導航:首頁 > 無線網路 > 無線感測器網路的體系結構組成

無線感測器網路的體系結構組成

發布時間:2023-05-31 10:17:07

㈠ 無線感測器網路的組成(三個部分,詳細介紹)

很詳細,你可以到書店去買這類的書看即可。

以下是來自網路:http://www.sensorexpert.com.cn/Article/wuxianchanganqiwang_1.html。

無線感測器網路組成和特點
發表時間:2012-11-14 14:28:00
文章出處:感測器專家網
相關專題:感測器基礎
無線感測器網路的構想最初是由美國軍方提出的,美國國防部高級研究所計劃署(DARPA)於1978年開始資助卡耐基-梅隆大學進行分布式感測器網路的研究,這被看成是無線感測器網路的雛形。從那以後,類似的項目在全美高校間廣泛展開,著名的有UCBerkeley的SmartDuST項目,UCLA的WINS項目,以及多所機構聯合攻關的SensIT計劃,等等。在這些項目取得進展的同時,其應用也從軍用轉向民用。在森林火災、洪水監測之類的環境應用中,在人體生理數據監測、葯品管理之類的醫療應用中,在家庭環境的智能化應用以及商務應用中都已出現了它的身影。目下,無線感測器網路的商業化應用也已逐步興起。美國Crossbow公司就利用SMArtDust項目的成果開發出了名為Mote的智能感測器節點,還有用於研究機構二次開發的MoteWorkTM開發平台。這些產品都很受使用者的歡迎。

無線感測器網路可以看成是由數據獲取網路、數據分布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、數據處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。

因為節點的數量巨大,而且還處在隨時變化的環境中,這就使它有著不同於普通感測器網路的獨特「個性」。首先是無中心和自組網特性。在無線感測器網路中,所有節點的地位都是平等的,沒有預先指定的中心,各節點通過分布式演算法來相互協調,在無人值守的情況下,節點就能自動組織起一個測量網路。而正因為沒有中心,網路便不會因為單個節點的脫離而受到損害。

其次是網路拓撲的動態變化性。網路中的節點是處於不斷變化的環境中,它的狀態也在相應地發生變化,加之無線通信信道的不穩定性,網路拓撲因此也在不斷地調整變化,而這種變化方式是無人能准確預測出來的。

第三是傳輸能力的有限性。無線感測器網路通過無線電波進行數據傳輸,雖然省去了布線的煩惱,但是相對於有線網路,低帶寬則成為它的天生缺陷。同時,信號之間還存在相互干擾,信號自身也在不斷地衰減,諸如此類。不過因為單個節點傳輸的數據量並不算大,這個缺點還是能忍受的。

第四是能量的限制。為了測量真實世界的具體值,各個節點會密集地分布於待測區域內,人工補充能量的方法已經不再適用。每個節點都要儲備可供長期使用的能量,或者自己從外汲取能量(太陽能)。

第五是安全性的問題。無線信道、有限的能量,分布式控制都使得無線感測器網路更容易受到攻擊。被動竊聽、主動入侵、拒絕服務則是這些攻擊的常見方式。因此,安全性在網路的設計中至關重要。

㈡ 無線感測器網路的優缺點

一、優點

(1) 數據機密性

數據機密性是重要的網路安全需求,要求所有敏感信息在存儲和傳輸過程中都要保證其機密性,不得向任何非授權用戶泄露信息的內容。

(2)數據完整性

有了機密性保證,攻擊者可能無法獲取信息的真實內容,但接收者並不能保證其收到的數據是正確的,因為惡意的中間節點可以截獲、篡改和干擾信息的傳輸過程。通過數據完整性鑒別,可以確保數據傳輸過程中沒有任何改變。

(3) 數據新鮮性

數據新鮮性問題是強調每次接收的數據都是發送方最新發送的數據,以此杜絕接收重復的信息。保證數據新鮮性的主要目的是防止重放(Replay)攻擊。

二、缺點

根據網路層次的不同,無線感測器網路容易受到的威脅:

(1)物理層:主要的攻擊方法為擁塞攻擊和物理破壞。

(2)鏈路層:主要的攻擊方法為碰撞攻擊、耗盡攻擊和非公平競爭。

(3)網路層:主要的攻擊方法為丟棄和貪婪破壞、方向誤導攻擊、黑洞攻擊和匯聚節點攻擊。

(4)傳輸層:主要的攻擊方法為泛洪攻擊和同步破壞攻擊。

(2)無線感測器網路的體系結構組成擴展閱讀:

一、相關特點

(1)組建方式自由。

無線網路感測器的組建不受任何外界條件的限制,組建者無論在何時何地,都可以快速地組建起一個功能完善的無線網路感測器網路,組建成功之後的維護管理工作也完全在網路內部進行。

(2)網路拓撲結構的不確定性。

從網路層次的方向來看,無線感測器的網路拓撲結構是變化不定的,例如構成網路拓撲結構的感測器節點可以隨時增加或者減少,網路拓撲結構圖可以隨時被分開或者合並。

(3)控制方式不集中。

雖然無線感測器網路把基站和感測器的節點集中控制了起來,但是各個感測器節點之間的控制方式還是分散式的,路由和主機的功能由網路的終端實現各個主機獨立運行,互不幹涉,因此無線感測器網路的強度很高,很難被破壞。

(4)安全性不高。

無線感測器網路採用無線方式傳遞信息,因此感測器節點在傳遞信息的過程中很容易被外界入侵,從而導致信息的泄露和無線感測器網路的損壞,大部分無線感測器網路的節點都是暴露在外的,這大大降低了無線感測器網路的安全性。

二、組成結構

無線感測器網路主要由三大部分組成,包括節點、感測網路和用戶這3部分。其中,節點一般是通過一定方式將節點覆蓋在一定的范圍,整個范圍按照一定要求能夠滿足監測的范圍。

感測網路是最主要的部分,它是將所有的節點信息通過固定的渠道進行收集,然後對這些節點信息進行一定的分析計算,將分析後的結果匯總到一個基站,最後通過衛星通信傳輸到指定的用戶端,從而實現無線感測的要求。

㈢ 無線感測器網路系統主要有什麼組成

感測器網路系統通常包括感測器節點(sensor)、匯聚節點(sink node)和管理節點。大量感測器節點隨機部署在監測區域(sensor field)內部或附近,能夠通過自組織方式構成網路。感測器節點監測的數據沿著其他感測器節點逐跳地進行傳輸,在傳輸過程中監測數據可能被多個節點處理,經過多跳後路由到匯聚節點,最後通過互聯網或衛星到達管理節點。用戶通過管理節點對感測器網路進行配置和管理,發布監測任務以及收集監測數據。
感測器網路節點的組成和功能包括如下四個基本單元:感測單元(由感測器和模數轉換功能模塊組成)、處理單元(由嵌入式系統構成,包括CPU、存儲器、嵌入式操作系統等)、通信單元(由無線通信模塊組成)、以及電源部分。此外,可以選擇的其它功能單元包括:定位系統、運動系統以及發電裝置等。

㈣ 無線感測器知識大全,看完請收藏!

物聯網是在現有互聯網的基礎上發展起來的,物聯網除了融合網路、信息技術、RFID技術之外,還引入了無線感測器技術,使得物聯網有了更深的發展,而且無線感測器技術還與嵌入式系統技術、現代網路以及無線通信技術進行結合,所以無線感測器本身也是一個炙手可熱的研究領域。

感測器技術

    無線感測器網路結構介紹

    無線感測器網路系統通常包括匯聚節點(Sinknode)、感測器節點(Sensornode)與管理節點。

    大量感測器節點隨機部署在監測區域附近或者內部,感測器節點檢測的數據沿著其他的感測器節點逐條地進行傳輸,在傳輸的過程中檢測數據可能會被多個節點進行處理,經過跳後路由到匯聚的節點,然後通過衛星或者互聯網傳輸到達管理節點,而用戶通過對節點的管理對感測器網路進行管理、發布監測數據和管理。

感測器整體部署

    無線感測器網路特點介紹

    規模大

    為了能夠獲取精確信息,在監測區域通常部署大量感測器節點,一般情況下會達到上萬個甚至更多,感測器網路的大規模性主要包括了兩個方面的含義:一方面是感測器節點的部署非常密集,在面積狹小的空間內密集的部署了大量的感測器節點。另一方面,是感測器節點分布在區域很大的范圍內,比如在原始的大森林中採用感測器網路進行森林防火的安全環境監測,這種在區域寬廣的范圍內需要部署大量的感測器節點。

    可靠性

    無線感測器節點非常適合部署在自然環境惡劣或者人類不宜居住的區域,這些節點可能工作在環境較惡劣的地方,遭受風吹、雨淋、日曬,還甚至遭到人或者動物的破壞,而這些感測器節點往往採用隨機進行部署,部署的方式是利用飛機散播,或炮彈發射到指定的區域進行部署,所以這些節點要非常堅固,不容易被損壞,可靠性很強。

    自組織

    在感測器網路應用中,通常情況下感測器節點會被放置在沒有基礎結構的地方,其實感測器節點的相隔距離、精確位置不能預先確定。你可以想像,通過飛機散播或者炮彈發射大量感測器節點到面積廣闊的森林、山谷之中,這樣就必須要求感測器節點本身具有自組織的能力,能夠進行自我管理和配置,通過網路協議和拓撲控制機制自動形成轉發監測數據的多跳無線網路系統。

    動態性

    感測器網路的拓撲結構有可能會因為下列因素而發生改變:①環境的變化可能會造成無線通信鏈路帶寬產生變化,有時甚至會時斷時通;②電力資源出現故障或耗盡導致的感測器節點故障或者失效;③感測器網路的感知對象、感測器與觀察者這三要素都可能具有移動性;④有新節點加入,通常這種情況就必須要求感測器網路系統要能適應這種變化,具有動態系統可重構性。

    無線感測器網路有哪些安全問題

    安全路由

    一般在無線感測器網路中,大量的感測器節點都密集分布在一個區域內,信息傳輸可能要經過很多節點才能到達目的地,而且感測器網路具有多跳結構和動態性,因此,需要去每個節點都應具備路由功能,

    由於每個節點都是潛在的路由節點,因此更易受到攻擊,這樣就可能使網路不怎麼安全,安全的路由演算法會直接影響無線感測器的可用性和安全性,安全路由協議一般是採用認證和鏈路層加密,身份認證、多路徑路由、雙向連接認證和認證廣播等機制,非常有效的提高了網路抵禦外部攻擊的能力,從而增強路由的安全性。

㈤ 什麼是無線感測器網路

無線感測器的無線傳輸功能,常見的無線傳輸網路有RFID、ZigBee、紅外、藍牙、GPRS、4G、2G、Wi-Fi、NB-IoT。
與傳統有線網路相比,無線感測器網路技術具有很明顯的優勢特點,主要的要求有: 低能耗、低成本、通用性、網路拓撲、安全、實時性、以數據為中心等。

㈥ 無線感測器網路的組成(三個部分,詳細介紹)提示:敏感元件,轉換元件,。轉換電路。

1.感測器節點:
是一個微型的嵌入式系統,採用嵌入式微處理器,完成簡單數據的處理、感知(感測器敏感元件)、採集和初級處理(信號調理電路包括濾波運放,AD轉換電路)、存儲、管理和融合數據等。
包括感知模塊(感測器---AD轉換),處理器模塊(處理器和存儲器),無線通信模塊(網
絡---MAC協議---收發器),電源管理模塊。

2.匯聚節點:
即網關,完成兩種協議棧之間的通信協議轉換,接收任務管理節點的監測任務,完成網路節點的相關配置,將感測器數據通過外部網路發送到任務管理節點。

3.任務管理節點:
用戶界面控制端,用於發送指令等控制整個系統。

㈦ 無線感測器是如何定義的無線感測器網路有哪些組成部分

無線感測器的組成模塊封裝在一個外殼內,在工作時它將由電池或振動發電機提供電源,構成無線感測器網路節點,由隨機分布的集成有感測器、數據處理單元和通信模塊的微型節點,通過自組織的方式構成網路。它可以採集設備的數字信號通過無線感測器網路傳輸到監控中心的無線網關,直接送入計算機,進行分析處理。如果需要,無線感測器也可以實時傳輸採集的整個時間歷程信號。監控中心也可以通過網關把控制、參數設置等信息無線傳輸給節點。數據調理採集處理模塊把感測器輸出的微弱信號經過放大,濾波等調理電路後,送到模數轉換器,轉變為數字信號,送到主處理器進行數字信號處理,計算出感測器的有效值,位移值等。

㈧ 無線感測器網路節點硬體的模塊化設計

無線感測器網路節點硬體的模塊化設計

隨著人們對於環境監測要求的不斷提高,無線感測器網路技術以其投資成本低、架設方便、可靠性高的性能優勢得到了比較廣泛的應用。由於無線感測器網路節點需要實現採集、處理、通信等多個功能,因此硬體上採用模塊化設計可以大大提高網路節點的穩定性和安全性。那麼下面我就來討論一下無線感測器網路節點硬體的模塊化設計。

1 CC2430晶元簡介

CC2430是一款工作在2.4 GHz免費頻段上,支持IEEE 802.15.4標準的無線收發晶元。該晶元具有很高的集成度,體積小功耗低。單個晶元上整合了ZigBee射頻(RF)前端、內存和微控制器。CC2430擁有1個8位MCU(8051),8 KB的RAM,32 KB、64 KB或128 KB的Flash,還包含模擬數字轉換器(ADC),4個定時器(Timer),AESl28協處理器,看門狗定時器(Watchdog-timer),32.768 kHz晶振的休眠模式定時器,上電復位電路(Power-on-Reset),掉電檢測電(Brown-out-Detection),以及21個可編程I/O介面。

CC2430晶元採用0.18μm CMOS工藝生產,工作時的電流損耗為27 mA;在接收和發射模式下,電流損耗分別為26.7 mA和26.9 mA;休眠時電流為O.5 μA。CC2430的休眠模式和轉換到主動模式的超短時間的特性,特別適合那些要求電池壽命非常長的應用。

2 無線感測器網路系統結構

整個無線感測器網路由若干採集節點、1個匯聚節點、1個中轉器、1個上位機控制中心組成,系統結構如圖1所示。無線感測器網路採集節點完成數據採集、預處理和通信工作;匯聚節點負責網路的發起和維護,收集並上傳數據,將中轉器下發的命令通告採集節點;中轉器負責上傳收集到的數據並將控制中心發出的命令信息傳遞給匯聚節點;控制中心負責處理最終上傳數據,並且可以由用戶下達網路的操作命令。

採集節點和匯聚節點由CC2430作為控制核心,採集節點可採集並傳遞數據,匯聚節點負責收集所有採集節點採集到的數據。中轉器採用ARM處理器作為控制核心,和匯聚節點採用串口通信,以GPRS通信方式和上位機控制中心進行交互。上位機控制中心實現人機交互,可以處理、顯示上傳的數據並且可以直接由客戶下達網路動作執行命令。

3 節點模塊化設計

匯聚節點和採集節點在硬體配置上基本相同,採用模塊化設計使得設計通用性更好。

每個節點主要由控制模塊、無線模塊、採集模塊、電源模塊4部分構成。

3.1 控制模塊

控制模塊主要由CC2430及其外圍電路構成,完成對採集數據的處理、存儲以及收發工作,並對電源模塊進行管理。晶元CC2430包括21個可編程I/0口,其中8路A/D介面,可滿足多路感測器的採集、處理需求。CC2430自帶了一個復位介面,外接一個復位按鍵可以實現硬體初始化系統。32 MHz晶振提供系統時鍾,32.768 kHz晶振供系統休眠時使用。

節點選用晶元FM25L256作為存儲設備,這是一款256 Kb鐵電存儲器,其SPI介面頻率高達25 MHz,低功耗運行以及10年的數據保持力保證了節點數據存儲的低成本以及可靠性。

3.2 無線模塊

無線模塊負責節點間數據和命令的傳輸,因此,合理設計無線模塊是節點穩定、高效通信的重要保證。

TI公司提供了一個適用於CC2430的微帶巴倫電路,這個設計把無線電RF引腳差分信號的阻抗轉換為單端50 Ω。由於該電路直接影響節點的通信質量,在使用前必須對其進行模擬驗證。設計中選用ADS模擬軟體進行模擬,採用了版圖和原理圖的聯合模擬方法。模擬電路圖如圖5所示,微帶電路為TI提供的微帶巴倫電路,分立元件均選自村田公司元件庫內的模型,嚴格保證了模擬數據的`真實性和可靠性。巴倫電路在工作頻段內(2.400~2.4835 GHz)信號傳輸特性高效、穩定。

3.3 採集模塊

採集模塊負責採集數據並調理數據信號。本設計中,監測的是土壤的溫度和濕度數據,採用的感測器是PTWD-3A型土壤溫度感測器以及TDR-3型土壤水分感測器。

PTWD-3A型土壤溫度感測器採用精密鉑電阻作為感應部件,其阻值隨溫度變化而變化。為了准確地進行測量,採用四線法測量電阻原理,將電阻信號調理成CC2430晶元A/D通道能采樣的電壓信號。由P354運算放大器、高精度精密貼片電阻以及2.5 V電源構成10 mA恆流源。10 mA的電流環流經感測器電阻R1、R2將電阻信號轉換成為電壓信號,由差分放大器LT1991一倍增益將信號轉換為單端輸出送入CC2430晶元的ADC通道進行采樣。

TDR-3型土壤水分感測器輸出信號即為電壓信號。感測器輸出信號通過P354運算放大器送入CC2430晶元的ADC通道進行采樣。

3.4 電源模塊

電源模塊負責調理電壓、分配能量,分為充電管理模塊、雙電源切換管理模塊、電壓轉換模塊3個模塊。本設計中採用額定電壓12 V、電容量3 Ah的鉛酸電池供電。

作為環境監測的無線感測器網路應用,節點需要在野外無人看守的情況下進行工作,能量補給是系統持續工作的重要保證。本設計採用太陽能電池板為節點在野外工作時進行電能的補給,充電管理模塊則是根據日照情況以及電池能量狀態對鉛酸電池進行合理、有效的充電。光電耦合器TLP521-100和場效應管Q共同構成了充電模塊的開關電路,可以由CC2430晶元的I/0口很方便地進行控制。

在太陽能電池板對電池充電時,電池不能對系統進行供電,因此設計中採用了雙電源供電方式,保持“一充一供”的工作狀態,雙電源切換管理模塊負責電源的安全、快速切換。如圖10所示,採用了兩個開關電路對兩塊電源進行切換。

在電源進行切換時,總是先打開處於閑置狀態的電源,再關閉正在為系統供電的電源,因此會在一段短暫的時間內同時有兩個電源對系統供電,這是為了防止系統出現掉電情況。

電源模塊需提供5 V、3.3 V、2.5 V等多組電源以滿足節點各模塊的供能需求。由於系統電源組較多,電壓轉換模塊採用了開關型降壓穩壓器以及低壓差線性穩壓器等多種電壓轉換晶元來對電源進行電壓轉換,同時要確保電源模塊供能的高效性。

結語

節點的設計對整個無線感測器網路系統至關重要。本設計採用了功能強大的射頻晶元CC2430作為核心管理晶元,能較好地完成數據採集、分析、傳輸等多個功能。硬體的模塊化設計大大加強了節點的穩定性、可靠性和通用性,在野外無人值守的情況下無線感測器網路系統可以長期、穩定地進行環境方面的監測。

;
閱讀全文

與無線感測器網路的體系結構組成相關的資料

熱點內容
海爾電視連接不到wifi網路 瀏覽:644
電腦網路連接都有什麼方法 瀏覽:941
電腦win7網路驅動刪了怎麼辦 瀏覽:522
wifi虛擬私有網路實例 瀏覽:783
xg12網路語言什麼意思 瀏覽:168
網路安全執行制度 瀏覽:784
網路文本詞義分析軟體 瀏覽:513
網路一個g值多少錢 瀏覽:914
tplink無線網卡網路鑰匙 瀏覽:453
為什麼網路速度慢 瀏覽:257
昆明網路酒店有哪些 瀏覽:839
網路課程界面功能板塊有哪些 瀏覽:44
蘋果4無限網路選項 瀏覽:795
共享單車網路覆蓋 瀏覽:368
無線監控切換網路超時 瀏覽:418
群暉網路聚合做路由器 瀏覽:57
設置網路工作組計算機 瀏覽:758
四級計算機網路工程師考試 瀏覽:970
主機怎麼弄無線網路 瀏覽:744
筆記本網路適配器刪除哪個好 瀏覽:929

友情鏈接