導航:首頁 > 無線網路 > 基於wifi的無線感測器網路的研究與應用

基於wifi的無線感測器網路的研究與應用

發布時間:2023-07-07 16:25:36

① 無線感測器網路的無線感測器網路研究趨勢

經過十幾年的發展,無線感測器網路積累了大量的研究成果,在這十幾年研究中,主要以學術界為主,大多是私有的針對特定場景的協議,難以進行大規模應用推廣。這幾年無線感測器網路或者物聯網受到產業界的高度重視,為實現不同企業產品的互聯互通,標准化被提上日程。目前許多標准化組織參與到物聯網、無線感測器網路標準的制定,如Zigbee、Z-WAVE、6Lowpan、ISA100.11a、IEEE802.15.4等,並且日益成熟,相關產品日益豐富,物聯網產業雛形基本成形。
基於標准化的協議進行研發成為不可阻擋的技術趨勢,已經成為行業共識。目前IETF制定的6Lowpan標准體系,是符合IPv6技術的專門為物聯網定製的無線自組網體系,包括802.15.4物理層和MAC層、6Lowpan適配層、IPv6、Roll RPL組網路由協議、CoAP應用層協議,該技術標准具有開放、免費、與互聯網無縫集成、海量地址空間等優勢,最可能成為物聯網、無線感測器網路技術的事實標准,是該領域的發展趨勢。
《無線感測器網路》作為國內最早的研究書籍,對該領域的各個方面進行綜述和介紹,是很好的入門資料。然而近幾年,該領域技術的快速發展,出現了一些新的技術與相關書籍,形成新的研究趨勢,值得關注和進一步研究,相關研究如下:
IPSO 6Lowpan技術白皮書
類似相關書籍《6LoWPAN: The Wireless Embedded Internet 》
類似相關書籍《Interconnecting Smart Objects with IP》

② 無線感測器在網路中的應用設計

下面是由整理的畢業設計論文《無線感測器在網路中的應用設計》,歡迎閱讀。

1引言

無線感測器網路(Wireless Sensor Networks,簡稱WSNs)是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信形成一個多跳自組織網路系統,能夠實時監測、感知和採集網路分布區域內監視對象的各種信息,並加以處理,完成數據採集和監測任務。WSNs綜合了感測器、嵌入式計算、無線通訊、分布式信息處理等技術,具有快速構建、自配置、自調整拓撲、多跳路由、高密度、節點數可變、無統一地址、無線通信等特點,特別適用於大范圍、偏遠距離、危險環境等條件下的實時信息監測,可以廣泛應用於軍事、交通、環境監測和預報、衛生保健、空間探索等各個領域。

2節點的總體設計和器件選型

2.1節點的總體設計

WSNs微型節點應用數量比較大,更換和維護比較困難,要求其節點成本低廉和工作時間盡可能長;功能上要求WSNs中不應該存在專門的路由器節點,每個節點既是終端節點,又是路由器節點。節點間採用移動自組織網路聯系起來,並採用多跳的路由機制進行通信。因此,在單個節點上,一方面硬體必須低能耗,採用無線傳輸方式;另一方面軟體必須支持多跳的路由協議。基於這些基本思想,設計了以高檔8位AVR單片機ATmega128L為核心,結合外圍感測器和2.4 GHz無線收發模塊CC2420的WSNs微型節點。這兩款器件的體積非常小,加上外圍電路,其整體體積也很小,非常適合用作WSNs節點的元件。

圖1給出WSNs微型節點結構。它由數據採集單元、數據處理單元、數據傳輸單元和電源管理單元4部分組成。數據採集單元負責監測區域內信息的採集和數據轉換,設計中包括了可燃性氣體感測器和濕度感測器;數據處理單元負責控制整個節點的處理操作、路由協議、同步定位、功耗管理、任務管理等;數據傳輸單元負責與其他節點進行無線通信,交換控制消息和收發採集數據;電源管理單元選通所用到的感測器,節點電源由幾節AA電池組成,實際工業應用中採用微型紐扣電池,以進一步減小體積。為了調試方便及可擴展性,可將數據採集單元獨立出來,做成兩塊能相互套接的可擴展主板。

2.2處理器選型

處理器的選型要求和指標是功耗低,保證長時間不更換電源也能順利工作,供給電壓小於5 V,有較快的處理速度和能力,由於節點是需要大量安置的,所以價格也要相對便宜。選用AVR單片機,考慮到電路中I/O的個數不多,功耗低、成本低、適合與無線器件介面配合等多方面因素,綜合對比後,選用Atmel公司的ATmega128L。該微型控制器擁有豐富的片上資源,包括4個定時器、4 KB SRAM、128KB Flash和4 KBEEPROM;擁有UART、SPI、I2C、JTAG介面,方便無線器件和感測器的接入;有6種電源節能模式,方便低功耗設計。

2.3無線通信器件選型 CC2420是一款符合ZigBee技術的高集成度工業用射頻收發器,其MAC層和PHY層協議符合802.15.4規范,工作於2.4 GHz頻段。該器件只需極少外部元件,即可確保短距離通信的有效性和可靠性。數據傳輸單元模塊支持數據傳輸率高達250 Kb/s,即可實現多點對多點的快速組網,系統體積小、成本低、功耗小,適於電池長期供電,具有硬體加密、安全可靠、組網靈活、抗毀性強等特點。

2.4感測器選型

由於WSNs是用於礦下安全監測,常要檢測礦下可燃氣體的濃度(預防瓦斯氣體濃度過高)和空氣濕度,所以要選擇測量氣體濃度和濕度的感測器。

2.4.1 HIH-4000系列測濕感測器

HIH-4000系列測濕感測器作為一個低成本、可軟焊的單個直插式組件(SIP)能提供儀表測量質量的相對濕度(RH)感測性能。RH感測器可用在二引線間有間距的配量中,它是一個熱固塑料型電容感測元件,其內部具有信號處理功能。感測器的多層結構對應用環境的不利因素,諸如潮濕、灰塵、污垢、油類和環境中常見的化學品具有最佳的抗力,因此可認定它能適用礦下環境。

2.4.2 MR511熱線型半導體氣敏元件

MR511型氣敏元件利用氣體吸附在金屬氧化物半導體表面而產生熱傳導變化及電傳導變化的原理,由白金線圈電阻值變化測定氣體濃度。MR511由檢測元件和補償元件配對組成電橋的兩個臂,遇可燃性氣體時,檢測元件的電阻減小,橋路輸出電壓變化,該電壓變化隨氣體濃度的增大而成比例增大,補償元件具有溫度補償作用。MR511除具有靈敏度高、響應恢復時間短、穩定性好特點外,還具有功耗小,抗環境溫濕度干擾能力強的優點。WSNs的節能和井下惡劣溫濕環境要求MR5111可以滿足。

3 WSNs節點設計

3.1數據採集單元

考慮到無線感測器網路節點的節能和井下惡劣的溫濕環境,為了便於數據採集,系統設計採用HIH-4000-01型測濕度感測器和MR511熱線型半導體氣體感測器。圖2、圖3分別給出其電路設計圖。

3.2數據處理單元

ATmega128L的外圍電路設計簡單,設計時注意在數字電路的電源並人多隻電容濾波。ATmega128L的工作時鍾源可以選取外部晶振、外部RC振盪器、內部RC振盪器、外部時鍾源等方式。工作時鍾源的選擇通過ATmega128L的內部熔絲位來設計。熔絲位可以通過JTAG編程、ISP編程等方式設置。ATmega128L採用7.3728 MHz和32.768 kHz兩個外部晶振。前者用作工作時鍾,後者用作實時時鍾源。

3.3數據傳輸單元

3.3.1 CC2420外圍電路設計

圖4給出數據傳輸單元的外圍電路。CC2420隻需要極少的外圍元器件。其外圍電路包括晶振時鍾電路、射頻輸入/輸出匹配電路和微控制器介面電路3部分。

射頻輸入/輸出匹配電路主要用來匹配器件的輸入輸出阻抗,使其輸入輸出阻抗為50 Ω,同時為器件內部的PA及LNA提供直流偏置。射頻輸入/輸出是高阻抗,有差別。射頻端最適合的負載是115+j180 Ω。C61、C62、C71、C81、L61組成不平衡變壓器,L62和L81匹配射頻輸入輸出到50 Ω;L61和L62同時提供功率放大器和低雜訊放大器的直流偏置。內部的T/R開關是為了切換低雜訊放大器/功率放大器。R451偏置電阻是電流基準發生器的精密電阻。CC2420本振信號既可由外部有源晶體提供,也可由內部電路提供。若由內部電路提供時,需外加晶體振盪器和兩只負載電容,電容的大小取決於晶體的頻率及輸入容抗等參數。設計採用16 MHz晶振時,其電容值約為22 pF。C381和C391是外部晶體振盪器的負載電容。片上電壓調節器提供所有內部1.8 V電源的供應。C42是電壓調節器的負載電容,用於穩定調節器。為得到最佳性能必須使用電源去耦。在應用中使用大小合適的去耦電容和功率濾波器是非常重要的。CC2420可以通過4線SPI匯流排(SI、SO、SCLK、CSn)設置器件的工作模式,並實現讀,寫緩存數據,讀/寫狀態寄存器等。通過控制FIFO和FIFOP引腳介面的狀態可設置發射/接收緩存器。

3.3.2配置IEEE 802.15.4工作模式

CC2420為IEEE 802.15.4的數據幀格式提供硬體支持。其MAC層的幀格式為:頭幀+數據幀+校驗幀;PHY層的幀格式為:同步幀+PHY頭幀+MAC幀,幀頭序列的長度可通過設置寄存器改變,採用16位CRC校驗來提高數據傳輸的可靠性。發送或接收的數據幀被送入RAM中的128位元組緩存區進行相應的幀打包和拆包操作。表1給出CC2420的四線串列SPI介面引腳功能。它是設計單片機電路的依據,充分發揮這些功能是設計無線通信產品的前提。

3.3.3 CC2420與單片機介面電路設計

圖5給出CC2420與ATmega128L單片機的介面電路。CC2420通過簡單的四線(SI、SO、SCLK、CSn)與SPI兼容串列介面配置,這時CC2420是受控的。ATmega128L的SPI介面工作在主機模式,它是SPI數據傳輸的控制方;CC2420設為從機工作方式。當ATmega128L的SPI介面設為主機工作方式時,其硬體電路不會自動控制SS引腳。因此,在SH通信時,應在SPI介面初始化,它是由程序控制SS,將其拉為低電平,此後,當把數據寫入主機的SPI數據寄存器後,主機介面將自動啟動時鍾發生器,在硬體電路的控制下,移位傳送,通過MOSI將數據移出ATmega128L,並同時從CC2420由MISO移人數據,8位數據全部移出時,兩個寄存器就實現了一次數據交換。

4結語

通過對於無線感測器網路節點中感測器元件、數據處理模塊、數據傳輸模塊和電源的選擇,設計了一種以CC2420和ATmega128L為主體的硬體方案。利用該方案設計的CC2420和ATmega128L的外圍電路以及兩者之間的介面電路。此外,還對感測器與單片機的介面電路進行設計。通過實驗驗證,設計的硬體節點基本上達到了項目要求,經調試能通過感測器正確真實地採集數據,並實現兩個無線節點(兩個電路板。AA電池供電)在30 m左右的通信、傳輸數據、並反映到終端設備。

③ 無線感測器網路技術與應用的目錄

第1章無線感測器網路概述
1.1感測器網路的研究歷史
1.1.1早期的軍用感測器網路研究
1.1.2美軍DARPA的分布式感測器網路研究計劃
1.1.320世紀80年代和90年代的軍用感測器網路
1.1.421世紀的感測器網路研究
1.2WSN基本概念
1.2.1什麼是WSN
1.2.2WSN與MANET的異同
1.2.3WSN的通信體系結構
1.3WSN的主要技術
1.3.1系統體系結構
1.3.2網路與通信的控制
1.4影響WSN設計的因素
1.4.1容錯
1.4.2擴展性
1.4.3價格
1.4.4硬體限制
1.4.5WSN拓撲
1.4.6WSN工作環境
1.4.7傳輸媒介
1.4.8功耗
參考文獻
第2章無線感測器網路競爭類MAC協議
2.1感測器媒介訪問控制協議(S-MAC)
2.1.1能量浪費原因分析
2.1.2S-MAC協議概述
2.1.3休眠的協調
2.1.4避免旁聽與消息分片傳輸
2.1.5時延分析
2.1.6S-MAC協議實現
2.1.7S-MAC協議的性能
2.2超時MAC協議(T-MAC)
2.2.1T-MAC協議概述
2.2.2T-MAC基本協議
2.2.3分群與同步
2.2.4RTS操作與TA選擇
2.2.5避免旁聽
2.2.6不對稱通信
2.2.7T-MAC的性能
2.3伯克利媒介訪問控制協議(B-MAC)
2.3.1B-MAC協議的設計與實現
2.3.2壽命建模
2.3.3參數
2.3.4自適應控制
參考文獻
第3章無線感測器網路分配類MAC協議
3.1流量自適應媒介訪問協議(TRAMA)
3.1.1TRAMA協議概述
3.1.2TRAMA協議組成
3.1.3訪問方式與相鄰節點協議
3.1.4傳輸時間安排交換協議
3.1.5自適應選舉演算法
3.1.6TRAMA的性能
3.2分布式隨機時隙安排協議(DRAND)
3.2.1TDMA時隙分配問題定義
3.2.2DRAND演算法詳述
3.2.3DRAND正確性
3.2.4DRAND復雜性分析
3.2.5DRAND的性能
3.3功率高效與時延意識媒介訪問協議(PEDAMACS)
3.3.1PEDAMACS協議概述
3.3.2PEDAMACS分組格式
3.3.3本地拓撲建立階段
3.3.4AP拓撲信息收集階段
3.3.5傳輸時間安排階段
3.3.6拓撲調整階段
3.3.7傳輸時間安排演算法
參考文獻
第4章無線感測器網路混合類MAC協議
4.1斑馬MAC協議(Z-MAC)
4.1.1時間同步協議(TPSN)
4.1.2Z-MAC協議概述
4.1.3相鄰節點尋找與時隙分配
4.1.4本地成幀
4.1.5Z-MAC協議的傳輸控制
4.1.6發送規則
4.1.7直接競爭通知
4.1.8Z-MAC傳輸時間安排的接收
4.1.9本地時間同步
4.1.10Z-MAC協議的性能
4.1.11Z-MAC協議隨機分析
4.2漏斗-MAC協議
4.2.1漏斗問題
4.2.2按需發送信標
4.2.3面向中心節點的傳輸時間安排
4.2.4定時與成幀
4.2.5Meta-傳輸時間安排的廣播
4.2.6動態深度調整
4.2.7漏斗-MAC協議的測試床實驗評估
參考文獻
第5章無線感測器網路數據中心路由協議
5.1協商式感測器信息分發協議(SPIN)
5.1.1SPIN概述
5.1.2Meta-Data
5.1.3SPIN消息
5.1.4SPIN資源管理
5.1.5SPIN實現
5.1.6SPIN-1:3步握手協議
5.1.7SPIN-2:低能量門限的SPIN-1
5.1.8用於與SPIN比較的其他數據分發演算法
5.1.9SPIN的性能評估
5.1.10SPIN小結
5.2定向擴散
5.2.1定向擴散的組成要素
5.2.2命名
5.2.3興趣與梯度
5.2.4數據傳播
5.2.5路徑建立與路徑裁剪的強化
5.2.6定向擴散的分析評估
5.2.7定向擴散的模擬評估
參考文獻
第6章無線感測器網路分層路由協議
6.1低能量自適應分群分層(LEACH)
6.1.1LEACH協議體系結構
6.1.2群首選擇演算法
6.1.3分群演算法
6.1.4穩定狀態階段
6.1.5LEACH-C:BS建立分群
6.1.6LEACH的分析與模擬
6.2兩層數據分發協議(TTDD)
6.2.1兩層數據分發
6.2.2柵格結構
6.2.3TTDD轉發
6.2.4柵格維護
6.2.5TTDD開銷分析
6.2.6TTDD的性能
6.2.7TTDD討論
參考文獻
第7章無線感測器網路地理位置路由協議
7.1定位技術
7.1.1距離測量與角度測量
7.1.2位置計算
7.1.3TPS網路模型
7.1.4TPS定位方案
7.1.5TPS技術性能分析
7.2貪婪地理路由演算法
7.2.1概述
7.2.2基於DT的膨脹分析
7.2.3貪婪轉發(GF)
7.2.4有界Voronoi貪婪轉發(BVGF)
7.2.5網路膨脹分析總結
7.2.6基於概率通信模型的擴充
7.3位置輔助泛洪協議(LAF)
7.3.1LAF協議概述
7.3.2採用LAF分發信息
7.3.3LAF中的資源管理
7.3.4柵格維護開銷
7.3.5數據分發規程的完備性
7.3.6LAF節能分析
7.3.7位置估計中的誤差
7.3.8LAF的性能
參考文獻
第8章無線感測器網路端到端可靠傳輸協議
8.1事件到中心節點的可靠傳輸協議(ESRT)
8.1.1問題定義
8.1.2評估環境
8.1.3特性區域
8.1.4ESRT協議描述
8.1.5擁塞檢測
8.1.6ESRT協議對並發事件的處理
8.1.7ESRT協議的性能分析
8.1.8ESRT協議的模擬結果
8.1.9?的正確選擇
8.2基於多電台虛擬中心節點的過載流量管理(SIPHON)
8.2.1擁塞檢測與預防(CODA)
8.2.2虛擬中心節點尋找與可見度范圍控制
8.2.3SIPHON擁塞檢測
8.2.4改變流量的傳輸路徑
8.2.5次網路中的擁塞
8.2.6虛擬中心節點開銷分析
參考文獻
第9章無線感測器網路逐跳可靠傳輸協議
9.1合成擁塞控制技術(FUSION)
9.1.1擁塞崩潰的症狀
9.1.2逐跳流量控制
9.1.3速率限制
9.1.4MAC層優先順序化
9.1.5應用自適應
9.2慢分發、快提取可靠傳輸協議(PSFQ)
9.2.1PSFQ協議概述
9.2.2PSFQ分發操作
9.2.3PSFQ提取操作
9.2.4PSFQ報告操作
9.2.5單個分組消息的交付
9.2.6PSFQ的性能
9.3下行數據可靠交付可擴展體系結構(GARUDA)
9.3.1面臨的挑戰
9.3.2可靠性語義
9.3.3GARUDA的基本原理
9.3.4單個分組或第一個分組的交付
9.3.5即時構建GARUDA核
9.3.6兩階段丟失恢復
9.3.7其他可靠性語義的支持
9.3.8GARUDA的性能
參考文獻
第10章無線感測器網路數據融合技術
10.1樹狀結構累積
10.1.1分布式生成樹演算法
10.1.2E-Span樹
10.2不受應用約束的自適應數據累積(AIDA)
10.2.1AIDA協議概述
10.2.2AIDA體系結構
10.2.3AIDA控制單元中的累積方案
10.2.4AIDA累積功能單元
10.2.5AIDA分組格式
10.2.6AIDA分組頭開銷分析
10.2.7AIDA節省分析
10.2.8AIDA的性能
10.3無結構累積法與半結構累積法
10.3.1數據意識任意組播(DAA)
10.3.2ToD上的動態轉發
10.3.3性能分析
10.3.4ToD和DAA的性能
參考文獻
第11章無線感測器網路安全
11.1WSN安全概述
11.1.1WSN安全威脅模型
11.1.2WSN安全面臨的障礙
11.1.3WSN安全要求
11.1.4WSN安全解決方案的評估
11.2WSN中的安全攻擊
11.2.1物理層安全攻擊
11.2.2鏈路層安全攻擊
11.2.3對WSN網路層(路由)的攻擊
11.2.4對傳輸層的攻擊
11.3SPINS安全解決方案
11.3.1符號
11.3.2SNEP
11.3.3μTESLA
11.3.4μTESLA詳細描述
11.3.5SPINS實現
11.3.6SPINS性能評估
11.4LEAP+安全解決方案
11.4.1假設條件
11.4.2LEAP+概述
11.4.3單獨密鑰的建立
11.4.4成對密鑰的建立
11.4.5分群密鑰的建立
11.4.6全網密鑰的建立
11.4.7本地廣播認證
11.4.8LEAP+安全分析
11.4.9LEAP+性能評估
參考文獻
第12章無線感測器網路中間件技術
12.1WSN中間件面臨的挑戰
12.2WSN中間件的功能要求
12.3ZebraNet系統中的中間件系統(Impala)
12.3.1ZebraNet系統簡介
12.3.2ZebraNet中間件體系結構
12.3.3應用適配器
12.3.4應用更新器
12.3.5周期性操作調度
12.3.6事件處理模型
12.3.7Impala網路介面
12.3.8Impala評估
12.4感測器信息網路化體系結構(SINA)
12.4.1SINA的功能組成
12.4.2信息抽象
12.4.3感測器查詢與任務分配語言(SQTL)
12.4.4感測器執行環境(SEE)
12.4.5信息收集方法
12.4.6應用舉例
參考文獻
第13章無線感測器網路應用及編程
13.1感測器網路的應用
13.1.1軍事應用
13.1.2環境應用
13.1.3醫療衛生應用
13.1.4家庭應用
13.1.5其他商業應用
13.2WSN應用設計原理
13.2.1設計方面
13.2.2確定WSN操作坊式
13.3WSN網路編程
13.3.1編程抽象
13.3.2現有若干編程模型簡介
13.4分層編程與ATaG編程架構
13.4.1WSN的分層編程
13.4.2抽象任務圖編程架構(ATaG)
13.4.3採用ATaG的應用開發方法
13.4.4一個ATaG應用例子
參考文獻
……

④ 物聯網無線感測器網路的應用領域有哪些

主要特點

大規模

為了獲取精確信息,在監測區域通常部署大量感測器節點,可能達到成千上萬,甚至更多。感測器網路的大規模性包括兩方面的含義:一方面是感測器節點分布在很大的地理區域內,如在原始大森林採用感測器網路進行森林防火和環境監測,需要部署大量的感測器節點;另一方面,感測器節點部署很密集,在面積較小的空間內,密集部署了大量的感測器節點。

感測器網路的大規模性具有如下優點:通過不同空間視角獲得的信息具有更大的信噪比;通過分布式處理大量的採集信息能夠提高監測的精確度,降低對單個節點感測器的精度要求;大量冗餘節點的存在,使得系統具有很強的容錯性能;大量節點能夠增大覆蓋的監測區域,減少洞穴或者盲區。

自組織

在感測器網路應用中,通常情況下感測器節點被放置在沒有基礎結構的地方,感測器節點的位置不能預先精確設定,節點之間的相互鄰居關系預先也不知道,如通過飛機播撒大量感測器節點到面積廣闊的原始森林中,或隨意放置到人不可到達或危險的區域。這樣就要求感測器節點具有自組織的能力,能夠自動進行配置和管理,通過拓撲控制機制和網路協議自動形成轉發監測數據的多跳無線網路系統。

在感測器網路使用過程中,部分感測器節點由於能量耗盡或環境因素造成失效,也有一些節點為了彌補失效節點、增加監測精度而補充到網路中,這樣在感測器網路中的節點個數就動態地增加或減少,從而使網路的拓撲結構隨之動態地變化。感測器網路的自組織性要能夠適應這種網路拓撲結構的動態變化。

動態性

感測器網路的拓撲結構可能因為下列因素而改變:①環境因素或電能耗盡造成的感測器節點故障或失效;②環境條件變化可能造成無線通信鏈路帶寬變化,甚至時斷時通;③感測器網路的感測器、感知對象和觀察者這三要素都可能具有移動性;④新節點的加入。這就要求感測器網路系統要能夠適應這種變化,具有動態的系統可重構性。

可靠性

WSN特別適合部署在惡劣環境或人類不宜到達的區域,節點可能工作在露天環境中,遭受日曬、風吹、雨淋,甚至遭到人或動物的破壞。感測器節點往往採用隨機部署,如通過飛機撒播或發射炮彈到指定區域進行部署。這些都要求感測器節點非常堅固,不易損壞,適應各種惡劣環境條件。

⑤ 無線感測器,主要應用在哪些方面

�丫���簧俚奈尷嘰�釁魍�緲�紀度朧褂謾D殼拔尷嘰�釁魍�緄撓τ彌饕��性諞韻鋁煊潁骸�
1.環境的監測和保護
隨著人們對於環境問題的關注程度越來越高,需要採集的環境數據也越來越多,無線感測器網路的出現為隨機性的研究數據獲取提供了便利,並且還可以避免傳統數據收集方式給環境帶來的侵入式破壞。比如,英特爾研究實驗室研究人員曾經將32個小型感測器連進互聯網,以讀出緬因州大鴨島上的氣候,用來評價一種海燕巢的條件。無線感測器網路還可以跟蹤候鳥和昆蟲的遷移,研究環境變化對農作物的影響,監測海洋、大氣和土壤的成分等。此外,它也可以應用在精細農業中,來監測農作物中的害蟲、土壤的酸鹼度和施肥狀況等。
2.醫療護理無線感測器網路在醫療研究、護理領域也可以大展身手。羅徹斯特大學的科學家使用無線感測器創建了一個智能醫療房間,使用微塵來測量居住者的重要徵兆(血壓、脈搏和呼吸)、睡覺姿勢以及每天24小時的活動狀況。英特爾公司也推出了無線感測器網路的家庭護理技術。該技術是做為探討應對老齡化社會的技術項目(CAST)的一個環節開發的。該系統通過在鞋、傢具以家用電器等家中道具和設備中嵌入半導體感測器,幫助老齡人士、阿爾茨海默氏病患者以及殘障人士的家庭生活。利用無線通信將各感測器聯網可高效傳遞必要的信息從而方便接受護理。而且還可以減輕護理人員的負擔。英特爾主管預防性健康保險研究的董事EricDishman稱,在開發家庭用護理技術方面,無線感測器網路是非常有前途的領域。
3.軍事領域由於無線感測器網路具有密集型、隨機分布的特點,使其非常適合應用於惡劣的戰場環境中,使其非常適合應用於惡劣的戰場環境中,包括偵察敵情、監控兵力、裝備和物資,判斷生物化學攻擊等多方面用途。美國國防部遠景計劃研究局已投資幾千萬美元,幫助大學進行智能塵埃感測器技術的研發。哈伯研究公司總裁阿爾門丁格預測:智能塵埃式感測器及有關的技術銷售將從2004年的1000萬美元增加到2010年的幾十億美元。
4.其他用途
無線感測器網路還被應用於其他一些領域。比如一些危險的工業環境如井礦、核電廠等,工作人員可以通過它來實施安全監測。也可以用在交通領域作為車輛監控的有力工具。此外和還可以在工業自動化生產線等諸多領域,英特爾正在對工廠中的一個無線網路進行測試,該網路由40台機器上的210個感測器組成,這樣組成的監控系統將可以大大改善工廠的運作條件。它可以大幅降低檢查設備的成本,同時由於可以提前發現問題,因此將能夠縮短停機時間,提高效率,並延長設備的使用時間。盡管無線感測器技術目前仍處於初步應用階段,但已經展示出了非凡的應用價值,相信隨著相關技術的發展和推進,一定會得到更大的應用。

⑥ 簡敘無線感測器網路的功能 列出無線感測器網路在4種應用領域中所起到的作用

1.、軍事應用
2、環境科學
3、醫療健康
4、空間探索

⑦ 無線感測器網路的特點及關鍵技術

無線感測器網路的特點及關鍵技術

無線感測器網路被普遍認為是二十一世紀最重要的技術之一,是目前計算機網路、無線通信和微電子技術等領域的研究熱點。下面我為大家搜索整理了關於無線感測器網路的特點及關鍵技術,歡迎參考閱讀!

一、無線感測器網路的特點

與其他類型的無線網路相比,感測器網路有著鮮明的特徵。其主要特點可以歸納如下:

(一)感測器節點能量有限。當前感測器通常由內置的電池提供能量,由於體積受限,因而其攜帶的能量非常有限。如何使感測器節點有限的能量得到高效的利用,延長網路生存周期,這是感測器網路面臨的首要挑戰。

(二)通信能力有限。無線通信消耗的能量與通信距離的關系為E=kdn。其中,參數n的取值為2≤n≤4,n的取值與許多因素有關。但是不管n具體的取值,n的取值范圍一旦確定,就表明,無線通信的能耗是隨著距離的增加而更加急劇地增加的。因此,在滿足網路連通性的要求下,應盡量採用多跳通信,減少單跳通信的距離。通常,感測器節點的通信范圍在100m內。

(三)計算、存儲和有限。一方面為了滿足部署的要求,感測器節點往往體積小;另一方面出於成本控制的目的`,節點的價格低廉。這些因素限制了節點的硬體資源,從而影響到它的計算、存儲和通信能力。

(四)節點數量多,密度高,覆蓋面積廣。為了能夠全面准確的監測目標,往往會將成千上萬的感測器節點部署在地理面積很大的區域內,而且節點密度會比較大,甚至在一些小范圍內採用密集部署的方式。這樣的部署方式,可以讓網路獲得全面的數據,提高信息的可靠性和准確性。

(五)自組織。感測器網路部署的區域往往沒有基礎設施,需要依靠感測器節點協同工作,以自組織的方式進行網路的配置和管理。

(六)拓撲結構動態變化。感測器網路的拓撲結構通常是動態變化的,例如部分節點故障或電量耗盡退出網路,有新的節點被部署並加入網路,為節約能量節點在工作和休眠狀態間進行切換,周圍環境的改變造成了無線通信鏈路的變化,以及感測器節點的移動等都會導致感測器網路拓撲結構發生變化。

(七)感知數據量巨大。感測器網路節點部署范圍大、數量多,且網路中的每個感測器通常都產生較大的流式數據並具有實時性,因此網路中往往存在數量巨大的實時數據流。受感測器節點計算、存儲和帶寬等資源的限制,需要有效的分布式數據流管理、查詢、分析和挖掘方法來對這些數據流進行處理。

(八)以數據為中心。對於感測器網路的用戶而言,他們感興趣的是獲取關於特定監測目標的真實可靠的數據。在使用感測器網路時,用戶直接使用其關注的事件作為任務提交給網路,而不是去訪問具有某個或某些地址標識的節點。感測器網路中的查詢、感知、傳輸都是以數據為中心展開的。

(九)感測器節點容易失效。由於感測器網路應用環境的特殊性以及能量等資源受限的原因,感測器節點失效(如電池能量耗盡等)的概率遠大於傳統無線網路節點。因此,需要研究如何提高數據的生存能力、增強網路的健壯性和容錯性以保證部分感測器節點的損壞不會影響到全局任務的完成。此外,對於部署在事故和自然災害易發區域的無線感測器網路,還需要進一步研究當事故和災害導致大部分感測器節點失效時如何最大限度地將網路中的數據保存下來,以提供給災害救援和事故原因分析等使用。

二、關鍵技術

無線感測器網路作為當今信息領域的研究熱點,設計多學科交叉的研究領域,有非常多的關鍵技術有待研究和發現,下面列舉若干。

(一)網路拓撲控制。通過拓撲控制自動生成良好的拓撲結構,能夠提高路由協議和MAC協議的效率,可為數據融合、時間同步和目標定位等多方面奠定基礎,有利於節省能量,延長網路生存周期。所以拓撲控制是無線感測器網路研究的核心技術之一。目前,拓撲控制主要研究的問題是在滿足網路連通度的前提下,通過功率控制或骨幹網節點的選擇,剔除節點之間不必要的通信鏈路,生成一個高效的數據轉發網路拓撲結構。

(二)介質訪問控制(MAC)協議。在無線感測器網路中,MAC協議決定無線信道的使用方式,在感測器節點之間分配有限的無線通信資源,用來構建感測器網路系統的底層基礎結構。MAC協議處於感測器網路協議的底層部分,對感測器網路的性能有較大影響,是保證無線感測器網路高效通信的關鍵網路協議之一。感測器網路的強大功能是由眾多節點協作實現的。多點通信在局部范圍需要MAC協議協調其間的無線信道分配,在整個網路范圍內需要路由協議選擇通信路徑。

在設計MAC協議時,需要著重考慮以下幾個方面:

(1)節省能量。感測器網路的節點一般是以干電池、紐扣電池等提供能量,能量有限。

(2)可擴展性。無線感測器網路的拓撲結構具有動態性。所以MAC協議也應具有可擴展性,以適應這種動態變化的拓撲結構。

(3)網路效率。網路效率包括網路的公平性、實時性、網路吞吐量以及帶寬利用率等。

(三)路由協議。感測器網路路由協議的主要任務是在感測器節點和Sink節點之間建立路由以可靠地傳遞數據。由於感測器網路與具體應用之間存在較高的相關性,要設計一種通用的、能滿足各種應用需求的路由協議是困難的,因而人們研究並提出了許多路由方案。

(四)定位技術。位置信息是感測器節點採集數據中不可或缺的一部分,沒有位置信息的監測消息可能毫無意義。節點定位是確定感測器的每個節點的相對位置或絕對位置。節點定位分為集中定位方式和分布定位方式。定位機制也必須要滿足自組織性,魯棒性,能量高效和分布式計算等要求。

(五)數據融合。感測器網路為了有效的節省能量,可以在感測器節點收集數據的過程中,利用本地計算和存儲能力將數據進行融合,取出冗餘信息,從而達到節省能量的目的。

(六)安全技術。安全問題是無線感測器網路的重要問題。由於採用的是無線傳輸信道,網路存在偷聽、惡意路由、消息篡改等安全問題。同時,網路的有限能量和有限處理、存儲能力兩個特點使安全問題的解決更加復雜化了。

;

⑧ 無線感測器應用感測器類型


無線感測器是當前信息領域中研究的熱點之一,可用於特殊環境實現信號的採集、處理和發送。無線感測器網路是一種全新的信息獲取和處理技術,在現實生活中得到了越來越廣泛的應用。接下來小編為大家介紹無線感測器應用及感測器類型。
無線感測器應用
1、軍事領域的應用
在軍事領域,由於WSN具有密集型、隨機分布的特點,使其非常適合應用於惡劣的戰場環境。利用WSN能夠實現監測敵軍區域內的兵力和裝備、實時監視戰場狀況、定位目標、監測核攻擊或者生物化學攻擊等。
2、輔助農業生產
WSN特別適用於以下方面的生產和科學研究。例如,大棚種植室內及土壤的溫度、濕度、光照監測、珍貴經濟作物生長規律分析與測量、葡萄優質育種和生產等,可為農村發展與農民增收帶來極大的幫助。採用WSN建設農業環境自動監測系統,用一套網路設備完成風、光、水、電、熱和農葯等的數據採集和環境控制,可有效提高農業集約化生產程度,提高農業生產種植的科學性。
3、生態監測與災害預警
WSN可以廣泛地應用於生態環境監測、塌基生物種群研究、氣象和地理研究、洪水、火災監測。環境監測為環境保護提供科學的決策依據,是生態保護的基礎。在野外地區或者不宜人工監測的區域布置WSN可以進行長期無人值守的不間斷監測,為生態環境的保護和研究提供實時的數據資料。
具體的應用包括:通過跟蹤珍稀鳥類等動物的棲息、覓食習慣進行瀕危種群的研究;在河流沿線區域布置感測器節點,隨時監測水位及水資源被污染的情況;在泥石流、滑坡等自然災害容易發生的地區布置節點,可提前發出災害預警,及時採取相應抗災措施;可在重點保護林區布置大量節點隨時監控內部火險情況,一旦發現火情,可立刻發出警報,並給出具體位置及當前火勢的大小;可將節點布置在發生地震、水災等災害的地區、邊遠山區或偏僻野外地區,用於臨時應急通信。
4、基礎設施狀態監測系統
WSN技術對於大型工程的安全施工以及建築物安全狀況的監測有積極的幫助作用。通過布置感測器節點,可以及時准確地觀察大樓、橋梁和其他建築物的狀況,及時發現險情,及時進行維修,避免造成嚴重後果。
5、工業領域的應用
在工業安全方面,感測器網路技術可用於危險的工作環境,例如在煤礦、石油鑽井、核電廠和組裝線布置感測器節點,可以隨時監測工作環境的安全狀況,為工作人員的安全提供保證。另外,感測器節點還可以代替部分工作人員到危險的環境中執行任務,不僅降低了危險程度,還提高了對險情的反應精度和速度。
6、在智能交通中保障安全暢通
智能交通系統團檔謹(ITS)是在傳統交通體系的基礎上發展起來的新型交通系統,它將信息、通信、控制和計算機技術以及其他現代通信技術綜合應用於交通領域,並將「人—車—路—環境」有機地結合在一起。在現有的交通設施中增加一種無線感測器網路技術,將能夠從根本上緩解困擾現代交通的安全、通暢、節能和環保等問題,同時還可以提高交通工作效率。因此,將無線感測器網路技術應用於智能交通系統已經成為近幾年的研究熱點。
7、在醫療系統大有作為
近年來,無線感測器網路在醫療系統和健康護理方面已有很多應用,例如,監測人體的各種生理數據,跟蹤和監控醫院中醫生和患者的行動,以及醫院的葯物管理等。如果在住院病人身蠢卜上安裝特殊用途的感測器節點,例如心率和血壓監測設備,醫生就可以隨時了解被監護病人的病情,在發現異常情況時能夠迅速搶救。
8、促進信息家電設備更加智能
無線感測器網路的逐漸普及,促進了信息家電、網路技術的快速發展,家庭網路的主要設備已由單一機向多種家電設備擴展,基於無線感測器網路的智能家居網路控制節點為家庭內、外部網路的連接及內部網路之間信息家電和設備的連接提供了一個基礎平台。
感測器類型
1、振動感測器
每個節點的最高采樣率可設置為4KHz,每個通道均設有抗混疊低通濾波器。採集的數據既可以實時無線傳輸至計算機,也可以存儲在節點內置的2M數據存儲器內,保證了採集數據的准確性。有效室外通訊距離可達300m,節點功耗僅30mA,使用內置的可充電電池,可連續測量18小時。如果選擇帶有USB介面的節點,您既可以通過USB介面對節點充電,也可以快速地把存儲器內的數據下載到計算機裡面。
2、應變感測器
節點結構緊湊,體積小巧,由電源模塊、採集處理模塊、無線收發模塊組成,封裝在PPS塑料外殼內。節點每個通道內置有獨立的高精度120-1000Ω橋路電阻和放大調理電路,可以方便地由軟體自動切換選擇1/4橋,半橋,全橋測量方式,兼容各種類型的橋路感測器,比如應變,載荷,扭距,位移,加速度,壓力,溫度等。節點同時支持2線和3線輸入方式,橋路自動配平,也可以存儲在節點內置的2M數據存儲器。有效室外通訊距離可達300m。可連續測量十幾個小時。
3、扭矩感測器
節點結構緊湊,體積小巧,封裝在樹脂外殼內。節點每個通道內置有高精度120-1000Ω橋路電阻和放大調理電路。橋路自動配平。節點的空中傳輸速率可以達到250KBPS,有效實時數據傳輸率達到4KSPS,有效室內通訊距離可達100米。節點設計有專門的電源管理軟硬體,在實時不間斷傳輸情況下,節點功耗僅25mA,使用普通9V電池,可連續測量幾十個小時。對於長期監測應用,以5分鍾間隔發送一次扭矩值,數年不需要更換電池,大大提高了系統的免維護性。

閱讀全文

與基於wifi的無線感測器網路的研究與應用相關的資料

熱點內容
如何查看誰連接了我家的網路 瀏覽:622
寶卡pro免流用哪個網路連接 瀏覽:215
電信網路盒用戶名密碼 瀏覽:384
杭州無線網路服務口碑推薦 瀏覽:737
定製版路由器可以使用其他網路嗎 瀏覽:720
網路異常金幣領取失敗怎麼辦 瀏覽:582
有線網路安全證書 瀏覽:84
聯通寬頻網路重新設置 瀏覽:651
蘋果13光遇網路異常 瀏覽:917
廣州營銷網路電話軟體 瀏覽:246
網路安全ppt演講台詞 瀏覽:668
移動網路處的cmcc 瀏覽:230
如何使用網路看電視機 瀏覽:219
西安4g網路什麼時候開通 瀏覽:737
濮陽兩年制計算機網路專業課 瀏覽:288
網路信號很強但使用很卡 瀏覽:129
voip網路電話如何溯源 瀏覽:362
寬頻無線連接不上網路 瀏覽:109
有線網路電視如何禁用有線 瀏覽:358
如何查詢我的網路信息 瀏覽:201

友情鏈接