品具有最佳的抗力,因此可認定它能適用礦下環境。
2.4.2 MR511熱線型半導體氣敏元件
MR511型氣敏元件利用氣體吸附在金屬氧化物半導體表面而產生熱傳導變化及電傳導變化的原理,由白金線圈電阻值變化測定氣體濃度。MR511由檢測元件和補償元件配對組成電橋的兩個臂,遇可燃性氣體時,檢測元件的電阻減小,橋路輸出電壓變化,該電壓變化隨氣體濃度的增大而成比例增大,補償元件具有溫度補償作用。MR511除具有靈敏度高、響應恢復時間短、穩定性好特點外,還具有功耗小,抗環境溫濕度干擾能力強的優點。WSNs的節能和井下惡劣溫濕環境要求MR5111可以滿足。
3 WSNs節點設計
3.1數據採集單元
考慮到無線感測器網路節點的節能和井下惡劣的溫濕環境,為了便於數據採集,系統設計採用HIH-4000-01型測濕度感測器和MR511熱線型半導體氣體感測器。圖2、圖3分別給出其電路設計圖。
3.2數據處理單元
ATmega128L的外圍電路設計簡單,設計時注意在數字電路的電源並人多隻電容濾波。ATmega128L的工作時鍾源可以選取外部晶振、外部RC振盪器、內部RC振盪器、外部時鍾源等方式。工作時鍾源的選擇通過ATmega128L的內部熔絲位來設計。熔絲位可以通過JTAG編程、ISP編程等方式設置。ATmega128L採用7.3728 MHz和32.768 kHz兩個外部晶振。前者用作工作時鍾,後者用作實時時鍾源。
3.3數據傳輸單元
3.3.1 CC2420外圍電路設計
圖4給出數據傳輸單元的外圍電路。CC2420隻需要極少的外圍元器件。其外圍電路包括晶振時鍾電路、射頻輸入/輸出匹配電路和微控制器介面電路3部分。
射頻輸入/輸出匹配電路主要用來匹配器件的輸入輸出阻抗,使其輸入輸出阻抗為50 Ω,同時為器件內部的PA及LNA提供直流偏置。射頻輸入/輸出是高阻抗,有差別。射頻端最適合的負載是115+j180 Ω。C61、C62、C71、C81、L61組成不平衡變壓器,L62和L81匹配射頻輸入輸出到50 Ω;L61和L62同時提供功率放大器和低雜訊放大器的直流偏置。內部的T/R開關是為了切換低雜訊放大器/功率放大器。R451偏置電阻是電流基準發生器的精密電阻。CC2420本振信號既可由外部有源晶體提供,也可由內部電路提供。若由內部電路提供時,需外加晶體振盪器和兩只負載電容,電容的大小取決於晶體的頻率及輸入容抗等參數。設計採用16 MHz晶振時,其電容值約為22 pF。C381和C391是外部晶體振盪器的負載電容。片上電壓調節器提供所有內部1.8 V電源的供應。C42是電壓調節器的負載電容,用於穩定調節器。為得到最佳性能必須使用電源去耦。在應用中使用大小合適的去耦電容和功率濾波器是非常重要的。CC2420可以通過4線SPI匯流排(SI、SO、SCLK、CSn)設置器件的工作模式,並實現讀,寫緩存數據,讀/寫狀態寄存器等。通過控制FIFO和FIFOP引腳介面的狀態可設置發射/接收緩存器。
3.3.2配置IEEE 802.15.4工作模式
CC2420為IEEE 802.15.4的數據幀格式提供硬體支持。其MAC層的幀格式為:頭幀+數據幀+校驗幀;PHY層的幀格式為:同步幀+PHY頭幀+MAC幀,幀頭序列的長度可通過設置寄存器改變,採用16位CRC校驗來提高數據傳輸的可靠性。發送或接收的數據幀被送入RAM中的128位元組緩存區進行相應的幀打包和拆包操作。表1給出CC2420的四線串列SPI介面引腳功能。它是設計單片機電路的依據,充分發揮這些功能是設計無線通信產品的前提。
3.3.3 CC2420與單片機介面電路設計
圖5給出CC2420與ATmega128L單片機的介面電路。CC2420通過簡單的四線(SI、SO、SCLK、CSn)與SPI兼容串列介面配置,這時CC2420是受控的。ATmega128L的SPI介面工作在主機模式,它是SPI數據傳輸的控制方;CC2420設為從機工作方式。當ATmega128L的SPI介面設為主機工作方式時,其硬體電路不會自動控制SS引腳。因此,在SH通信時,應在SPI介面初始化,它是由程序控制SS,將其拉為低電平,此後,當把數據寫入主機的SPI數據寄存器後,主機介面將自動啟動時鍾發生器,在硬體電路的控制下,移位傳送,通過MOSI將數據移出ATmega128L,並同時從CC2420由MISO移人數據,8位數據全部移出時,兩個寄存器就實現了一次數據交換。
4結語
通過對於無線感測器網路節點中感測器元件、數據處理模塊、數據傳輸模塊和電源的選擇,設計了一種以CC2420和ATmega128L為主體的硬體方案。利用該方案設計的CC2420和ATmega128L的外圍電路以及兩者之間的介面電路。此外,還對感測器與單片機的介面電路進行設計。通過實驗驗證,設計的硬體節點基本上達到了項目要求,經調試能通過感測器正確真實地採集數據,並實現兩個無線節點(兩個電路板。AA電池供電)在30 m左右的通信、傳輸數據、並反映到終端設備。
E. 什麼是無線感測技術
早在上世紀70年代,就出現了將傳統感測器採用點對點傳輸、連接感測控制器而構成感測網路雛形,我們把它歸之為第一代感測器網路。隨著相關學科的不斷發展和進步,感測器網路同時還具有了獲取多種信息信號的綜合處理能力,並通過與感測控制的相聯,組成了有信息綜合和處理能力的感測器網路,這是第二代感測器網路。而從上世紀末開始,現場匯流排技術開始應用於感測器網路,人們用其組建智能化感測器網路,大量多功能感測器被運用,並使用無線技術連接,無線感測器網路逐漸形成。
無線感測器網路是新一代的感測器網路,具有非常上世紀70年代,其發展和應用,將會給人類的生活和生產的各個領域帶來深遠影響。
無線感測器網路可以看成是由數據獲取網路、數據頒布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。