何為統計軟體?一般初學者都使用Matlab神經網路工具箱進行建模模擬。
MATLAB是matrix&laboratory兩個詞的組合,意為矩陣工廠(矩陣實驗室)。是由美國mathworks發布的主要面對科學計算、可視化以及互動式程序設計的高科技計算環境。它將數值分析、矩陣計算、科學數據可視化以及非線性動態系統的建模和模擬等諸多強大功能集成在一個易於使用的視窗環境中,為科學研究、工程設計以及必須進行有效數值計算的眾多科學領域提供了一種全面的解決方案,並在很大程度上擺脫了傳統非互動式程序設計語言(如C、Fortran)的編輯模式,代表了當今國際科學計算軟體的先進水平。
㈡ 神經網路工具箱與編程實現哪個更好
首先說一下神經網路工具箱,在我剛剛接觸神經網路的時候,我就利用工具箱去解決問題,這讓我從直觀上對神經網路有了了解,大概清楚了神經網路的應用范圍以及它是如何解決實際問題的。
工具箱的優勢在於我們不用了解其內部的具體實現,更關注於模型的建立與問題的分析,也就是說,如果拋開演算法的錯誤,那麼用工具箱來解決實際問題會讓我們能把更多的精力放在實際問題的模型建立上,而不是繁瑣的演算法實現以及分析上。
其次談談編程實現神經網路,由於個人能力有限,所以只是簡單的編程實現過一些基本神經演算法,總的體會就是編程的過程讓我對演算法有了更透徹的理解,可以更深入的分析其內部運行機制,也同樣可以實現一下自己的想法,構建自己的神經網路演算法。
以上是我對兩個方法的簡單理解。那究竟哪個方法更好些呢?我個人的看法是要看使用者的目的是怎樣的。
如果使用者的目的在於解決實際問題,利用神經網路的函數逼近與擬合功能實現自己對實際問題的分析與模型求解,那我的建議就是利用神經網路工具箱,學過編程語言的人都知道,無論用什麼編程語言將一個現有的演算法編程實現達到可用的結果這一過程都是及其繁瑣與復雜的,就拿簡單的經典BP神經網路演算法來說,演算法本身的實現其實並不難,可根據不同人的能力,編出來的程序的運行效率是大不相同的,而且如果有心人看過matlab的工具箱的源碼的話,應該能發現,裡面採用的方法並不完全是純粹的BP經典演算法,一個演算法從理論到實現還要依賴與其他演算法的輔助,計算機在計算的時候難免出現的舍入誤差,保證權值的時刻改變,這都是編程人員需要考慮的問題,可能還有很多的問題
這樣的話,如果自己單人編程去實現神經網路來解決實際問題的話,整體效率就沒有使用工具箱更好。
如果使用者的目的在於分析演算法,構造新的網路的話那當然首推自己編程實現。個人的感覺就是,如果真的是自己完全編程實現的話,對演算法會有很深入的理解,在編程的調試過程中,也會領悟到很多自己從前從來沒有考慮過的問題,像權值的初始的隨機選取應該怎麼樣,將訓練樣本按什麼順序輸入等,這都是編程實現所要考慮的問題,不同的方法得到的結果會有很大的差距。
㈢ 什麼軟體可分析人工神經網路
matlab7.0版本及以上都帶有神經網路工具箱的,可以做人工神經網路的。
㈣ 除了MATLAB能做BP神經網路,還有其他什麼軟體能做
在我看來bp神經網路是一種演算法,只要是演算法就可以用任何軟體工具(只要編譯器或者解釋器支持,c,c++,python,matlab......)來進行實現,只是實現時的復雜程度有區別而已
㈤ 常用的人工神經網路軟體有哪些
matlab。
spss裡面也有的。
㈥ 深度神經網路演算法用什麼軟體處理
微軟介紹,這種新型語音識別軟體採用了名為「深度神經網路」的技術,使得該軟體處理人類語音的過程與人腦相似。對此微軟必應(Bing)搜索業務部門主管斯特凡·維茨(Stefan Weitz)在本周一表示:「我們試圖復制人腦聆聽和處理人類語音的方式。」
微軟還表示,與原有WP手機語音識別技術相比,新型技術的語音識別准確性提高了15%,且創建相應文本及搜索關鍵詞的速度也更快。如此一來,必應返回相應搜索結果所用時間比以前快了兩倍。
微軟語音處理技術部門高級項目經理邁克爾·特加爾夫(Michael Tjalve)也表示:「通過我們最新的語音識別器,你不但得到的結果更好,而且速度更快。」
微軟已面向美國市場的Windows Phone手機用戶發布了這項技術。用戶通過這項新技術,將更容易使用語音命令來創建簡訊、進行網路搜索等活動。
㈦ 神經網路研究與應用這塊用python好還是matlab
Python的優勢:
Python相對於Matlab最大的優勢:免費。
Python次大的優勢:開源。你可以大量更改科學計算的演算法細節。
可移植性,Matlab必然不如Python。但你主要做Research,這方面需求應當不高。
第三方生態,Matlab不如Python。比如3D的繪圖工具包,比如GUI,比如更方便的並行,使用GPU,Functional等等。長期來看,Python的科學計算生態會比Matlab好。
語言更加優美。另外如果有一定的OOP需求,構建較大一點的科學計算系統,直接用Python比用Matlab混合的方案肯定要簡潔不少。
Matlab的優勢:
Community. 目前學校實驗室很多還用Matlab,很多學者也可能都用Matlab。交流起來或許更加方便。
Matlab本來號稱更快,但實際上由於Python越來越完善的生態,這個優勢已經逐漸喪失了。
總結來說就是python開源免費,有豐富的第三方庫,比較適合實際工程,matlab是商業軟體
如果買了的話做學術研究不錯, 如果混合編程比較麻煩。
㈧ 有什麼軟體可以實現神經網路預測
spss matlab 1stopt都是傻瓜化的智能演算法
㈨ 神經網路研究與應用這塊用python好還是matlab
兩者或許無所謂好與壞。只要自己喜歡用,那就是好的,但是目前代碼數量來看,可以學習的源代碼MATLAB有非常多的源碼。最重要的是,MATLAB里有神經網路工具箱,有可視化界面更容易調整參數。若果你是需要使用神經網路去完成某些數據分析,而你的數據又不是很多,那麼建議你使用matlab,裡面有已經搭建好的工具箱,非常齊全。
若果你對神經網路已經熟悉是,是打算投入應用,而且你的數據很大,那麼根據你所需要的神經網路,用C或其他你認為性能好的語言,針對你的問題重新編一個演算法,也不會花很大功夫。這樣既省了自己的時間,又讓自己輕松學習。總結來說,不論你學什麼,用什麼路徑去學總是會達到想要的目的,但是重要的是在於學習的過程。
㈩ 搭建神經網路用什麼軟體
用Matlab就可以了, 裡面有神經網路的工具箱很方便的。