導航:首頁 > 網路共享 > 蟻群演算法和神經網路哪個好

蟻群演算法和神經網路哪個好

發布時間:2022-02-15 20:34:48

㈠ 蟻群演算法的概念,最好能舉例說明一些蟻群演算法適用於哪

蟻群演算法及其應用可供人工智慧、計算機科學、信息科學、控制工程、管理工程、交通工程、網路工程、智能優化演算法及智能自動化等領域的廣大師生和科技人員學習及參考。

㈡ 關於神經網路,蟻群演算法和遺傳演算法

  1. 神經網路並行性和自適應性很強,應用領域很廣,在任何非線性問題中都可以應用,如控制、信息、預測等各領域都能應用。

  2. 蟻群演算法最開始應用於TSP問題,獲得了成功,後來又廣泛應用於各類組合優化問題。但是該演算法理論基礎較薄弱,演算法收斂性都沒有得到證明,很多參數的設定也僅靠經驗,實際效果也一般,使用中也常常早熟。

  3. 遺傳演算法是比較成熟的演算法,它的全局尋優能力很強,能夠很快地趨近較優解。主要應用於解決組合優化的NP問題。

  4. 這三種演算法可以相互融合,例如GA可以優化神經網路初始權值,防止神經網路訓練陷入局部極小且加快收斂速度。蟻群演算法也可用於訓練神經網路,但一定要使用優化後的蟻群演算法,如最大-最小蟻群演算法和帶精英策略。

㈢ 神經網路演算法 遺傳演算法 模糊演算法 哪個

沒有哪種演算法更好的說法,因為每種演算法都有自己的優勢。只能說某種演算法在處理某種問題時,效果更好更合適。

  1. 神經網路不能說是一種演算法,它是一種數學網路結構,各神經元的權值、閾值是用某種訓練演算法計算出來的。神經網路適用於非線性系統,可用於難以用數學表達式來描述的系統。

  2. 遺傳演算法在全局尋優問題上效果很好,因其收斂速度較快,且不易陷入局部極小點。其中實數編碼法適合與神經網路結合,例如GA-BP神經網路。

  3. 模糊演算法可將一些難以量化的參數模糊處理,並且演算法較簡單,尤其是適用於專家經驗佔主要地位的系統,因為添加一條專家經驗只需往規則庫里添加一條語句即可。用這種演算法要注意區間不能劃得太寬,否則演算法太不精確。

㈣ NARX神經網路一定比BP神經網路更好嗎如果是,具體好在哪

這看你要解決什麼問題了,narx網路是為了給bp網路增加一定的序列學習能力,如果你有序列任務需求的話可以考慮採用narx網路。
單獨的說好不好並沒有意義

㈤ 什麼是蟻群演算法,神經網路演算法,遺傳演算法

蟻群演算法又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。

神經網路
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。目前,主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機饃擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
遺傳演算法,是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法,它最初由美國Michigan大學J.Holland教授於1975年首先提出來的,並出版了頗有影響的專著《Adaptation in Natural and Artificial Systems》,GA這個名稱才逐漸為人所知,J.Holland教授所提出的GA通常為簡單遺傳演算法(SGA)。

㈥ 想問一下,蟻群演算法如何優化神經網路,最好能給一個matlap程序

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。


程序已經上傳到附件,手機看不到附件請用電腦下載。可以告訴你,這個程序內部有錯,但是參考價值依然很大,因為大部分代碼可以重用。

我搞過蟻群演算法,其實這個演算法非常吃參數,如果參數不協調,效果很差。建議你換種演算法。

㈦ 要學習模式識別、神經網路、遺傳演算法、蟻群演算法等等人工智慧演算法需要哪些數學知識

模式識別需要非常好的概率論,數理統計;另外會用到少量矩陣代數,隨機過程和高數中的一些運算,當然是比較基礎的;如果要深入的話恐怕需要學泛函,但是一般情況下不需要達到這種深度。神經網路,遺傳演算法等智能演算法在模式識別有非常重要的應用,但是一般不需要學習計算機學科的人工智慧,我們控制有一個交叉學科叫做智能控制是講這些的,智能控制不需要什麼基礎,有中學數學的集合和對空間有一點點的了解就足夠了,模糊數學的基礎是包含在這門學科里的。

㈧ 經典的網路優化演算法跟智能演算法,哪個跟好些譬如Dijkstra演算法和蟻群演算法。

Dijkstra演算法和蟻群演算法是有著本質不同的,屬於兩個范疇了,前者是確定性演算法,輸入一個圖,必定能產生一個可行結果。而後者是屬於啟發式演算法,有隨機因素。不一定能產生好的結果,但一般情況下由於存在啟發式因素和智能因素,能夠產生比較好的結果,但不能保證產生全局最優解。況且前者是一個針對性很強的演算法,只能用於最短路徑計算,而蟻群演算法可以用來解決一大類問題,比如圖演算法、數值優化、數據挖掘等等。

㈨ 研究神經網路演算法找什麼工作比較好

人工神經網路在信息領域、醫學、經濟領域、控制領域、交通領域、心理學領域都各個領域都有應用,理論上說,在這些領域都可以就業。但是如果要追求對口,建議還是去人工智慧或軟體公司就業。其實你平時研究的方向和你今後工作的方向沒有直接關系,換個方向你一樣能做,因為你學會的是思維方式。

現代信息處理要解決的問題是很復雜的,人工神經網路具有模仿或代替與人的思維有關的功能, 可以實現自動診斷、問題求解,解決傳統方法所不能或難以解決的問題。人工神經網路系統具有很高的容錯性、魯棒性及自組織性,即使連接線遭到很高程度的破壞, 它仍能處在優化工作狀態,這點在軍事系統電子設備中得到廣泛的應用。現有的智能信息系統有智能儀器、自動跟蹤監測儀器系統、自動控制制導系統、自動故障診斷和報警系統等。

㈩ 蟻群演算法與神經網路哪個更有用

蟻群演算法本質上是遺傳演算法,神經網路本質上是非線性控制,兩者各有用途,要看應用場景。

閱讀全文

與蟻群演算法和神經網路哪個好相關的資料

熱點內容
如何給一台伺服器連上網路 瀏覽:672
路由器的線怎麼接在網路上 瀏覽:500
讀個網路中專要多少錢 瀏覽:158
如何看網路泄密 瀏覽:418
宣城新浪網路推廣哪裡效果好 瀏覽:163
wifi接頭與網路電視如何接 瀏覽:970
企業如何面對自己的網路 瀏覽:490
五種無線低速網路協議 瀏覽:16
怎麼在網路上銷售蘋果 瀏覽:982
macvirtualbox網路設置ip 瀏覽:705
網路直播怎麼提問 瀏覽:717
計算機網路中重要的英文簡寫 瀏覽:210
已丟失網路連接wifi 瀏覽:160
小米提示網路設置關閉 瀏覽:199
保定移動網路基站地圖 瀏覽:42
餐廳網路營銷方案 瀏覽:339
電腦版與網路版 瀏覽:397
首屆國家安全網路宣傳周是在哪裡 瀏覽:615
雙代號網路計劃圖軟體 瀏覽:756
漫漫lu網路異常 瀏覽:236

友情鏈接