導航:首頁 > 無線網路 > 無線感測器網路期末

無線感測器網路期末

發布時間:2023-02-16 13:40:34

Ⅰ 無線感測器知識大全,看完請收藏!

物聯網是在現有互聯網的基礎上發展起來的,物聯網除了融合網路、信息技術、RFID技術之外,還引入了無線感測器技術,使得物聯網有了更深的發展,而且無線感測器技術還與嵌入式系統技術、現代網路以及無線通信技術進行結合,所以無線感測器本身也是一個炙手可熱的研究領域。

感測器技術

    無線感測器網路結構介紹

    無線感測器網路系統通常包括匯聚節點(Sinknode)、感測器節點(Sensornode)與管理節點。

    大量感測器節點隨機部署在監測區域附近或者內部,感測器節點檢測的數據沿著其他的感測器節點逐條地進行傳輸,在傳輸的過程中檢測數據可能會被多個節點進行處理,經過跳後路由到匯聚的節點,然後通過衛星或者互聯網傳輸到達管理節點,而用戶通過對節點的管理對感測器網路進行管理、發布監測數據和管理。

感測器整體部署

    無線感測器網路特點介紹

    規模大

    為了能夠獲取精確信息,在監測區域通常部署大量感測器節點,一般情況下會達到上萬個甚至更多,感測器網路的大規模性主要包括了兩個方面的含義:一方面是感測器節點的部署非常密集,在面積狹小的空間內密集的部署了大量的感測器節點。另一方面,是感測器節點分布在區域很大的范圍內,比如在原始的大森林中採用感測器網路進行森林防火的安全環境監測,這種在區域寬廣的范圍內需要部署大量的感測器節點。

    可靠性

    無線感測器節點非常適合部署在自然環境惡劣或者人類不宜居住的區域,這些節點可能工作在環境較惡劣的地方,遭受風吹、雨淋、日曬,還甚至遭到人或者動物的破壞,而這些感測器節點往往採用隨機進行部署,部署的方式是利用飛機散播,或炮彈發射到指定的區域進行部署,所以這些節點要非常堅固,不容易被損壞,可靠性很強。

    自組織

    在感測器網路應用中,通常情況下感測器節點會被放置在沒有基礎結構的地方,其實感測器節點的相隔距離、精確位置不能預先確定。你可以想像,通過飛機散播或者炮彈發射大量感測器節點到面積廣闊的森林、山谷之中,這樣就必須要求感測器節點本身具有自組織的能力,能夠進行自我管理和配置,通過網路協議和拓撲控制機制自動形成轉發監測數據的多跳無線網路系統。

    動態性

    感測器網路的拓撲結構有可能會因為下列因素而發生改變:①環境的變化可能會造成無線通信鏈路帶寬產生變化,有時甚至會時斷時通;②電力資源出現故障或耗盡導致的感測器節點故障或者失效;③感測器網路的感知對象、感測器與觀察者這三要素都可能具有移動性;④有新節點加入,通常這種情況就必須要求感測器網路系統要能適應這種變化,具有動態系統可重構性。

    無線感測器網路有哪些安全問題

    安全路由

    一般在無線感測器網路中,大量的感測器節點都密集分布在一個區域內,信息傳輸可能要經過很多節點才能到達目的地,而且感測器網路具有多跳結構和動態性,因此,需要去每個節點都應具備路由功能,

    由於每個節點都是潛在的路由節點,因此更易受到攻擊,這樣就可能使網路不怎麼安全,安全的路由演算法會直接影響無線感測器的可用性和安全性,安全路由協議一般是採用認證和鏈路層加密,身份認證、多路徑路由、雙向連接認證和認證廣播等機制,非常有效的提高了網路抵禦外部攻擊的能力,從而增強路由的安全性。

Ⅱ 無線感測器網路的優缺點

一、優點

(1) 數據機密性

數據機密性是重要的網路安全需求,要求所有敏感信息在存儲和傳輸過程中都要保證其機密性,不得向任何非授權用戶泄露信息的內容。

(2)數據完整性

有了機密性保證,攻擊者可能無法獲取信息的真實內容,但接收者並不能保證其收到的數據是正確的,因為惡意的中間節點可以截獲、篡改和干擾信息的傳輸過程。通過數據完整性鑒別,可以確保數據傳輸過程中沒有任何改變。

(3) 數據新鮮性

數據新鮮性問題是強調每次接收的數據都是發送方最新發送的數據,以此杜絕接收重復的信息。保證數據新鮮性的主要目的是防止重放(Replay)攻擊。

二、缺點

根據網路層次的不同,無線感測器網路容易受到的威脅:

(1)物理層:主要的攻擊方法為擁塞攻擊和物理破壞。

(2)鏈路層:主要的攻擊方法為碰撞攻擊、耗盡攻擊和非公平競爭。

(3)網路層:主要的攻擊方法為丟棄和貪婪破壞、方向誤導攻擊、黑洞攻擊和匯聚節點攻擊。

(4)傳輸層:主要的攻擊方法為泛洪攻擊和同步破壞攻擊。

(2)無線感測器網路期末擴展閱讀:

一、相關特點

(1)組建方式自由。

無線網路感測器的組建不受任何外界條件的限制,組建者無論在何時何地,都可以快速地組建起一個功能完善的無線網路感測器網路,組建成功之後的維護管理工作也完全在網路內部進行。

(2)網路拓撲結構的不確定性。

從網路層次的方向來看,無線感測器的網路拓撲結構是變化不定的,例如構成網路拓撲結構的感測器節點可以隨時增加或者減少,網路拓撲結構圖可以隨時被分開或者合並。

(3)控制方式不集中。

雖然無線感測器網路把基站和感測器的節點集中控制了起來,但是各個感測器節點之間的控制方式還是分散式的,路由和主機的功能由網路的終端實現各個主機獨立運行,互不幹涉,因此無線感測器網路的強度很高,很難被破壞。

(4)安全性不高。

無線感測器網路採用無線方式傳遞信息,因此感測器節點在傳遞信息的過程中很容易被外界入侵,從而導致信息的泄露和無線感測器網路的損壞,大部分無線感測器網路的節點都是暴露在外的,這大大降低了無線感測器網路的安全性。

二、組成結構

無線感測器網路主要由三大部分組成,包括節點、感測網路和用戶這3部分。其中,節點一般是通過一定方式將節點覆蓋在一定的范圍,整個范圍按照一定要求能夠滿足監測的范圍。

感測網路是最主要的部分,它是將所有的節點信息通過固定的渠道進行收集,然後對這些節點信息進行一定的分析計算,將分析後的結果匯總到一個基站,最後通過衛星通信傳輸到指定的用戶端,從而實現無線感測的要求。

Ⅲ 無線感測器網路

無線感測器網路所具有的眾多類型的感測器,可探測包括地震、電磁、溫度、濕度、雜訊、光強度、壓力、土壤成分、移動物體的大小、速度和方向等周邊環境中多種多樣的現象。基於MEMS的微感測技術和無線聯網技術為無線感測器網路賦予了廣闊的應用前景。

Ⅳ 感測器中,無線感測器網路的定義,目的,起源是什麼

無線感測器網路的定義是:由大量、靜止或移動的感測器節點,以自組織和多跳的方式構成的無線網路,目的是以協作的方式感知、採集、處理和傳輸在網路覆蓋區域內被感知對象的信息,並把這些信息發送給用戶。無線感測器網路起源於美國軍方的研究,它具有自組織、無中心、動態性、多跳網路、硬體資源有限、能量受限、大規模網路、以數據為中心的特點,綜合了感測器技術、嵌入式計算技術、網路與通信技術、分布式信息處理技術等多種技術,體現了多個學科的相互融合。

Ⅳ 無線感測網路的問題

涉及的內容是挺多的,
1.硬體方面的(目前處除了軍用,或其他一些特定應用外,我們國家很多感測器晶元用的還都是國外的,沒有過硬的技術啊)。
2.無線感測器網路協議研究。根據感測器網路自身的特點,結合應用,量身打造更合適的通信協議。
3.軟體方面的。目前有系統級別的Tiny OS,編程語言nesC,針對特定應用編寫輕量級程序。
4.無線感測器數據管理層面。可以研究網路數據流挖掘之類的。

哪個最有前景?1最有發展空間,但難度大。3是基礎,最容易上手,想有突破很難。2和4,自己想吧。

以上都是個人粗淺見解,做個參考。

Ⅵ 無線感測器網路

無線感測器網路(wirelesssensornetwork,WSN)是綜合了感測器技術、嵌入式計算機技術、分布式信息處理技術和無線通信技術,能夠協作地實時監測、感知和採集網路分布區域內的各種環境或監測對象的信息,並對這些數據進行處理,獲得詳盡而准確的信息。傳送到需要這些信息的用戶。它是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成一個多跳的自組織的網路系統。感測器、感知對象和觀察者構成了感測器網路的三要素。
無線感測器網路作為當今信息領域新的研究熱點,涉及到許多學科交叉的研究領域,要解決的關鍵技術很多,比如:網路拓撲控制、網路協議、網路安全、時間同步、定位技術、數據融合、數據管理、無線通信技術等方面,同時還要考慮感測器的電源和節能等問題。
所謂部署問題,就是在一定的區域內,通過適當的策略布置感測器節點以滿足某種特定的需求。優化節點數目和節點分布形式,高效利用有限的感測器網路資源,最大程度地降低網路能耗,均是節點部署時應注意的問題。
目前的研究主要集中在網路的覆蓋問題、連通問題和能耗問題3個方面。
基於節點部署方式的覆蓋:1)確定性覆蓋2)自組織覆蓋
基於網格的覆蓋:1)方形網格2)菱形網格
被監測目標狀態的覆蓋:1)靜態目標覆蓋2)動態目標覆蓋
連通問題可描述為在感測器節點能量有限,感知、通信和計算能力受限的情況下,採用一定的策略(通常設計有效的演算法)在目標區域中部署感測器節點,使得網路中的各個活躍節點之間能夠通過一跳或多跳方式進行通信。連通問題涉及到節點通信距離和通信范圍的概念。連通問題分為兩類:純連通與路由連通。
覆蓋中的節能對於覆蓋問題,通常採用節點集輪換機制來調度節點的活躍/休眠時間。連通中的節能針對連通問題,也可採用節點集輪換機制與調整節點通信距離的方法。而文獻中涉及最多的主要是從節約網路能量和平衡節點剩餘能量的角度進行路由協議的研究。

Ⅶ 無線感測器在網路中的應用設計

下面是由整理的畢業設計論文《無線感測器在網路中的應用設計》,歡迎閱讀。

1引言

無線感測器網路(Wireless Sensor Networks,簡稱WSNs)是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信形成一個多跳自組織網路系統,能夠實時監測、感知和採集網路分布區域內監視對象的各種信息,並加以處理,完成數據採集和監測任務。WSNs綜合了感測器、嵌入式計算、無線通訊、分布式信息處理等技術,具有快速構建、自配置、自調整拓撲、多跳路由、高密度、節點數可變、無統一地址、無線通信等特點,特別適用於大范圍、偏遠距離、危險環境等條件下的實時信息監測,可以廣泛應用於軍事、交通、環境監測和預報、衛生保健、空間探索等各個領域。

2節點的總體設計和器件選型

2.1節點的總體設計

WSNs微型節點應用數量比較大,更換和維護比較困難,要求其節點成本低廉和工作時間盡可能長;功能上要求WSNs中不應該存在專門的路由器節點,每個節點既是終端節點,又是路由器節點。節點間採用移動自組織網路聯系起來,並採用多跳的路由機制進行通信。因此,在單個節點上,一方面硬體必須低能耗,採用無線傳輸方式;另一方面軟體必須支持多跳的路由協議。基於這些基本思想,設計了以高檔8位AVR單片機ATmega128L為核心,結合外圍感測器和2.4 GHz無線收發模塊CC2420的WSNs微型節點。這兩款器件的體積非常小,加上外圍電路,其整體體積也很小,非常適合用作WSNs節點的元件。

圖1給出WSNs微型節點結構。它由數據採集單元、數據處理單元、數據傳輸單元和電源管理單元4部分組成。數據採集單元負責監測區域內信息的採集和數據轉換,設計中包括了可燃性氣體感測器和濕度感測器;數據處理單元負責控制整個節點的處理操作、路由協議、同步定位、功耗管理、任務管理等;數據傳輸單元負責與其他節點進行無線通信,交換控制消息和收發採集數據;電源管理單元選通所用到的感測器,節點電源由幾節AA電池組成,實際工業應用中採用微型紐扣電池,以進一步減小體積。為了調試方便及可擴展性,可將數據採集單元獨立出來,做成兩塊能相互套接的可擴展主板。

2.2處理器選型

處理器的選型要求和指標是功耗低,保證長時間不更換電源也能順利工作,供給電壓小於5 V,有較快的處理速度和能力,由於節點是需要大量安置的,所以價格也要相對便宜。選用AVR單片機,考慮到電路中I/O的個數不多,功耗低、成本低、適合與無線器件介面配合等多方面因素,綜合對比後,選用Atmel公司的ATmega128L。該微型控制器擁有豐富的片上資源,包括4個定時器、4 KB SRAM、128KB Flash和4 KBEEPROM;擁有UART、SPI、I2C、JTAG介面,方便無線器件和感測器的接入;有6種電源節能模式,方便低功耗設計。

2.3無線通信器件選型 CC2420是一款符合ZigBee技術的高集成度工業用射頻收發器,其MAC層和PHY層協議符合802.15.4規范,工作於2.4 GHz頻段。該器件只需極少外部元件,即可確保短距離通信的有效性和可靠性。數據傳輸單元模塊支持數據傳輸率高達250 Kb/s,即可實現多點對多點的快速組網,系統體積小、成本低、功耗小,適於電池長期供電,具有硬體加密、安全可靠、組網靈活、抗毀性強等特點。

2.4感測器選型

由於WSNs是用於礦下安全監測,常要檢測礦下可燃氣體的濃度(預防瓦斯氣體濃度過高)和空氣濕度,所以要選擇測量氣體濃度和濕度的感測器。

2.4.1 HIH-4000系列測濕感測器

HIH-4000系列測濕感測器作為一個低成本、可軟焊的單個直插式組件(SIP)能提供儀表測量質量的相對濕度(RH)感測性能。RH感測器可用在二引線間有間距的配量中,它是一個熱固塑料型電容感測元件,其內部具有信號處理功能。感測器的多層結構對應用環境的不利因素,諸如潮濕、灰塵、污垢、油類和環境中常見的化學品具有最佳的抗力,因此可認定它能適用礦下環境。

2.4.2 MR511熱線型半導體氣敏元件

MR511型氣敏元件利用氣體吸附在金屬氧化物半導體表面而產生熱傳導變化及電傳導變化的原理,由白金線圈電阻值變化測定氣體濃度。MR511由檢測元件和補償元件配對組成電橋的兩個臂,遇可燃性氣體時,檢測元件的電阻減小,橋路輸出電壓變化,該電壓變化隨氣體濃度的增大而成比例增大,補償元件具有溫度補償作用。MR511除具有靈敏度高、響應恢復時間短、穩定性好特點外,還具有功耗小,抗環境溫濕度干擾能力強的優點。WSNs的節能和井下惡劣溫濕環境要求MR5111可以滿足。

3 WSNs節點設計

3.1數據採集單元

考慮到無線感測器網路節點的節能和井下惡劣的溫濕環境,為了便於數據採集,系統設計採用HIH-4000-01型測濕度感測器和MR511熱線型半導體氣體感測器。圖2、圖3分別給出其電路設計圖。

3.2數據處理單元

ATmega128L的外圍電路設計簡單,設計時注意在數字電路的電源並人多隻電容濾波。ATmega128L的工作時鍾源可以選取外部晶振、外部RC振盪器、內部RC振盪器、外部時鍾源等方式。工作時鍾源的選擇通過ATmega128L的內部熔絲位來設計。熔絲位可以通過JTAG編程、ISP編程等方式設置。ATmega128L採用7.3728 MHz和32.768 kHz兩個外部晶振。前者用作工作時鍾,後者用作實時時鍾源。

3.3數據傳輸單元

3.3.1 CC2420外圍電路設計

圖4給出數據傳輸單元的外圍電路。CC2420隻需要極少的外圍元器件。其外圍電路包括晶振時鍾電路、射頻輸入/輸出匹配電路和微控制器介面電路3部分。

射頻輸入/輸出匹配電路主要用來匹配器件的輸入輸出阻抗,使其輸入輸出阻抗為50 Ω,同時為器件內部的PA及LNA提供直流偏置。射頻輸入/輸出是高阻抗,有差別。射頻端最適合的負載是115+j180 Ω。C61、C62、C71、C81、L61組成不平衡變壓器,L62和L81匹配射頻輸入輸出到50 Ω;L61和L62同時提供功率放大器和低雜訊放大器的直流偏置。內部的T/R開關是為了切換低雜訊放大器/功率放大器。R451偏置電阻是電流基準發生器的精密電阻。CC2420本振信號既可由外部有源晶體提供,也可由內部電路提供。若由內部電路提供時,需外加晶體振盪器和兩只負載電容,電容的大小取決於晶體的頻率及輸入容抗等參數。設計採用16 MHz晶振時,其電容值約為22 pF。C381和C391是外部晶體振盪器的負載電容。片上電壓調節器提供所有內部1.8 V電源的供應。C42是電壓調節器的負載電容,用於穩定調節器。為得到最佳性能必須使用電源去耦。在應用中使用大小合適的去耦電容和功率濾波器是非常重要的。CC2420可以通過4線SPI匯流排(SI、SO、SCLK、CSn)設置器件的工作模式,並實現讀,寫緩存數據,讀/寫狀態寄存器等。通過控制FIFO和FIFOP引腳介面的狀態可設置發射/接收緩存器。

3.3.2配置IEEE 802.15.4工作模式

CC2420為IEEE 802.15.4的數據幀格式提供硬體支持。其MAC層的幀格式為:頭幀+數據幀+校驗幀;PHY層的幀格式為:同步幀+PHY頭幀+MAC幀,幀頭序列的長度可通過設置寄存器改變,採用16位CRC校驗來提高數據傳輸的可靠性。發送或接收的數據幀被送入RAM中的128位元組緩存區進行相應的幀打包和拆包操作。表1給出CC2420的四線串列SPI介面引腳功能。它是設計單片機電路的依據,充分發揮這些功能是設計無線通信產品的前提。

3.3.3 CC2420與單片機介面電路設計

圖5給出CC2420與ATmega128L單片機的介面電路。CC2420通過簡單的四線(SI、SO、SCLK、CSn)與SPI兼容串列介面配置,這時CC2420是受控的。ATmega128L的SPI介面工作在主機模式,它是SPI數據傳輸的控制方;CC2420設為從機工作方式。當ATmega128L的SPI介面設為主機工作方式時,其硬體電路不會自動控制SS引腳。因此,在SH通信時,應在SPI介面初始化,它是由程序控制SS,將其拉為低電平,此後,當把數據寫入主機的SPI數據寄存器後,主機介面將自動啟動時鍾發生器,在硬體電路的控制下,移位傳送,通過MOSI將數據移出ATmega128L,並同時從CC2420由MISO移人數據,8位數據全部移出時,兩個寄存器就實現了一次數據交換。

4結語

通過對於無線感測器網路節點中感測器元件、數據處理模塊、數據傳輸模塊和電源的選擇,設計了一種以CC2420和ATmega128L為主體的硬體方案。利用該方案設計的CC2420和ATmega128L的外圍電路以及兩者之間的介面電路。此外,還對感測器與單片機的介面電路進行設計。通過實驗驗證,設計的硬體節點基本上達到了項目要求,經調試能通過感測器正確真實地採集數據,並實現兩個無線節點(兩個電路板。AA電池供電)在30 m左右的通信、傳輸數據、並反映到終端設備。

閱讀全文

與無線感測器網路期末相關的資料

熱點內容
國外網路同傳軟體 瀏覽:82
如何知道自己網路有沒有被監控 瀏覽:999
家用網路電信和移動哪個好 瀏覽:541
無線網路模式需要設置嗎 瀏覽:769
如何設置網路驅動密碼 瀏覽:493
三星galaxya移動網路 瀏覽:986
在哪裡都能有網路的app 瀏覽:240
網路連接為什麼有空白頁 瀏覽:987
vocx8智能鎖怎麼連接網路 瀏覽:871
網路語鼠人是什麼意思 瀏覽:682
怎麼讓媽媽不被網路營銷欺騙 瀏覽:43
回鄉下沒信號沒網路怎麼解決 瀏覽:204
信號格是網路還是電話 瀏覽:186
網路賣葯平台哪個正規 瀏覽:664
奧樂手機支持什麼網路 瀏覽:170
網路手機網路手機 瀏覽:406
小米的網路定位是什麼 瀏覽:218
大學生網路安全調查報告 瀏覽:432
網路安全ppt班會 瀏覽:42
設置屬性的家庭網路連接 瀏覽:608

友情鏈接