導航:首頁 > 網路共享 > 人工神經網路的研究屬於哪個學派

人工神經網路的研究屬於哪個學派

發布時間:2022-03-31 00:23:18

Ⅰ 人工智慧和神經網路有什麼聯系與區別

聯系:都是模仿人類行為的數學模型以及演算法。神經網路的研究能促進或者加快人工智慧的發展。

區別如下:

一、指代不同

1、人工智慧:是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。

2、神經網路:是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。


二、方法不同

1、人工智慧:企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。

2、神經網路:依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。

三、目的不同

1、人工智慧:主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。

2、神經網路:具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。

Ⅱ 人工神經網路是哪個流派的基礎

「純意念控制」人工神經康復機器人系統2014年6月14日在天津大學和天津市人民醫院共同舉辦的發表會上,由雙方共同研製的人工神經康復機器人「神工一號」正式亮相。
中文名
「純意念控制」人工神經康復機器人系統
發布時間
2014年6月14日
快速
導航
產品特色發展歷史
功能配置
「純意念控制」人工神經康復機器人系統在復合想像動作信息解析與處理、非同步腦——機介面訓練與識別、皮層——肌肉活動同步耦合優化、中風後抑鬱腦電非線性特徵提取與篩查等關鍵技術上取得了重大突破。
「純意念控制」人工神經康復機器人系統包括無創腦電感測模塊、想像動作特徵檢測模塊、運動意圖識別模塊、指令編碼介面模塊、刺激信息調理模塊、刺激電流輸出模塊6部分。
產品特色
「純意念控制」人工神經康復機器人系統最新研究成果將讓不少中風、癱瘓人士燃起重新獨立生活的希望。現已擁有包括23項授權國家發明專利、1項軟體著作權在內的自主知識產權集群,是全球首台適用於全肢體中風康復的「純意念控制」人工神經機器人系統。[1]
腦控機械外骨骼是利用被動機械牽引,非肌肉主動收縮激活。而「神工一號」則利用神經肌肉電刺激,模擬神經沖動的電刺激引起肌肉產生主動收縮,帶動骨骼和關節產生自主動作,與人體自主運動原理一致。
體驗者需要把裝有電極的腦電探測器戴在頭部,並在患病肢體的肌肉上安裝電極,藉助「神工一號」的連接,就可以用「意念」來「控制」自己本來無法行動的肢體了。[2]
發展歷史
「純意念控制」人工神經康復機器人系統技術歷時10年,是國家「863計劃「、「十二五」國家科技支撐計劃和國家優秀青年科學基金重點支持項目。
人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。
中文名
人工神經網路
外文名
artificial neural network
別稱
ANN
應用學科
人工智慧
適用領域范圍
模式分類
精品薦讀
「蠢萌」的神經網路
作者:牛油果進化論
快速
導航
基本特徵發展歷史網路模型學習類型分析方法特點優點研究方向發展趨勢應用分析
神經元
如圖所示
a1~an為輸入向量的各個分量
w1~wn為神經元各個突觸的權值
b為偏置
f為傳遞函數,通常為非線性函數。以下默認為hardlim()
t為神經元輸出
數學表示 t=f(WA'+b)
W為權向量
A為輸入向量,A'為A向量的轉置
b為偏置
f為傳遞函數
可見,一個神經元的功能是求得輸入向量與權向量的內積後,經一個非線性傳遞函數得到一個標量結果。
單個神經元的作用:把一個n維向量空間用一個超平面分割成兩部分(稱之為判斷邊界),給定一個輸入向量,神經元可以判斷出這個向量位於超平面的哪一邊。
該超平面的方程: Wp+b=0
W權向量
b偏置
p超平面上的向量
基本特徵
人工神經網路是由大量處理單元互聯組成的非線性、自適應信息處理系統。它是在現代神經科學研究成果的基礎上提出的,試圖通過模擬大腦神經網路處理、記憶信息的方式進行信息處理。人工神經網路具有四個基本特徵:
(1)非線性 非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處於激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。
人工神經網路
(2)非局限性 一個神經網路通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決於單個神經元的特徵,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子。
(3)非常定性 人工神經網路具有自適應、自組織、自學習能力。神經網路不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常採用迭代過程描寫動力系統的演化過程。
(4)非凸性 一個系統的演化方向,在一定條件下將取決於某個特定的狀態函數。例如能量函數,它的極值相應於系統比較穩定的狀態。非凸性是指這種函數有多個極值,故系統具有多個較穩定的平衡態,這將導致系統演化的多樣性。
人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理 ,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。它是涉及神經科學、思維科學、人工智慧、計算機科學等多個領域的交叉學科。
人工神經網路
人工神經網路是並行分布式系統,採用了與傳統人工智慧和信息處理技術完全不同的機理,克服了傳統的基於邏輯符號的人工智慧在處理直覺、非結構化信息方面的缺陷,具有自適應、自組織和實時學習的特點。[1]
發展歷史
1943年,心理學家W.S.McCulloch和數理邏輯學家W.Pitts建立了神經網路和數學模型,稱為MP模型。他們通過MP模型提出了神經元的形式化數學描述和網路結構方法,證明了單個神經元能執行邏輯功能,從而開創了人工神經網路研究的時代。1949年,心理學家提出了突觸聯系強度可變的設想。60年代,人工神經網路得到了進一步發展,更完善的神經網路模型被提出,其中包括感知器和自適應線性元件等。M.Minsky等仔細分析了以感知器為代表的神經網路系統的功能及局限後,於1969年出版了《Perceptron》一書,指出感知器不能解決高階謂詞問題。他們的論點極大地影響了神經網路的研究,加之當時串列計算機和人工智慧所取得的成就,掩蓋了發展新型計算機和人工智慧新途徑的必要性和迫切性,使人工神經網路的研究處於低潮。在此期間,一些人工神經網路的研究者仍然致力於這一研究,提出了適應諧振理論(ART網)、自組織映射、認知機網路,同時進行了神經網路數學理論的研究。以上研究為神經網路的研究和發展奠定了基礎。1982年,美國加州工學院物理學家J.J.Hopfield提出了Hopfield神經網格模型,引入了「計算能量」概念,給出了網路穩定性判斷。 1984年,他又提出了連續時間Hopfield神經網路模型,為神經計算機的研究做了開拓性的工作,開創了神經網路用於聯想記憶和優化計算的新途徑,有力地推動了神經網路的研究,1985年,又有學者提出了波耳茲曼模型,在學習中採用統計熱力學模擬退火技術,保證整個系統趨於全局穩定點。1986年進行認知微觀結構地研究,提出了並行分布處理的理論。1986年,Rumelhart, Hinton, Williams發展了BP演算法。Rumelhart和McClelland出版了《Parallel distribution processing: explorations in the microstructures of cognition》。迄今,BP演算法已被用於解決大量實際問題。1988年,Linsker對感知機網路提出了新的自組織理論,並在Shanon資訊理論的基礎上形成了最大互信息理論,從而點燃了基於NN的信息應用理論的光芒。1988年,Broomhead和Lowe用徑向基函數(Radial basis function, RBF)提出分層網路的設計方法,從而將NN的設計與數值分析和線性適應濾波相掛鉤。90年代初,Vapnik等提出了支持向量機(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)維數的概念。人工神經網路的研究受到了各個發達國家的重視,美國國會通過決議將1990年1月5日開始的十年定為「腦的十年」,國際研究組織號召它的成員國將「腦的十年」變為全球行為。在日本的「真實世界計算(RWC)」項目中,人工智慧的研究成了一個重要的組成部分。
人工神經網路
網路模型
人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。根據連接的拓撲結構,神經網路模型可以分為:[1]
人工神經網路
前向網路
網路中各個神經元接受前一級的輸入,並輸出到下一級,網路中沒有反饋,可以用一個有向無環路圖表示。這種網路實現信號從輸入空間到輸出空間的變換,它的信息處理能力來自於簡單非線性函數的多次復合。網路結構簡單,易於實現。反傳網路是一種典型的前向網路。[2]
反饋網路
網路內神經元間有反饋,可以用一個無向的完備圖表示。這種神經網路的信息處理是狀態的變換,可以用動力學系統理論處理。系統的穩定性與聯想記憶功能有密切關系。Hopfield網路、波耳茲曼機均屬於這種類型。
學習類型
學習是神經網路研究的一個重要內容,它的適應性是通過學習實現的。根據環境的變化,對權值進行調整,改善系統的行為。由Hebb提出的Hebb學習規則為神經網路的學習演算法奠定了基礎。Hebb規則認為學習過程最終發生在神經元之間的突觸部位,突觸的聯系強度隨著突觸前後神經元的活動而變化。在此基礎上,人們提出了各種學習規則和演算法,以適應不同網路模型的需要。有效的學習演算法,使得神經網路能夠通過連接權值的調整,構造客觀世界的內在表示,形成具有特色的信息處理方法,信息存儲和處理體現在網路的連接中。
人工神經網路
分類
根據學習環境不同,神經網路的學習方式可分為監督學習和非監督學習。在監督學習中,將訓練樣本的數據加到網路輸入端,同時將相應的期望輸出與網路輸出相比較,得到誤差信號,以此控制權值連接強度的調整,經多次訓練後收斂到一個確定的權值。當樣本情況發生變化時,經學習可以修改權值以適應新的環境。使用監督學習的神經網路模型有反傳網路、感知器等。非監督學習時,事先不給定標准樣本,直接將網路置於環境之中,學習階段與工作階段成為一體。此時,學習規律的變化服從連接權值的演變方程。非監督學習最簡單的例子是Hebb學習規則。競爭學習規則是一個更復雜的非監督學習的例子,它是根據已建立的聚類進行權值調整。自組織映射、適應諧振理論網路等都是與競爭學習有關的典型模型。
分析方法
研究神經網路的非線性動力學性質,主要採用動力學系統理論、非線性規劃理論和統計理論,來分析神經網路的演化過程和吸引子的性質,探索神經網路的協同行為和集體計算功能,了解神經信息處理機制。為了探討神經網路在整體性和模糊性方面處理信息的可能,混沌理論的概念和方法將會發揮作用。混沌是一個相當難以精確定義的數學概念。一般而言,「混沌」是指由確定性方程描述的動力學系統中表現出的非確定性行為,或稱之為確定的隨機性。「確定性」是因為它由內在的原因而不是外來的雜訊或干擾所產生,而「隨機性」是指其不規則的、不能預測的行為,只可能用統計的方法描述。

Ⅲ 人工神經網路涉及什麼專業

人工神經網路不是一個專業,而是數學領域的一個研究方向。一般應用數學專業里有授課,但也不完全確定,看學校不同而不同。
此外,部分涉及到的工程類專業也有授課。

Ⅳ 人工神經網路是哪一年由誰提出來的

人工神經網路是1943年,心理學家W.S.McCulloch和數理邏輯學家W.Pitts提出來。

他們通過MP模型提出了神經元的形式化數學描述和網路結構方法,證明了單個神經元能執行邏輯功能,從而開創了人工神經網路研究的時代。

1949年,心理學家提出了突觸聯系強度可變的設想。60年代,人工神經網路得到了進一步發展,更完善的神經網路模型被提出,其中包括感知器和自適應線性元件等。M.Minsky等仔細分析了以感知器為代表的神經網路系統的功能及局限後,於1969年出版了《Perceptron》一書,指出感知器不能解決高階謂詞問題。

(4)人工神經網路的研究屬於哪個學派擴展閱讀

人工神經網路的特點和優越性,主要表現在三個方面:

第一,具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。

預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。

第二,具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。

第三,具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。

Ⅳ 人工神經網路屬於什麼科目

智能機械化

Ⅵ 什麼是人工神經網路 人工神經網路的介紹

人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。

Ⅶ 人工智慧有哪幾個主要學派

目前人工智慧的主要學派有下面三家:
(1)符號主義(symbolicism),又稱為邏輯主義(logicism)、心理學派(psychologism)或計算機學派(computerism),其原理主要為物理符號系統(即符號操作系統)假設和有限合理性原理。
(2)連接主義(connectionism),又稱為仿生學派(bionicsism)或生理學派(physiologism),其主要原理為神經網路及神經網路間的連接機制與學習演算法。
(3)行為主義(actionism),又稱為進化主義(evolutionism)或控制論學派(cyberneticsism),其原理為控制論及感知-動作型控制系統。
他們對人工智慧發展歷史具有不同的看法。
1、符號主義認為人工智慧源於數理邏輯。數理邏輯從19世紀末起得以迅速發展,到20世紀30年代開始用於描述智能行為。計算機出現後,又再計算機上實現了邏輯演繹系統。其有代表性的成果為啟發式程序LT邏輯理論家,證明了38條數學定理,表了可以應用計算機研究人的思維多成,模擬人類智能活動。正是這些符號主義者,早在1956年首先採用「人工智慧」這個術語。後來又發展了啟發式演算法->專家系統->知識工程理論與技術,並在20世紀80年代取得很大發展。符號主義曾長期一枝獨秀,為人工智慧的發展作出重要貢獻,尤其是專家系統的成功開發與應用,為人工智慧走向工程應用和實現理論聯系實際具有特別重要的意義。在人工智慧的其他學派出現之後,符號主義仍然是人工智慧的主流派別。這個學派的代表任務有紐厄爾(Newell)、西蒙(Simon)和尼爾遜(Nilsson)等。
2、連接主義認為人工智慧源於仿生學,特別是對人腦模型的研究。它的代表性成果是1943年由生理學家麥卡洛克(McCulloch)和數理邏輯學家皮茨(Pitts)創立的腦模型,即MP模型,開創了用電子裝置模仿人腦結構和功能的新途徑。它從神經元開始進而研究神經網路模型和腦模型,開辟了人工智慧的又一發展道路。20世紀60~70年代,連接主義,尤其是對以感知機(perceptron)為代表的腦模型的研究出現過熱潮,由於受到當時的理論模型、生物原型和技術條件的限制,腦模型研究在20世紀70年代後期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年發表兩篇重要論文,提出用硬體模擬神經網路以後,連接主義才又重新抬頭。1986年,魯梅爾哈特(Rumelhart)等人提出多層網路中的反向傳播演算法(BP)演算法。此後,連接主義勢頭大振,從模型到演算法,從理論分析到工程實現,偉神經網路計算機走向市場打下基礎。現在,對人工神經網路(ANN)的研究熱情仍然較高,但研究成果沒有像預想的那樣好。
3、行為主義認為人工智慧源於控制論。控制論思想早在20世紀40~50年代就成為時代思潮的重要部分,影響了早期的人工智慧工作者。維納(Wiener)和麥克洛克(McCulloch)等人提出的控制論和自組織系統以及錢學森等人提出的工程式控制制論和生物控制論,影響了許多領域。控制論把神經系統的工作原理與信息理論、控制理論、邏輯以及計算機聯系起來。早期的研究工作重點是模擬人在控制過程中的智能行為和作用,如對自尋優、自適應、自鎮定、自組織和自學習等控制論系統的研究,並進行「控制論動物」的研製。到20世紀60~70年代,上述這些控制論系統的研究取得一定進展,播下智能控制和智能機器人的種子,並在20世紀80年代誕生了智能控制和智能機器人系統。行為主義是20世紀末才以人工智慧新學派的面孔出現的,引起許多人的興趣。這一學派的代表作者首推布魯克斯(Brooks)的六足行走機器人,它被看作是新一代的「控制論動物」,是一個基於感知-動作模式模擬昆蟲行為的控制系統

Ⅷ 人工神經網路的主要研究成果

1 人工神經網路產生的背景
自古以來,關於人類智能本源的奧秘,一直吸引著無數哲學家和自然科學家的研究熱情。生物學家、神經學家經過長期不懈的努力,通過對人腦的觀察和認識,認為人腦的智能活動離不開腦的物質基礎,包括它的實體結構和其中所發生的各種生物、化學、電學作用,並因此建立了神經元網路理論和神經系統結構理論,而神經元理論又是此後神經傳導理論和大腦功能學說的基礎。在這些理論基礎之上,科學家們認為,可以從仿製人腦神經系統的結構和功能出發,研究人類智能活動和認識現象。另一方面,19世紀之前,無論是以歐氏幾何和微積分為代表的經典數學,還是以牛頓力學為代表的經典物理學,從總體上說,這些經典科學都是線性科學。然而,客觀世界是如此的紛繁復雜,非線性情況隨處可見,人腦神經系統更是如此。復雜性和非線性是連接在一起的,因此,對非線性科學的研究也是我們認識復雜系統的關鍵。為了更好地認識客觀世界,我們必須對非線性科學進行研究。人工神經網路作為一種非線性的、與大腦智能相似的網路模型,就這樣應運而生了。所以,人工神經網路的創立不是偶然的,而是20世紀初科學技術充分發展的產物。
2 人工神經網路的發展
人工神經網路的研究始於40年代初。半個世紀以來,經歷了興起、高潮與蕭條、高潮及穩步發展的遠為曲折的道路。
1943年,心理學家W.S.Mcculloch和數理邏輯學家W.Pitts 提出了M—P模型,這是第一個用數理語言描述腦的信息處理過程的模型, 雖然神經元的功能比較弱,但它為以後的研究工作提供了依據。1949年,心理學家D.O.Hebb提出突觸聯系可變的假設,根據這一假設提出的學習規律為神經網路的學習演算法奠定了基礎。 1957 年, 計算機科學家Rosenblatt提出了著名的感知機模型,它的模型包含了現代計算機的一些原理,是第一個完整的人工神經網路,第一次把神經網路研究付諸工程實現。由於可應用於模式識別,聯想記憶等方面,當時有上百家實驗室投入此項研究,美國軍方甚至認為神經網路工程應當比「原子彈工程」更重要而給予巨額資助,並在聲納信號識別等領域取得一定成績。1960年,B.Windrow和E.Hoff提出了自適應線性單元, 它可用於自適應濾波、預測和模式識別。至此,人工神經網路的研究工作進入了第一個高潮。
1969年,美國著名人工智慧學者M.Minsky和S.Papert編寫了影響很大的Perceptron一書,從理論上證明單層感知機的能力有限,諸如不能解決異或問題,而且他們推測多層網路的感知機能力也不過如此,他們的分析恰似一瓢冷水,很多學者感到前途渺茫而紛紛改行,原先參與研究的實驗室紛紛退出,在這之後近10年,神經網路研究進入了一個緩慢發展的蕭條期。這期間,芬蘭學者T.Kohonen 提出了自組織映射理論,反映了大腦神經細胞的自組織特性、記憶方式以及神經細胞興奮刺激的規律;美國學者S.A.Grossberg的自適應共振理論(ART );日本學者K.Fukushima提出了認知機模型;ShunIchimari則致力於神經網路有關數學理論的研究等,這些研究成果對以後的神經網路的發展產生了重要影響。
美國生物物理學家J.J.Hopfield於1982年、1984年在美國科學院院刊發表的兩篇文章,有力地推動了神經網路的研究,引起了研究神經網路的又一次熱潮。 1982 年, 他提出了一個新的神經網路模型——hopfield網路模型。他在這種網路模型的研究中,首次引入了網路能量函數的概念,並給出了網路穩定性的判定依據。1984年,他又提出了網路模型實現的電子電路,為神經網路的工程實現指明了方向,他的研究成果開拓了神經網路用於聯想記憶的優化計算的新途徑,並為神經計算機研究奠定了基礎。1984年Hinton等人將模擬退火演算法引入到神經網路中,提出了Boltzmann機網路模型,BM 網路演算法為神經網路優化計算提供了一個有效的方法。1986年,D.E.Rumelhart和J.LMcclelland提出了誤差反向傳播演算法,成為至今為止影響很大的一種網路學習方法。1987年美國神經計算機專家R.Hecht—Nielsen提出了對向傳播神經網路,該網路具有分類靈活,演算法簡練的優點,可用於模式分類、函數逼近、統計分析和數據壓縮等領域。1988年L.Ochua 等人提出了細胞神經網路模型,它在視覺初級加工上得到了廣泛應用。
為適應人工神經網路的發展,1987年成立了國際神經網路學會,並決定定期召開國際神經網路學術會議。1988年1月Neural Network 創刊。1990年3月IEEE Transaction on Neural Network問世。 我國於1990年12月在北京召開了首屆神經網路學術大會,並決定以後每年召開一次。1991 年在南京成立了中國神經網路學會。 IEEE 與INNS 聯合召開的IJCNN92已在北京召開。 這些為神經網路的研究和發展起了推波助瀾的作用,人工神經網路步入了穩步發展的時期。
90年代初,諾貝爾獎獲得者Edelman提出了Darwinism模型,建立了神經網路系統理論。同年,Aihara等在前人推導和實驗的基礎上,給出了一個混沌神經元模型,該模型已成為一種經典的混沌神經網路模型,該模型可用於聯想記憶。 Wunsch 在90OSA 年會上提出了一種AnnualMeeting,用光電執行ART,學習過程有自適應濾波和推理功能,具有快速和穩定的學習特點。1991年,Hertz探討了神經計算理論, 對神經網路的計算復雜性分析具有重要意義;Inoue 等提出用耦合的混沌振盪子作為某個神經元,構造混沌神經網路模型,為它的廣泛應用前景指明了道路。1992年,Holland用模擬生物進化的方式提出了遺傳演算法, 用來求解復雜優化問題。1993年方建安等採用遺傳演算法學習,研究神經網路控制器獲得了一些結果。1994年Angeline等在前人進化策略理論的基礎上,提出一種進化演算法來建立反饋神經網路,成功地應用到模式識別,自動控制等方面;廖曉昕對細胞神經網路建立了新的數學理論和方法,得到了一系列結果。HayashlY根據動物大腦中出現的振盪現象,提出了振盪神經網路。1995年Mitra把人工神經網路與模糊邏輯理論、 生物細胞學說以及概率論相結合提出了模糊神經網路,使得神經網路的研究取得了突破性進展。Jenkins等人研究光學神經網路, 建立了光學二維並行互連與電子學混合的光學神經網路,它能避免網路陷入局部最小值,並最後可達到或接近最理想的解;SoleRV等提出流體神經網路,用來研究昆蟲社會,機器人集體免疫系統,啟發人們用混沌理論分析社會大系統。1996年,ShuaiJW』等模擬人腦的自發展行為, 在討論混沌神經網路的基礎上提出了自發展神經網路。1997、1998年董聰等創立和完善了廣義遺傳演算法,解決了多層前向網路的最簡拓樸構造問題和全局最優逼近問題。
隨著理論工作的發展,神經網路的應用研究也取得了突破性進展,涉及面非常廣泛,就應用的技術領域而言有計算機視覺,語言的識別、理解與合成,優化計算,智能控制及復雜系統分析,模式識別,神經計算機研製,知識推理專家系統與人工智慧。涉及的學科有神經生理學、認識科學、數理科學、心理學、信息科學、計算機科學、微電子學、光學、動力學、生物電子學等。美國、日本等國在神經網路計算機軟硬體實現的開發方面也取得了顯著的成績,並逐步形成產品。在美國,神經計算機產業已獲得軍方的強有力支持,國防部高級研究計劃局認為「神經網路是解決機器智能的唯一希望」,僅一項8 年神經計算機計劃就投資4億美元。在歐洲共同體的ESPRIT計劃中, 就有一項特別項目:「神經網路在歐洲工業中的應用」,單是生產神經網路專用晶元這一項就投資2200萬美元。據美國資料聲稱,日本在神經網路研究上的投資大約是美國的4倍。我國也不甘落後,自從1990 年批准了南開大學的光學神經計算機等3項課題以來, 國家自然科學基金與國防預研基金也都為神經網路的研究提供資助。另外,許多國際著名公司也紛紛捲入對神經網路的研究,如Intel、IBM、Siemens、HNC。神經計算機產品開始走向商用階段,被國防、企業和科研部門選用。在舉世矚目的海灣戰爭中,美國空軍採用了神經網路來進行決策與控制。在這種刺激和需求下,人工神經網路定會取得新的突破,迎來又一個高潮。自1958年第一個神經網路誕生以來,其理論與應用成果不勝枚舉。人工神經網路是一個快速發展著的一門新興學科,新的模型、新的理論、新的應用成果正在層出不窮地涌現出來。
3 人工神經網路的發展前景
針對神經網路存在的問題和社會需求,今後發展的主要方向可分為理論研究和應用研究兩個方面。
(1)利用神經生理與認識科學研究大腦思維及智能的機理、 計算理論,帶著問題研究理論。
人工神經網路提供了一種揭示智能和了解人腦工作方式的合理途徑,但是由於人類起初對神經系統了解非常有限,對於自身腦結構及其活動機理的認識還十分膚淺,並且帶有某種「先驗」。例如, Boltzmann機引入隨機擾動來避免局部極小,有其卓越之處,然而缺乏必要的腦生理學基礎,毫無疑問,人工神經網路的完善與發展要結合神經科學的研究。而且,神經科學,心理學和認識科學等方面提出的一些重大問題,是向神經網路理論研究提出的新挑戰,這些問題的解決有助於完善和發展神經網路理論。因此利用神經生理和認識科學研究大腦思維及智能的機理,如有新的突破,將會改變智能和機器關系的認識。
利用神經科學基礎理論的研究成果,用數理方法探索智能水平更高的人工神經網路模型,深入研究網路的演算法和性能,如神經計算、進化計算、穩定性、收斂性、計算復雜性、容錯性、魯棒性等,開發新的網路數理理論。由於神經網路的非線性,因此非線性問題的研究是神經網路理論發展的一個最大動力。特別是人們發現,腦中存在著混沌現象以來,用混沌動力學啟發神經網路的研究或用神經網路產生混沌成為擺在人們面前的一個新課題,因為從生理本質角度出發是研究神經網路的根本手段。
(2)神經網路軟體模擬, 硬體實現的研究以及神經網路在各個科學技術領域應用的研究。
由於人工神經網路可以用傳統計算機模擬,也可以用集成電路晶元組成神經計算機,甚至還可以用光學的、生物晶元的方式實現,因此研製純軟體模擬,虛擬模擬和全硬體實現的電子神經網路計算機潛力巨大。如何使神經網路計算機與傳統的計算機和人工智慧技術相結合也是前沿課題;如何使神經網路計算機的功能向智能化發展,研製與人腦功能相似的智能計算機,如光學神經計算機,分子神經計算機,將具有十分誘人的前景。
4 哲理
(1)人工神經網路打開了認識論的新領域
認識與腦的問題,長期以來一直受到人們的關注,因為它不僅是有關人的心理、意識的心理學問題,也是有關人的思維活動機制的腦科學與思維科學問題,而且直接關繫到對物質與意識的哲學基本問題的回答。人工神經網路的發展使我們能夠更進一步地既唯物又辯證地理解認識與腦的關系,打開認識論的新領域。人腦是一個復雜的並行系統,它具有「認知、意識、情感」等高級腦功能,用人工進行模擬,有利於加深對思維及智能的認識,已對認知和智力的本質的研究產生了極大的推動作用。在研究大腦的整體功能和復雜性方面,人工神經網路給人們帶來了新的啟迪。由於人腦中存在混沌現象,混沌可用來理解腦中某些不規則的活動,從而混沌動力學模型能用作人對外部世界建模的工具,可用來描述人腦的信息處理過程。混沌和智能是有關的,神經網路中引入混沌學思想有助於提示人類形象思維等方面的奧秘。人工神經網路之所以再度興起,關鍵在於它反映了事物的非線性,抓住了客觀世界的本質,而且它在一定程度上正面回答了智能系統如何從環境中自主學習這一最關鍵的問題,從認知的角度講,所謂學習,就是對未知現象或規律的發現和歸納。由於神經網路具有高度的並行性,高度的非線性全局作用,良好的容錯性與聯想記憶功能以及十分強的自適應、自學習功能,而使得它成為揭示智能和了解人腦工作方式的合理途徑。但是,由於認知問題的復雜性,目前,我們對於腦神經網的運行和神經細胞的內部處理機制,如信息在人腦是如何傳輸、存貯、加工的?記憶、聯想、判斷是如何形成的?大腦是否存在一個操作系統?還沒有太多的認識,因此要製造人工神經網路來模仿人腦各方面的功能,還有待於人們對大腦信息處理機理認識的深化。
(2)人工神經網路發展的推動力來源於實踐、 理論和問題的相互作用
隨著人們社會實踐范圍的不斷擴大,社會實踐層次的不斷深入,人們所接觸到的自然現象也越來越豐富多彩、紛繁復雜,這就促使人們用不同的原因加以解釋不同種類的自然現象,當不同種類的自然現象可以用同樣的原因加以解釋,這樣就出現了不同學科的相互交叉、綜合,人工神經網路就這樣產生了。在開始階段,由於這些理論化的網路模型比較簡單,還存在許多問題,而且這些模型幾乎沒有得到實踐的檢驗,因而神經網路的發展比較緩慢。隨著理論研究的深入,問題逐漸地解決特別是工程上得到實現以後,如聲納識別成功,才迎來了神經網路的第一個發展高潮。可Minisky認為感知器不能解決異或問題, 多層感知器也不過如此,神經網路的研究進入了低谷,這主要是因為非線性問題沒得到解決。隨著理論的不斷豐富,實踐的不斷深入, 現在已證明Minisky的悲觀論調是錯誤的。今天,高度發達的科學技術逐漸揭示了非線性問題是客觀世界的本質。問題、理論、實踐的相互作用又迎來了人工神經網路的第二次高潮。目前人工神經網路的問題是智能水平不高,還有其它理論和實現方面的問題,這就迫使人們不斷地進行理論研究,不斷實踐,促使神經網路不斷向前發展。總之,先前的原因遇到了解釋不同的新現象,促使人們提出更加普遍和精確的原因來解釋。理論是基礎,實踐是動力,但單純的理論和實踐的作用還不能推動人工神經網路的發展,還必須有問題提出,才能吸引科學家進入研究的特定范圍,引導科學家從事相關研究,從而逼近科學發現,而後實踐又提出新問題,新問題又引發新的思考,促使科學家不斷思考,不斷完善理論。人工神經網路的發展無不體現著問題、理論和實踐的辯證統一關系。
(3 )人工神經網路發展的另一推動力來源於相關學科的貢獻及不同學科專家的競爭與協同
人工神經網路本身就是一門邊緣學科,它的發展有更廣闊的科學背景,亦即是眾多科研成果的綜合產物,控制論創始人Wiener在其巨著《控制論》中就進行了人腦神經元的研究;計算機科學家Turing就提出過B網路的設想;Prigogine提出非平衡系統的自組織理論,獲得諾貝爾獎;Haken研究大量元件聯合行動而產生宏觀效果, 非線性系統「混沌」態的提出及其研究等,都是研究如何通過元件間的相互作用建立復雜系統,類似於生物系統的自組織行為。腦科學與神經科學的進展迅速反映到人工神經網路的研究中,例如生物神經網路理論,視覺中發現的側抑制原理,感受野概念等,為神經網路的發展起了重要的推動作用。從已提出的上百種人工神經網路模型中,涉及學科之多,令人目不暇接,其應用領域之廣,令人嘆為觀止。不同學科專家為了在這一領域取得領先水平,存在著不同程度的競爭,所有這些有力地推動了人工神經網路的發展。人腦是一個功能十分強大、結構異常復雜的信息系統,隨著資訊理論、控制論、生命科學,計算機科學的發展,人們越來越驚異於大腦的奇妙,至少到目前為止,人類大腦信號處理機制對人類自身來說,仍是一個黑盒子,要揭示人腦的奧秘需要神經學家、心理學家、計算機科學家、微電子學家、數學家等專家的共同努力,對人類智能行為不斷深入研究,為人工神經網路發展提供豐富的理論源泉。另外,還要有哲學家的參與,通過哲學思想和自然科學多種學科的深層結合,逐步孕育出探索人類思維本質和規律的新方法,使思維科學從朦朧走向理性。而且,不同領域專家的競爭與協調同有利於問題清晰化和尋求最好的解決途徑。縱觀神經網路的發展歷史,沒有相關學科的貢獻,不同學科專家的競爭與協同,神經網路就不會有今天。當然,人工神經網路在各個學科領域應用的研究反過來又推動其它學科的發展,推動自身的完善和發展。

Ⅸ 神經網路研究屬於什麼學派

符號主義
符號主義
符號主義
符號主義符號主義
符號主義
符號主義符號主義符號主義符號主義
符號主義

閱讀全文

與人工神經網路的研究屬於哪個學派相關的資料

熱點內容
網路安中心在哪個位置 瀏覽:129
網路項目如何監測引導 瀏覽:397
車機的網路能不能共享給手機 瀏覽:493
實現計算機網路的功能的拓撲結構是 瀏覽:684
網路手機管家哪個好用 瀏覽:255
手機打開移動流量都無網路 瀏覽:530
怎麼重新建立一個網路 瀏覽:818
汽車網路如何連手機網路 瀏覽:341
建立和落實網路安全工作責任制 瀏覽:14
iphone運營商網路哪個好 瀏覽:161
網路移動網路機頂盒怎麼安裝 瀏覽:728
聯通信號好還是電信網路好 瀏覽:876
劍靈網路延遲怎麼辦 瀏覽:567
蘋果網路鎖美國繳費解鎖 瀏覽:719
網路電視開機診斷請輸入密碼 瀏覽:11
震旦228e網路掃描怎麼設置 瀏覽:213
賽爾號網路連接 瀏覽:28
面授班和網路教育哪個好 瀏覽:182
如何進行網路保險的營銷 瀏覽:381
網路電視機播放器哪個好 瀏覽:620

友情鏈接