A. 求BP神經網路演算法的C++源代碼
// AnnBP.cpp: implementation of the CAnnBP class.
//
//////////////////////////////////////////////////////////////////////
#include "StdAfx.h"
#include "AnnBP.h"
#include "math.h"
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CAnnBP::CAnnBP()
{
eta1=0.3;
momentum1=0.3;
}
CAnnBP::~CAnnBP()
{
}
double CAnnBP::drnd()
{
return ((double) rand() / (double) BIGRND);
}
/*** 返回-1.0到1.0之間的雙精度隨機數 ***/
double CAnnBP::dpn1()
{
return (double) (rand())/(32767/2)-1;
}
/*** 作用函數,目前是S型函數 ***/
double CAnnBP::squash(double x)
{
return (1.0 / (1.0 + exp(-x)));
}
/*** 申請1維雙精度實數數組 ***/
double* CAnnBP::alloc_1d_dbl(int n)
{
double *new1;
new1 = (double *) malloc ((unsigned) (n * sizeof (double)));
if (new1 == NULL) {
AfxMessageBox("ALLOC_1D_DBL: Couldn't allocate array of doubles\n");
return (NULL);
}
return (new1);
}
/*** 申請2維雙精度實數數組 ***/
double** CAnnBP::alloc_2d_dbl(int m, int n)
{
int i;
double **new1;
new1 = (double **) malloc ((unsigned) (m * sizeof (double *)));
if (new1 == NULL) {
AfxMessageBox("ALLOC_2D_DBL: Couldn't allocate array of dbl ptrs\n");
return (NULL);
}
for (i = 0; i < m; i++) {
new1[i] = alloc_1d_dbl(n);
}
return (new1);
}
/*** 隨機初始化權值 ***/
void CAnnBP::bpnn_randomize_weights(double **w, int m, int n)
{
int i, j;
for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
w[i][j] = dpn1();
}
}
}
/*** 0初始化權值 ***/
void CAnnBP::bpnn_zero_weights(double **w, int m, int n)
{
int i, j;
for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
w[i][j] = 0.0;
}
}
}
/*** 設置隨機數種子 ***/
void CAnnBP::bpnn_initialize(int seed)
{
CString msg,s;
msg="Random number generator seed:";
s.Format("%d",seed);
AfxMessageBox(msg+s);
srand(seed);
}
/*** 創建BP網路 ***/
BPNN* CAnnBP::bpnn_internal_create(int n_in, int n_hidden, int n_out)
{
BPNN *newnet;
newnet = (BPNN *) malloc (sizeof (BPNN));
if (newnet == NULL) {
printf("BPNN_CREATE: Couldn't allocate neural network\n");
return (NULL);
}
newnet->input_n = n_in;
newnet->hidden_n = n_hidden;
newnet->output_n = n_out;
newnet->input_units = alloc_1d_dbl(n_in + 1);
newnet->hidden_units = alloc_1d_dbl(n_hidden + 1);
newnet->output_units = alloc_1d_dbl(n_out + 1);
newnet->hidden_delta = alloc_1d_dbl(n_hidden + 1);
newnet->output_delta = alloc_1d_dbl(n_out + 1);
newnet->target = alloc_1d_dbl(n_out + 1);
newnet->input_weights = alloc_2d_dbl(n_in + 1, n_hidden + 1);
newnet->hidden_weights = alloc_2d_dbl(n_hidden + 1, n_out + 1);
newnet->input_prev_weights = alloc_2d_dbl(n_in + 1, n_hidden + 1);
newnet->hidden_prev_weights = alloc_2d_dbl(n_hidden + 1, n_out + 1);
return (newnet);
}
/* 釋放BP網路所佔地內存空間 */
void CAnnBP::bpnn_free(BPNN *net)
{
int n1, n2, i;
n1 = net->input_n;
n2 = net->hidden_n;
free((char *) net->input_units);
free((char *) net->hidden_units);
free((char *) net->output_units);
free((char *) net->hidden_delta);
free((char *) net->output_delta);
free((char *) net->target);
for (i = 0; i <= n1; i++) {
free((char *) net->input_weights[i]);
free((char *) net->input_prev_weights[i]);
}
free((char *) net->input_weights);
free((char *) net->input_prev_weights);
for (i = 0; i <= n2; i++) {
free((char *) net->hidden_weights[i]);
free((char *) net->hidden_prev_weights[i]);
}
free((char *) net->hidden_weights);
free((char *) net->hidden_prev_weights);
free((char *) net);
}
/*** 創建一個BP網路,並初始化權值***/
BPNN* CAnnBP::bpnn_create(int n_in, int n_hidden, int n_out)
{
BPNN *newnet;
newnet = bpnn_internal_create(n_in, n_hidden, n_out);
#ifdef INITZERO
bpnn_zero_weights(newnet->input_weights, n_in, n_hidden);
#else
bpnn_randomize_weights(newnet->input_weights, n_in, n_hidden);
#endif
bpnn_randomize_weights(newnet->hidden_weights, n_hidden, n_out);
bpnn_zero_weights(newnet->input_prev_weights, n_in, n_hidden);
bpnn_zero_weights(newnet->hidden_prev_weights, n_hidden, n_out);
return (newnet);
}
void CAnnBP::bpnn_layerforward(double *l1, double *l2, double **conn, int n1, int n2)
{
double sum;
int j, k;
/*** 設置閾值 ***/
l1[0] = 1.0;
/*** 對於第二層的每個神經元 ***/
for (j = 1; j <= n2; j++) {
/*** 計算輸入的加權總和 ***/
sum = 0.0;
for (k = 0; k <= n1; k++) {
sum += conn[k][j] * l1[k];
}
l2[j] = squash(sum);
}
}
/* 輸出誤差 */
void CAnnBP::bpnn_output_error(double *delta, double *target, double *output, int nj, double *err)
{
int j;
double o, t, errsum;
errsum = 0.0;
for (j = 1; j <= nj; j++) {
o = output[j];
t = target[j];
delta[j] = o * (1.0 - o) * (t - o);
errsum += ABS(delta[j]);
}
*err = errsum;
}
/* 隱含層誤差 */
void CAnnBP::bpnn_hidden_error(double *delta_h, int nh, double *delta_o, int no, double **who, double *hidden, double *err)
{
int j, k;
double h, sum, errsum;
errsum = 0.0;
for (j = 1; j <= nh; j++) {
h = hidden[j];
sum = 0.0;
for (k = 1; k <= no; k++) {
sum += delta_o[k] * who[j][k];
}
delta_h[j] = h * (1.0 - h) * sum;
errsum += ABS(delta_h[j]);
}
*err = errsum;
}
/* 調整權值 */
void CAnnBP::bpnn_adjust_weights(double *delta, int ndelta, double *ly, int nly, double **w, double **oldw, double eta, double momentum)
{
double new_dw;
int k, j;
ly[0] = 1.0;
for (j = 1; j <= ndelta; j++) {
for (k = 0; k <= nly; k++) {
new_dw = ((eta * delta[j] * ly[k]) + (momentum * oldw[k][j]));
w[k][j] += new_dw;
oldw[k][j] = new_dw;
}
}
}
/* 進行前向運算 */
void CAnnBP::bpnn_feedforward(BPNN *net)
{
int in, hid, out;
in = net->input_n;
hid = net->hidden_n;
out = net->output_n;
/*** Feed forward input activations. ***/
bpnn_layerforward(net->input_units, net->hidden_units,
net->input_weights, in, hid);
bpnn_layerforward(net->hidden_units, net->output_units,
net->hidden_weights, hid, out);
}
/* 訓練BP網路 */
void CAnnBP::bpnn_train(BPNN *net, double eta, double momentum, double *eo, double *eh)
{
int in, hid, out;
double out_err, hid_err;
in = net->input_n;
hid = net->hidden_n;
out = net->output_n;
/*** 前向輸入激活 ***/
bpnn_layerforward(net->input_units, net->hidden_units,
net->input_weights, in, hid);
bpnn_layerforward(net->hidden_units, net->output_units,
net->hidden_weights, hid, out);
/*** 計算隱含層和輸出層誤差 ***/
bpnn_output_error(net->output_delta, net->target, net->output_units,
out, &out_err);
bpnn_hidden_error(net->hidden_delta, hid, net->output_delta, out,
net->hidden_weights, net->hidden_units, &hid_err);
*eo = out_err;
*eh = hid_err;
/*** 調整輸入層和隱含層權值 ***/
bpnn_adjust_weights(net->output_delta, out, net->hidden_units, hid,
net->hidden_weights, net->hidden_prev_weights, eta, momentum);
bpnn_adjust_weights(net->hidden_delta, hid, net->input_units, in,
net->input_weights, net->input_prev_weights, eta, momentum);
}
/* 保存BP網路 */
void CAnnBP::bpnn_save(BPNN *net, char *filename)
{
CFile file;
char *mem;
int n1, n2, n3, i, j, memcnt;
double dvalue, **w;
n1 = net->input_n; n2 = net->hidden_n; n3 = net->output_n;
printf("Saving %dx%dx%d network to '%s'\n", n1, n2, n3, filename);
try
{
file.Open(filename,CFile::modeWrite|CFile::modeCreate|CFile::modeNoTruncate);
}
catch(CFileException* e)
{
e->ReportError();
e->Delete();
}
file.Write(&n1,sizeof(int));
file.Write(&n2,sizeof(int));
file.Write(&n3,sizeof(int));
memcnt = 0;
w = net->input_weights;
mem = (char *) malloc ((unsigned) ((n1+1) * (n2+1) * sizeof(double)));
// mem = (char *) malloc (((n1+1) * (n2+1) * sizeof(double)));
for (i = 0; i <= n1; i++) {
for (j = 0; j <= n2; j++) {
dvalue = w[i][j];
//fast(&mem[memcnt], &dvalue, sizeof(double));
fast(&mem[memcnt], &dvalue, sizeof(double));
memcnt += sizeof(double);
}
}
file.Write(mem,sizeof(double)*(n1+1)*(n2+1));
free(mem);
memcnt = 0;
w = net->hidden_weights;
mem = (char *) malloc ((unsigned) ((n2+1) * (n3+1) * sizeof(double)));
// mem = (char *) malloc (((n2+1) * (n3+1) * sizeof(double)));
for (i = 0; i <= n2; i++) {
for (j = 0; j <= n3; j++) {
dvalue = w[i][j];
fast(&mem[memcnt], &dvalue, sizeof(double));
// fast(&mem[memcnt], &dvalue, sizeof(double));
memcnt += sizeof(double);
}
}
file.Write(mem, (n2+1) * (n3+1) * sizeof(double));
// free(mem);
file.Close();
return;
}
/* 從文件中讀取BP網路 */
BPNN* CAnnBP::bpnn_read(char *filename)
{
char *mem;
BPNN *new1;
int n1, n2, n3, i, j, memcnt;
CFile file;
try
{
file.Open(filename,CFile::modeRead|CFile::modeCreate|CFile::modeNoTruncate);
}
catch(CFileException* e)
{
e->ReportError();
e->Delete();
}
// printf("Reading '%s'\n", filename);// fflush(stdout);
file.Read(&n1, sizeof(int));
file.Read(&n2, sizeof(int));
file.Read(&n3, sizeof(int));
new1 = bpnn_internal_create(n1, n2, n3);
// printf("'%s' contains a %dx%dx%d network\n", filename, n1, n2, n3);
// printf("Reading input weights..."); // fflush(stdout);
memcnt = 0;
mem = (char *) malloc (((n1+1) * (n2+1) * sizeof(double)));
file.Read(mem, ((n1+1)*(n2+1))*sizeof(double));
for (i = 0; i <= n1; i++) {
for (j = 0; j <= n2; j++) {
//fast(&(new1->input_weights[i][j]), &mem[memcnt], sizeof(double));
fast(&(new1->input_weights[i][j]), &mem[memcnt], sizeof(double));
memcnt += sizeof(double);
}
}
free(mem);
// printf("Done\nReading hidden weights..."); //fflush(stdout);
memcnt = 0;
mem = (char *) malloc (((n2+1) * (n3+1) * sizeof(double)));
file.Read(mem, (n2+1) * (n3+1) * sizeof(double));
for (i = 0; i <= n2; i++) {
for (j = 0; j <= n3; j++) {
//fast(&(new1->hidden_weights[i][j]), &mem[memcnt], sizeof(double));
fast(&(new1->hidden_weights[i][j]), &mem[memcnt], sizeof(double));
memcnt += sizeof(double);
}
}
free(mem);
file.Close();
printf("Done\n"); //fflush(stdout);
bpnn_zero_weights(new1->input_prev_weights, n1, n2);
bpnn_zero_weights(new1->hidden_prev_weights, n2, n3);
return (new1);
}
void CAnnBP::CreateBP(int n_in, int n_hidden, int n_out)
{
net=bpnn_create(n_in,n_hidden,n_out);
}
void CAnnBP::FreeBP()
{
bpnn_free(net);
}
void CAnnBP::Train(double *input_unit,int input_num, double *target,int target_num, double *eo, double *eh)
{
for(int i=1;i<=input_num;i++)
{
net->input_units[i]=input_unit[i-1];
}
for(int j=1;j<=target_num;j++)
{
net->target[j]=target[j-1];
}
bpnn_train(net,eta1,momentum1,eo,eh);
}
void CAnnBP::Identify(double *input_unit,int input_num,double *target,int target_num)
{
for(int i=1;i<=input_num;i++)
{
net->input_units[i]=input_unit[i-1];
}
bpnn_feedforward(net);
for(int j=1;j<=target_num;j++)
{
target[j-1]=net->output_units[j];
}
}
void CAnnBP::Save(char *filename)
{
bpnn_save(net,filename);
}
void CAnnBP::Read(char *filename)
{
net=bpnn_read(filename);
}
void CAnnBP::SetBParm(double eta, double momentum)
{
eta1=eta;
momentum1=momentum;
}
void CAnnBP::Initialize(int seed)
{
bpnn_initialize(seed);
}
B. 如何用c++在mnist上實現一個簡單的卷積神經網路,有哪些參考資料
SVM方面,首選的肯定是LIBSVM這個庫,應該是應用最廣的機器學習庫了。
下面主要推薦一些DeepLearning的GitHub項目吧!
1. convnetjs - Star:2200+
實現了卷積神經網路,可以用來做分類,回歸,強化學習等。
2. DeepLearn Toolbox - Star:1000+
Matlab實現中最熱的庫存,包括了CNN,DBN,SAE,CAE等主流模型。
3. Deep Learning(yusugomo) - Star:800+
實現了深度學習網路,從演算法與實現上都比較全,提供了5種語言的實現:Python,C/C++,Java,Scala,實現的模型有DBN/CDBN/RBM/CRBM/dA/SdA/LR等。
4. Neural-Networks-And-Deep-Learning - Star:500+
這是同名書的配套代碼,語言是Python。
5. rbm-mnist - Star:200+
這個是hinton matlab代碼的C++改寫版,還實現了Rasmussen的共軛梯度Conjugate Gradient演算法。
C. 如何用代碼編寫一個神經網路異或運算器
配置環境、安裝合適的庫、下載數據集……有時候學習深度學習的前期工作很讓人沮喪,如果只是為了試試現在人人都談的深度學習,做這些麻煩事似乎很不值當。但好在我們也有一些更簡單的方法可以體驗深度學習。近日,編程學習平台 Scrimba 聯合創始人 Per Harald Borgen 在 Medium 上發文介紹了一種僅用30行 JavaScript 代碼就創建出了一個神經網路的教程,而且使用的工具也只有 Node.js、Synaptic.js 和瀏覽器而已。另外,作者還做了一個互動式 Scrimba 教程,也許能幫你理解其中的復雜概念。
Synaptic.js:http://synaptic.juancazala.com
Node.js:http://nodejs.org
Scrimba 教程:http://scrimba.com/casts/cast-1980
Synaptic.js 讓你可以使用 Node.js 和瀏覽器做深度學習。在這篇文章中,我將介紹如何使用 Synaptic.js 創建和訓練神經網路。
//創建網路const { Layer, Network }= window.synaptic;var inputLayer = new Layer(2);var hiddenLayer = new Layer(3);var outputLayer = new Layer(1);
inputLayer.project(hiddenLayer);
hiddenLayer.project(outputLayer);var myNetwork = new Network({
input: inputLayer,
hidden:[hiddenLayer],
output: outputLayer
});//訓練網路——學習異或運算var learningRate =.3;for (var i =0; i <20000; i++)
{//0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}//測試網路console.log(myNetwork.activate([0,0]));//[0.0]console.log(myNetwork.activate([0,1]));//[0.]console.log(myNetwork.activate([1,0]));//[0.]console.log(myNetwork.activate([1,1]));//[0.0]
我們將創建一個最簡單的神經網路:一個可以執行異或運算的網路。上面就是這個網路的全部代碼,但在我們深入解讀這些代碼之前,首先我們先了解一下神經網路的基礎知識。
神經元和突觸
神經網路的基本構造模塊是神經元。神經元就像是一個函數,有幾個輸入,然後可以得到一個輸出。神經元的種類有很多。我們的網路將使用 sigmoid 神經元,它可以輸入任何數字並將其壓縮到0 到1 之間。下圖就是一個 sigmoid 神經元。它的輸入是5,輸出是1。箭頭被稱為突觸,可以將該神經元與網路中的其它層連接到一起。
現在訓練這個網路:
// train the network - learn XORvar learningRate =.3;for (var i =0; i <20000; i++){ //0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}
這里我們運行該網路20000次。每一次我們都前向和反向傳播4 次,為該網路輸入4 組可能的輸入:[0,0][0,1][1,0][1,1]。
首先我們執行 myNetwork.activate([0,0]),其中[0,0]是我們發送給該網路的數據點。這是前向傳播,也稱為激活這個網路。在每次前向傳播之後,我們需要執行反向傳播,這時候網路會更新自己的權重和偏置。
反向傳播是通過這行代碼完成的:myNetwork.propagate(learningRate,[0]),其中 learningRate 是一個常數,給出了網路每次應該調整的權重的量。第二個參數0 是給定輸入[0,0]對應的正確輸出。
然後,該網路將自己的預測與正確的標簽進行比較,從而了解自己的正確程度有多少。
然後網路使用這個比較為基礎來校正自己的權重和偏置值,這樣讓自己的下一次猜測更加正確一點。
這個過程如此反復20000次之後,我們可以使用所有四種可能的輸入來檢查網路的學習情況:
->[0.0]console.log(myNetwork.activate([0,1]));
->[0.]console.log(myNetwork.activate([1,0]));
->[0.]console.log(myNetwork.activate([1,1]));
->[0.0]
如果我們將這些值四捨五入到最近的整數,我們就得到了正確的異或運算結果。
這樣就完成了。盡管這僅僅只碰到了神經網路的表皮,但也足以幫助你進一步探索 Synaptic 和繼續學習了。http://github.com/cazala/synaptic/wiki 這里還包含了更多好教程。
D. 如何用9行Python代碼編寫一個簡易神經網路
學習人工智慧時,我給自己定了一個目標--用Python寫一個簡單的神經網路。為了確保真得理解它,我要求自己不使用任何神經網路庫,從頭寫起。多虧了Andrew Trask寫得一篇精彩的博客,我做到了!下面貼出那九行代碼:在這篇文章中,我將解釋我是如何做得,以便你可以寫出你自己的。我將會提供一個長點的但是更完美的源代碼。
首先,神經網路是什麼?人腦由幾千億由突觸相互連接的細胞(神經元)組成。突觸傳入足夠的興奮就會引起神經元的興奮。這個過程被稱為「思考」。我們可以在計算機上寫一個神經網路來模擬這個過程。不需要在生物分子水平模擬人腦,只需模擬更高層級的規則。我們使用矩陣(二維數據表格)這一數學工具,並且為了簡單明了,只模擬一個有3個輸入和一個輸出的神經元。
我們將訓練神經元解決下面的問題。前四個例子被稱作訓練集。你發現規律了嗎?『?』是0還是1?你可能發現了,輸出總是等於輸入中最左列的值。所以『?』應該是1。
訓練過程
但是如何使我們的神經元回答正確呢?賦予每個輸入一個權重,可以是一個正的或負的數字。擁有較大正(或負)權重的輸入將決定神經元的輸出。首先設置每個權重的初始值為一個隨機數字,然後開始訓練過程:
取一個訓練樣本的輸入,使用權重調整它們,通過一個特殊的公式計算神經元的輸出。
計算誤差,即神經元的輸出與訓練樣本中的期待輸出之間的差值。
根據誤差略微地調整權重。
重復這個過程1萬次。最終權重將會變為符合訓練集的一個最優解。如果使用神經元考慮這種規律的一個新情形,它將會給出一個很棒的預測。
這個過程就是back propagation。
計算神經元輸出的公式
你可能會想,計算神經元輸出的公式是什麼?首先,計算神經元輸入的加權和,即接著使之規范化,結果在0,1之間。為此使用一個數學函數--Sigmoid函數:Sigmoid函數的圖形是一條「S」狀的曲線。把第一個方程代入第二個,計算神經元輸出的最終公式為:你可能注意到了,為了簡單,我們沒有引入最低興奮閾值。
調整權重的公式
我們在訓練時不斷調整權重。但是怎麼調整呢?可以使用「Error Weighted Derivative」公式:為什麼使用這個公式?首先,我們想使調整和誤差的大小成比例。其次,乘以輸入(0或1),如果輸入是0,權重就不會調整。最後,乘以Sigmoid曲線的斜率(圖4)。為了理解最後一條,考慮這些:
我們使用Sigmoid曲線計算神經元的輸出
如果輸出是一個大的正(或負)數,這意味著神經元採用這種(或另一種)方式
從圖四可以看出,在較大數值處,Sigmoid曲線斜率小
如果神經元認為當前權重是正確的,就不會對它進行很大調整。乘以Sigmoid曲線斜率便可以實現這一點
Sigmoid曲線的斜率可以通過求導得到:把第二個等式代入第一個等式里,得到調整權重的最終公式:當然有其他公式,它們可以使神經元學習得更快,但是這個公式的優點是非常簡單。
構造Python代碼
雖然我們沒有使用神經網路庫,但是將導入Python數學庫numpy里的4個方法。分別是:
exp--自然指數
array--創建矩陣
dot--進行矩陣乘法
random--產生隨機數
比如, 我們可以使用array()方法表示前面展示的訓練集:「.T」方法用於矩陣轉置(行變列)。所以,計算機這樣存儲數字:我覺得我們可以開始構建更優美的源代碼了。給出這個源代碼後,我會做一個總結。
我對每一行源代碼都添加了注釋來解釋所有內容。注意在每次迭代時,我們同時處理所有訓練集數據。所以變數都是矩陣(二維數據表格)。下面是一個用Python寫地完整的示例代碼。
我們做到了!我們用Python構建了一個簡單的神經網路!
首先神經網路對自己賦予隨機權重,然後使用訓練集訓練自己。接著,它考慮一種新的情形[1, 0, 0]並且預測了0.99993704。正確答案是1。非常接近!
傳統計算機程序通常不會學習。而神經網路卻能自己學習,適應並對新情形做出反應,這是多麼神奇,就像人類一樣。