㈠ 煤礦安全監控系統的系統組成及工作原理
礦井監控系統一般由感測器、執行機構、分站、電源箱 ( 或電控箱) 、主站 ( 或傳輸介面) 、主機 ( 含顯示器) 、系統軟體、伺服器、列印機、大屏幕、UPS- 電源、遠程終端、網路介面電纜和接線盒等組成。
1) 感測器將被測物理量轉換為電信號,並具有顯示和聲光報警功能 ( 有些感測器沒有顯示或聲光報警功能) ;
2) 執行機構 ( 含聲光報警及顯示設備) 將控制信號轉換為被控物理量;
3) 分站接收來自感測器的信號,並按預先約定的復用方式遠距離傳送給主站 ( 或傳輸介面) ,同時,接收來自主站 ( 或傳輸介面) 多路復用信號。分站還具有線性校正、超限判別、邏輯運算等簡單的數據處理能力、對感測器輸入的信號和主站( 或傳輸介面) 傳輸來的信號進行處理,控制執行機構工作;
4) 電源箱將交流電網電源轉換為系統所需的本質安全型直流電源,並具有維持電網停電後正常供電不小於 2h的蓄電池;
5) 傳輸介面接收分站遠距離發送的信號,並送至主機處理; 接收主機信號,並送相應分站(傳輸介面還具有控制分站的發送與接收、多路復用信號的調制與解調、系統自檢等功能;
6) 主機一般選用工控微型計算機或普通微型計算機、雙機或多機備份。主機主要用來接收監測信號、校正、報警判別、數據統計、磁碟存儲、顯示、聲光報警、人機對話、輸出控制、控制列印輸出、聯網等。
㈡ 無線感測器在網路中的應用設計
下面是由整理的畢業設計論文《無線感測器在網路中的應用設計》,歡迎閱讀。
1引言
無線感測器網路(Wireless Sensor Networks,簡稱WSNs)是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信形成一個多跳自組織網路系統,能夠實時監測、感知和採集網路分布區域內監視對象的各種信息,並加以處理,完成數據採集和監測任務。WSNs綜合了感測器、嵌入式計算、無線通訊、分布式信息處理等技術,具有快速構建、自配置、自調整拓撲、多跳路由、高密度、節點數可變、無統一地址、無線通信等特點,特別適用於大范圍、偏遠距離、危險環境等條件下的實時信息監測,可以廣泛應用於軍事、交通、環境監測和預報、衛生保健、空間探索等各個領域。
2節點的總體設計和器件選型
2.1節點的總體設計
WSNs微型節點應用數量比較大,更換和維護比較困難,要求其節點成本低廉和工作時間盡可能長;功能上要求WSNs中不應該存在專門的路由器節點,每個節點既是終端節點,又是路由器節點。節點間採用移動自組織網路聯系起來,並採用多跳的路由機制進行通信。因此,在單個節點上,一方面硬體必須低能耗,採用無線傳輸方式;另一方面軟體必須支持多跳的路由協議。基於這些基本思想,設計了以高檔8位AVR單片機ATmega128L為核心,結合外圍感測器和2.4 GHz無線收發模塊CC2420的WSNs微型節點。這兩款器件的體積非常小,加上外圍電路,其整體體積也很小,非常適合用作WSNs節點的元件。
圖1給出WSNs微型節點結構。它由數據採集單元、數據處理單元、數據傳輸單元和電源管理單元4部分組成。數據採集單元負責監測區域內信息的採集和數據轉換,設計中包括了可燃性氣體感測器和濕度感測器;數據處理單元負責控制整個節點的處理操作、路由協議、同步定位、功耗管理、任務管理等;數據傳輸單元負責與其他節點進行無線通信,交換控制消息和收發採集數據;電源管理單元選通所用到的感測器,節點電源由幾節AA電池組成,實際工業應用中採用微型紐扣電池,以進一步減小體積。為了調試方便及可擴展性,可將數據採集單元獨立出來,做成兩塊能相互套接的可擴展主板。
2.2處理器選型
處理器的選型要求和指標是功耗低,保證長時間不更換電源也能順利工作,供給電壓小於5 V,有較快的處理速度和能力,由於節點是需要大量安置的,所以價格也要相對便宜。選用AVR單片機,考慮到電路中I/O的個數不多,功耗低、成本低、適合與無線器件介面配合等多方面因素,綜合對比後,選用Atmel公司的ATmega128L。該微型控制器擁有豐富的片上資源,包括4個定時器、4 KB SRAM、128KB Flash和4 KBEEPROM;擁有UART、SPI、I2C、JTAG介面,方便無線器件和感測器的接入;有6種電源節能模式,方便低功耗設計。
2.3無線通信器件選型 CC2420是一款符合ZigBee技術的高集成度工業用射頻收發器,其MAC層和PHY層協議符合802.15.4規范,工作於2.4 GHz頻段。該器件只需極少外部元件,即可確保短距離通信的有效性和可靠性。數據傳輸單元模塊支持數據傳輸率高達250 Kb/s,即可實現多點對多點的快速組網,系統體積小、成本低、功耗小,適於電池長期供電,具有硬體加密、安全可靠、組網靈活、抗毀性強等特點。
2.4感測器選型
由於WSNs是用於礦下安全監測,常要檢測礦下可燃氣體的濃度(預防瓦斯氣體濃度過高)和空氣濕度,所以要選擇測量氣體濃度和濕度的感測器。
2.4.1 HIH-4000系列測濕感測器
HIH-4000系列測濕感測器作為一個低成本、可軟焊的單個直插式組件(SIP)能提供儀表測量質量的相對濕度(RH)感測性能。RH感測器可用在二引線間有間距的配量中,它是一個熱固塑料型電容感測元件,其內部具有信號處理功能。感測器的多層結構對應用環境的不利因素,諸如潮濕、灰塵、污垢、油類和環境中常見的化學品具有最佳的抗力,因此可認定它能適用礦下環境。
2.4.2 MR511熱線型半導體氣敏元件
MR511型氣敏元件利用氣體吸附在金屬氧化物半導體表面而產生熱傳導變化及電傳導變化的原理,由白金線圈電阻值變化測定氣體濃度。MR511由檢測元件和補償元件配對組成電橋的兩個臂,遇可燃性氣體時,檢測元件的電阻減小,橋路輸出電壓變化,該電壓變化隨氣體濃度的增大而成比例增大,補償元件具有溫度補償作用。MR511除具有靈敏度高、響應恢復時間短、穩定性好特點外,還具有功耗小,抗環境溫濕度干擾能力強的優點。WSNs的節能和井下惡劣溫濕環境要求MR5111可以滿足。
3 WSNs節點設計
3.1數據採集單元
考慮到無線感測器網路節點的節能和井下惡劣的溫濕環境,為了便於數據採集,系統設計採用HIH-4000-01型測濕度感測器和MR511熱線型半導體氣體感測器。圖2、圖3分別給出其電路設計圖。
3.2數據處理單元
ATmega128L的外圍電路設計簡單,設計時注意在數字電路的電源並人多隻電容濾波。ATmega128L的工作時鍾源可以選取外部晶振、外部RC振盪器、內部RC振盪器、外部時鍾源等方式。工作時鍾源的選擇通過ATmega128L的內部熔絲位來設計。熔絲位可以通過JTAG編程、ISP編程等方式設置。ATmega128L採用7.3728 MHz和32.768 kHz兩個外部晶振。前者用作工作時鍾,後者用作實時時鍾源。
3.3數據傳輸單元
3.3.1 CC2420外圍電路設計
圖4給出數據傳輸單元的外圍電路。CC2420隻需要極少的外圍元器件。其外圍電路包括晶振時鍾電路、射頻輸入/輸出匹配電路和微控制器介面電路3部分。
射頻輸入/輸出匹配電路主要用來匹配器件的輸入輸出阻抗,使其輸入輸出阻抗為50 Ω,同時為器件內部的PA及LNA提供直流偏置。射頻輸入/輸出是高阻抗,有差別。射頻端最適合的負載是115+j180 Ω。C61、C62、C71、C81、L61組成不平衡變壓器,L62和L81匹配射頻輸入輸出到50 Ω;L61和L62同時提供功率放大器和低雜訊放大器的直流偏置。內部的T/R開關是為了切換低雜訊放大器/功率放大器。R451偏置電阻是電流基準發生器的精密電阻。CC2420本振信號既可由外部有源晶體提供,也可由內部電路提供。若由內部電路提供時,需外加晶體振盪器和兩只負載電容,電容的大小取決於晶體的頻率及輸入容抗等參數。設計採用16 MHz晶振時,其電容值約為22 pF。C381和C391是外部晶體振盪器的負載電容。片上電壓調節器提供所有內部1.8 V電源的供應。C42是電壓調節器的負載電容,用於穩定調節器。為得到最佳性能必須使用電源去耦。在應用中使用大小合適的去耦電容和功率濾波器是非常重要的。CC2420可以通過4線SPI匯流排(SI、SO、SCLK、CSn)設置器件的工作模式,並實現讀,寫緩存數據,讀/寫狀態寄存器等。通過控制FIFO和FIFOP引腳介面的狀態可設置發射/接收緩存器。
3.3.2配置IEEE 802.15.4工作模式
CC2420為IEEE 802.15.4的數據幀格式提供硬體支持。其MAC層的幀格式為:頭幀+數據幀+校驗幀;PHY層的幀格式為:同步幀+PHY頭幀+MAC幀,幀頭序列的長度可通過設置寄存器改變,採用16位CRC校驗來提高數據傳輸的可靠性。發送或接收的數據幀被送入RAM中的128位元組緩存區進行相應的幀打包和拆包操作。表1給出CC2420的四線串列SPI介面引腳功能。它是設計單片機電路的依據,充分發揮這些功能是設計無線通信產品的前提。
3.3.3 CC2420與單片機介面電路設計
圖5給出CC2420與ATmega128L單片機的介面電路。CC2420通過簡單的四線(SI、SO、SCLK、CSn)與SPI兼容串列介面配置,這時CC2420是受控的。ATmega128L的SPI介面工作在主機模式,它是SPI數據傳輸的控制方;CC2420設為從機工作方式。當ATmega128L的SPI介面設為主機工作方式時,其硬體電路不會自動控制SS引腳。因此,在SH通信時,應在SPI介面初始化,它是由程序控制SS,將其拉為低電平,此後,當把數據寫入主機的SPI數據寄存器後,主機介面將自動啟動時鍾發生器,在硬體電路的控制下,移位傳送,通過MOSI將數據移出ATmega128L,並同時從CC2420由MISO移人數據,8位數據全部移出時,兩個寄存器就實現了一次數據交換。
4結語
通過對於無線感測器網路節點中感測器元件、數據處理模塊、數據傳輸模塊和電源的選擇,設計了一種以CC2420和ATmega128L為主體的硬體方案。利用該方案設計的CC2420和ATmega128L的外圍電路以及兩者之間的介面電路。此外,還對感測器與單片機的介面電路進行設計。通過實驗驗證,設計的硬體節點基本上達到了項目要求,經調試能通過感測器正確真實地採集數據,並實現兩個無線節點(兩個電路板。AA電池供電)在30 m左右的通信、傳輸數據、並反映到終端設備。
㈢ 試著設計一個用於煤礦工人井下定位的礦井地下無線感測器網路系統結構方案,並闡述設計的基本思路。
礦井環境監測中通常需要對礦井風速、礦塵、一氧化碳、溫度、濕度、氧氣、硫化氫和二氧化碳等參數進行檢測。現有的監控檢測系統需要在礦井內設通信線路,傳遞監測信息。生產過程中礦井結構在不停變化,加之有些坑道空間狹小,對通信線路的延伸和維護提出了很高的要求。一旦通信鏈路發生故障,整個監測系統就可能癱瘓。為解決上述問題,本文提出使用無線感測器網路來進行礦井環境的監測監控。使用無線感測器網路進行環境監控有三個顯著的優勢:(1)感測器節點體積小且整個網路只需要部署一次,因此部署感測器網路對監控環境的人為影響很小;(2)感測器網路節點數量大,分布密度高,每個節點可以檢測到局部環境詳細信息並匯總到基站,因此感測器網路具有採集數據全面,精度高的特點;(3)無線感測器節點本身具有一定的計算能力和存儲能力,可以根據物理環境的變化進行較為復雜的監控。感測器節點還具有無線通信的能力,可以在節點間進行協同監控[1]。節點的計算能力和無線通信能力使得感測器網路能夠重新編程和重新部署,對環境變化、感測器網路自身變化以及網路控制指令做出及時反應。即使礦井結構遭到破壞,仍能自動恢復組網,傳遞信息,為礦難救助等提供重要信息。無線感測器網路自身的這些特點特別適用於礦井環境監測。
㈣ 無線感測器定義及其應用實例解析
無線感測器,看到這個代名詞,我想大多數人是一頭霧水,一臉表現出很茫然的樣子。這也並不奇怪,無線感測器,目前還只運用於一些大型檢測工作中,自然而然,能夠接觸到它的也就只是一些專業的工作人員了。比如它可以監測地震,然後將監測到的信息通過無線網路傳輸到檢測中心的無線網卡,直接送入到計算機里邊兒。既然我們對它有這么多的疑惑,那接下來我就將向大家介紹介紹什麼是無線感測器定義以及它的一些應用實例。
無線感測器的組成模塊封裝在一個外殼內,在工作時它將由電池或振動發電機提供電源,構成無線感測器網路節點,由隨機分布的集成有感測器、數據處理單元和通信模塊的微型節點,通過自組織的方式構成網路。它可以採集設備的數字信號通檔喚過無線感測器網路傳輸到監控中心的無線網關,直接送入計算機,進行分析處理。如果需要,無線感測器也可以實時傳輸採集的整個時間歷程信號。監控中心也可以通過網關把控制、參數設置等信息無線傳輸給節點。數據調理採集處理模塊把感測器輸出的微弱信號經過放大,濾波等調理電路後,送到模數轉換器,轉變為數字信號,送到主處理器進行數字信號處理,計算出感測器的有效值,位移值等。
橋梁健康檢測及監測
橋梁結構健康監測(SHM)是一種基於感測器的主動防禦型方法,可以彌補目前安全性能十分重要的結構中,把感測器網路安置到橋梁、建築和飛機中,利用感測器進行SHM是一種可靠且不昂貴的做法,可以在第一時間檢測到缺陷的形成。這種網路可以提早向維修人員報告在關鍵結構中出現的缺陷,從而避免災難性事故。
糧倉溫濕度監測
無線感測器網路技術在糧庫糧倉溫度濕度監測領域應用最為普遍,這是由於糧庫糧倉溫度濕度的測點多,分布廣,使用縱橫交錯的信號線會降低防火安全系數,應用無線感測器網路技術具有低功耗,低成本,布線簡單,安裝方便,易於組網,便於管理維護等特點。
混凝土澆灌溫度監測
在混凝土施工過程中,將數字溫度感測器裝入導熱良好的金屬套管內,可保證感測器對混凝土溫度變化作出迅速的反應。每個溫度監測金屬管接入一個無線溫度節點,整個現場的無線溫度節點通過無線網路傳輸到施工監控中心,不需要在施工現場布放長電纜,安裝布放方便,能夠有效解決溫度測量點因為施工人員損壞電纜造成的成活率較低的問題.
地震監測
通過使用由大量互連的微型感測器節點組成的感測器網路,可以對不同環境進行不間斷的高精度數據搜集。採用低功耗的無線通信模塊和無線通信協議可以使感測器網路的生命期延續很長時間。保證了感測器網路的實用性。
無線感測器網路相對於傳統的網路,其最明顯的特色可以用六個字來概括即:「自旅禪組織,自癒合」。這些特點使得無線感測器網路能夠適應復雜多變的環境,去監測人力難以到達的惡劣環境地區。BEETECH無線感測器網路節點體積小巧,不需現場拉線供電,非常方便在應急情況下進行靈活部署監測並預測地質災害的發生情況。
建築物振動檢測
建築物懸臂部分不會因為旁邊公路及地鐵交通所引發的振動而超過舒適度的要求;通過現場測量,收集數據以驗證由公路及地鐵交通所引發的振動與主樓懸臂振動之相互關系;同時,通過模態分析得到主樓結構在小振幅脈動振動工況下前幾階振動模態的阻尼比,為將來進行結構的小振幅動力分析提供關鍵數據。
以上這些看起來很「翻番復雜」的文字呢,就是對無線感測器定義以及它的一些應用實例的解析了,這些也都是我所能了解到的知識信息了,對於無線感測器還有很多與其相關的知識信息,但是在這里我也只能給大家提供這么多了。雖然在我們的日常生活中並不會親身接觸到無線拆蠢塵感測器,但是它卻一直在我們的身邊,給予我們幫助,為我們「保駕護航」。
土巴兔在線免費為大家提供「各家裝修報價、1-4家本地裝修公司、3套裝修設計方案」,還有裝修避坑攻略!點擊此鏈接:【https://www.to8to.com/yezhu/zxbj-cszy.php?to8to_from=seo__m_jiare&wb】,就能免費領取哦~