導航:首頁 > 網路共享 > 神經網路是哪個方向下的

神經網路是哪個方向下的

發布時間:2022-01-15 08:50:19

1. 神經網路使用范圍

個人感覺在系統或者說被控對象的數學模型是不明確的,或是非線性的、或者是強耦合等用常規方法難以控制的情況下,用一下神經網路還可以。

2. BP神經網路的研究方向

神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。

3. 神經網路的國際最新研究方向

這種問題你來問網路?不如自己去google幾篇文獻好好看看吧。結構優化,參數選擇什麼的,都有做的,用的網路類型也不盡相同,我所知用的較多的是BP神經網路

4. 神經網路的研究方向

神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。這些領域主要包括:
模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。

5. 神經網路具體是什麼

神經網路由大量的神經元相互連接而成。每個神經元接受線性組合的輸入後,最開始只是簡單的線性加權,後來給每個神經元加上了非線性的激活函數,從而進行非線性變換後輸出。每兩個神經元之間的連接代表加權值,稱之為權重(weight)。不同的權重和激活函數,則會導致神經網路不同的輸出。 舉個手寫識別的例子,給定一個未知數字,讓神經網路識別是什麼數字。此時的神經網路的輸入由一組被輸入圖像的像素所激活的輸入神經元所定義。在通過非線性激活函數進行非線性變換後,神經元被激活然後被傳遞到其他神經元。重復這一過程,直到最後一個輸出神經元被激活。從而識別當前數字是什麼字。 神經網路的每個神經元如下

基本wx + b的形式,其中 x1、x2表示輸入向量 w1、w2為權重,幾個輸入則意味著有幾個權重,即每個輸入都被賦予一個權重 b為偏置bias g(z) 為激活函數 a 為輸出 如果只是上面這樣一說,估計以前沒接觸過的十有八九又必定迷糊了。事實上,上述簡單模型可以追溯到20世紀50/60年代的感知器,可以把感知器理解為一個根據不同因素、以及各個因素的重要性程度而做決策的模型。 舉個例子,這周末北京有一草莓音樂節,那去不去呢?決定你是否去有二個因素,這二個因素可以對應二個輸入,分別用x1、x2表示。此外,這二個因素對做決策的影響程度不一樣,各自的影響程度用權重w1、w2表示。一般來說,音樂節的演唱嘉賓會非常影響你去不去,唱得好的前提下 即便沒人陪同都可忍受,但如果唱得不好還不如你上台唱呢。所以,我們可以如下表示: x1:是否有喜歡的演唱嘉賓。x1 = 1 你喜歡這些嘉賓,x1 = 0 你不喜歡這些嘉賓。嘉賓因素的權重w1 = 7 x2:是否有人陪你同去。x2 = 1 有人陪你同去,x2 = 0 沒人陪你同去。是否有人陪同的權重w2 = 3。 這樣,咱們的決策模型便建立起來了:g(z) = g(w1x1 + w2x2 + b ),g表示激活函數,這里的b可以理解成 為更好達到目標而做調整的偏置項。 一開始為了簡單,人們把激活函數定義成一個線性函數,即對於結果做一個線性變化,比如一個簡單的線性激活函數是g(z) = z,輸出都是輸入的線性變換。後來實際應用中發現,線性激活函數太過局限,於是引入了非線性激活函數。

6. 想問一下學神經網路的研究生畢業的工作就業方向是哪些類!!

同聲傳譯:同聲傳譯員被稱為「21世紀第一大緊缺人才」。

「同傳的薪金是按照小時和分鍾來算的,現在的價碼是每小時4000元到8000元。」相關人士如是說。「4年之後入駐中國和北京的外國大公司越來越多,這一行肯定會更吃香。」
3G工程師:據計世資訊發布的相關研究報告稱,估計國內3G人才缺口將達到50萬人以上。由於目前3G人才比較少,尤其是復合型人才奇缺,預計4年之後3G工程師的基本年薪會在15萬元至20萬元。「
網路媒體人才:目前,網路編輯的月薪一般都在5000元左右、中等職位的收入在8000元至10000元。「相信4年之後整個網路媒體的廣告收入越來越多的時候,從業人員會有一個更好的回報。」
物流師:物流人才的需求量為600餘萬人。相關統計顯示,目前物流從業人員當中擁有大學學歷以上的僅佔21%。許多物流部門的管理人員是半路出家,很少受過專業的培訓。據相關人士透露,對此類人才有需求的某知名企業在國內招聘的應屆大學生目前的薪金是每月6000元到8000元,在一年之後還會有相當大的提升空間。「現在一年就能掙個7萬元至10萬元,估計4年之後只會多不會少,因為能源越來越緊俏。」

這是以後比較會吃香的行業,趁現在能學習,多學點這方面的,以後可能會好找工作!!加油嘍!!

7. 有人可以介紹一下什麼是"神經網路"嗎

由於神經網路是多學科交叉的產物,各個相關的學科領域對神經網路
都有各自的看法,因此,關於神經網路的定義,在科學界存在許多不同的
見解。目前使用得最廣泛的是T.Koholen的定義,即"神經網路是由具有適
應性的簡單單元組成的廣泛並行互連的網路,它的組織能夠模擬生物神經
系統對真實世界物體所作出的交互反應。"

如果我們將人腦神經信息活動的特點與現行馮·諾依曼計算機的工作方
式進行比較,就可以看出人腦具有以下鮮明特徵:

1. 巨量並行性。
在馮·諾依曼機中,信息處理的方式是集中、串列的,即所有的程序指
令都必須調到CPU中後再一條一條地執行。而人在識別一幅圖像或作出一項
決策時,存在於腦中的多方面的知識和經驗會同時並發作用以迅速作出解答。
據研究,人腦中約有多達10^(10)~10^(11)數量級的神經元,每一個神經元
具有103數量級的連接,這就提供了巨大的存儲容量,在需要時能以很高的
反應速度作出判斷。

2. 信息處理和存儲單元結合在一起。
在馮·諾依曼機中,存儲內容和存儲地址是分開的,必須先找出存儲器的
地址,然後才能查出所存儲的內容。一旦存儲器發生了硬體故障,存儲器中
存儲的所有信息就都將受到毀壞。而人腦神經元既有信息處理能力又有存儲
功能,所以它在進行回憶時不僅不用先找存儲地址再調出所存內容,而且可
以由一部分內容恢復全部內容。當發生"硬體"故障(例如頭部受傷)時,並
不是所有存儲的信息都失效,而是僅有被損壞得最嚴重的那部分信息丟失。

3. 自組織自學習功能。
馮·諾依曼機沒有主動學習能力和自適應能力,它只能不折不扣地按照
人們已經編制好的程序步驟來進行相應的數值計算或邏輯計算。而人腦能夠
通過內部自組織、自學習的能力,不斷地適應外界環境,從而可以有效地處
理各種模擬的、模糊的或隨機的問題。

神經網路研究的主要發展過程大致可分為四個階段:

1. 第一階段是在五十年代中期之前。

西班牙解剖學家Cajal於十九世紀末創立了神經元學說,該學說認為神經
元的形狀呈兩極,其細胞體和樹突從其他神經元接受沖動,而軸索則將信號
向遠離細胞體的方向傳遞。在他之後發明的各種染色技術和微電極技術不斷
提供了有關神經元的主要特徵及其電學性質。

1943年,美國的心理學家W.S.McCulloch和數學家W.A.Pitts在論文《神經
活動中所蘊含思想的邏輯活動》中,提出了一個非常簡單的神經元模型,即
M-P模型。該模型將神經元當作一個功能邏輯器件來對待,從而開創了神經
網路模型的理論研究。

1949年,心理學家D.O. Hebb寫了一本題為《行為的組織》的書,在這本
書中他提出了神經元之間連接強度變化的規則,即後來所謂的Hebb學習法則。
Hebb寫道:"當神經細胞A的軸突足夠靠近細胞B並能使之興奮時,如果A重
復或持續地激發B,那麼這兩個細胞或其中一個細胞上必然有某種生長或代
謝過程上的變化,這種變化使A激活B的效率有所增加。"簡單地說,就是
如果兩個神經元都處於興奮狀態,那麼它們之間的突觸連接強度將會得到增
強。

五十年代初,生理學家Hodykin和數學家Huxley在研究神經細胞膜等效電
路時,將膜上離子的遷移變化分別等效為可變的Na+電阻和K+電阻,從而建
立了著名的Hodykin-Huxley方程。

這些先驅者的工作激發了許多學者從事這一領域的研究,從而為神經計
算的出現打下了基礎。

2. 第二階段從五十年代中期到六十年代末。

1958年,F.Rosenblatt等人研製出了歷史上第一個具有學習型神經網路
特點的模式識別裝置,即代號為Mark I的感知機(Perceptron),這一重
大事件是神經網路研究進入第二階段的標志。對於最簡單的沒有中間層的
感知機,Rosenblatt證明了一種學習演算法的收斂性,這種學習演算法通過迭代
地改變連接權來使網路執行預期的計算。

稍後於Rosenblatt,B.Widrow等人創造出了一種不同類型的會學習的神經
網路處理單元,即自適應線性元件Adaline,並且還為Adaline找出了一種有
力的學習規則,這個規則至今仍被廣泛應用。Widrow還建立了第一家神經計
算機硬體公司,並在六十年代中期實際生產商用神經計算機和神經計算機軟
件。

除Rosenblatt和Widrow外,在這個階段還有許多人在神經計算的結構和
實現思想方面作出了很大的貢獻。例如,K.Steinbuch研究了稱為學習矩陣
的一種二進制聯想網路結構及其硬體實現。N.Nilsson於1965年出版的
《機器學習》一書對這一時期的活動作了總結。

3. 第三階段從六十年代末到八十年代初。

第三階段開始的標志是1969年M.Minsky和S.Papert所著的《感知機》一書
的出版。該書對單層神經網路進行了深入分析,並且從數學上證明了這種網
絡功能有限,甚至不能解決象"異或"這樣的簡單邏輯運算問題。同時,他們
還發現有許多模式是不能用單層網路訓練的,而多層網路是否可行還很值得
懷疑。

由於M.Minsky在人工智慧領域中的巨大威望,他在論著中作出的悲觀結論
給當時神經網路沿感知機方向的研究潑了一盆冷水。在《感知機》一書出版
後,美國聯邦基金有15年之久沒有資助神經網路方面的研究工作,前蘇聯也
取消了幾項有前途的研究計劃。

但是,即使在這個低潮期里,仍有一些研究者繼續從事神經網路的研究工
作,如美國波士頓大學的S.Grossberg、芬蘭赫爾辛基技術大學的T.Kohonen
以及日本東京大學的甘利俊一等人。他們堅持不懈的工作為神經網路研究的
復興開辟了道路。

4. 第四階段從八十年代初至今。

1982年,美國加州理工學院的生物物理學家J.J.Hopfield採用全互連型
神經網路模型,利用所定義的計算能量函數,成功地求解了計算復雜度為
NP完全型的旅行商問題(Travelling Salesman Problem,簡稱TSP)。這
項突破性進展標志著神經網路方面的研究進入了第四階段,也是蓬勃發展
的階段。

Hopfield模型提出後,許多研究者力圖擴展該模型,使之更接近人腦的
功能特性。1983年,T.Sejnowski和G.Hinton提出了"隱單元"的概念,並且
研製出了Boltzmann機。日本的福島邦房在Rosenblatt的感知機的基礎上,
增加隱層單元,構造出了可以實現聯想學習的"認知機"。Kohonen應用3000
個閾器件構造神經網路實現了二維網路的聯想式學習功能。1986年,
D.Rumelhart和J.McClelland出版了具有轟動性的著作《並行分布處理-認知
微結構的探索》,該書的問世宣告神經網路的研究進入了高潮。

1987年,首屆國際神經網路大會在聖地亞哥召開,國際神經網路聯合會
(INNS)成立。隨後INNS創辦了刊物《Journal Neural Networks》,其他
專業雜志如《Neural Computation》,《IEEE Transactions on Neural
Networks》,《International Journal of Neural Systems》等也紛紛
問世。世界上許多著名大學相繼宣布成立神經計算研究所並制訂有關教育
計劃,許多國家也陸續成立了神經網路學會,並召開了多種地區性、國際性
會議,優秀論著、重大成果不斷涌現。

今天,在經過多年的准備與探索之後,神經網路的研究工作已進入了決
定性的階段。日本、美國及西歐各國均制訂了有關的研究規劃。

日本制訂了一個"人類前沿科學計劃"。這項計劃為期15-20年,僅
初期投資就超過了1萬億日元。在該計劃中,神經網路和腦功能的研究佔有
重要地位,因為所謂"人類前沿科學"首先指的就是有關人類大腦以及通過
借鑒人腦而研製新一代計算機的科學領域。

在美國,神經網路的研究得到了軍方的強有力的支持。美國國防部投資
4億美元,由國防部高級研究計劃局(DAPRA)制訂了一個8年研究計劃,
並成立了相應的組織和指導委員會。同時,海軍研究辦公室(ONR)、空軍
科研辦公室(AFOSR)等也紛紛投入巨額資金進行神經網路的研究。DARPA認
為神經網路"看來是解決機器智能的唯一希望",並認為"這是一項比原子彈
工程更重要的技術"。美國國家科學基金會(NSF)、國家航空航天局(NASA)
等政府機構對神經網路的發展也都非常重視,它們以不同的形式支持了眾多
的研究課題。

歐共體也制訂了相應的研究計劃。在其ESPRIT計劃中,就有一個項目是
"神經網路在歐洲工業中的應用",除了英、德兩國的原子能機構外,還有多
個歐洲大公司卷進這個研究項目,如英國航天航空公司、德國西門子公司等。
此外,西歐一些國家還有自己的研究計劃,如德國從1988年就開始進行一個
叫作"神經資訊理論"的研究計劃。

我國從1986年開始,先後召開了多次非正式的神經網路研討會。1990年
12月,由中國計算機學會、電子學會、人工智慧學會、自動化學會、通信學
會、物理學會、生物物理學會和心理學會等八個學會聯合在北京召開了"中
國神經網路首屆學術會議",從而開創了我國神經網路研究的新紀元。

8. 什麼叫神經網路

南搞小孩給出基本的概念: 一.一些基本常識和原理 [什麼叫神經網路?] 人的思維有邏輯性和直觀性兩種不同的基本方式。邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。 人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。 [人工神經網路的工作原理] 人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。 所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。 如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 南搞小孩一個小程序: 關於一個神經網路模擬程序的下載 人工神經網路實驗系統(BP網路) V1.0 Beta 作者:沈琦 http://emuch.net/html/200506/de24132.html 作者關於此程序的說明: 從輸出結果可以看到,前3條"學習"指令,使"輸出"神經元收斂到了值 0.515974。而後3條"學習"指令,其收斂到了值0.520051。再看看處理4和11的指令結果 P *Out1: 0.520051看到了嗎? "大腦"識別出了4和11是屬於第二類的!怎麼樣?很神奇吧?再打show指令看看吧!"神經網路"已經形成了!你可以自己任意的設"模式"讓這個"大腦"學習分辯哦!只要樣本數據量充分(可含有誤差的樣本),如果能夠在out數據上收斂地話,那它就能分辨地很准哦!有時不是絕對精確,因為它具有"模糊處理"的特性.看Process輸出的值接近哪個Learning的值就是"大腦"作出的"模糊性"判別! 南搞小孩神經網路研究社區: 人工神經網路論壇 http://www.youngfan.com/forum/index.php http://www.youngfan.com/nn/index.html(舊版,楓舞推薦) 國際神經網路學會(INNS)(英文) http://www.inns.org/ 歐洲神經網路學會(ENNS)(英文) http://www.snn.kun.nl/enns/ 亞太神經網路學會(APNNA)(英文) http://www.cse.cuhk.e.hk/~apnna 日本神經網路學會(JNNS)(日文) http://www.jnns.org 國際電氣工程師協會神經網路分會 http://www.ieee-nns.org/ 研學論壇神經網路 http://bbs.matwav.com/post/page?bid=8&sty=1&age=0 人工智慧研究者俱樂部 http://www.souwu.com/ 2nsoft人工神經網路中文站 http://211.156.161.210:8888/2nsoft/index.jsp =南搞小孩推薦部分書籍: 人工神經網路技術入門講稿(PDF) http://www.youngfan.com/nn/ann.pdf 神經網路FAQ(英文) http://www.youngfan.com/nn/FAQ/FAQ.html 數字神經網路系統(電子圖書) http://www.youngfan.com/nn/nnbook/director.htm 神經網路導論(英文) http://www.shef.ac.uk/psychology/gurney/notes/contents.html =南搞小孩還找到一份很有參考價值的講座 <前向網路的敏感性研究> http://www.youngfan.com/nn/mgx.ppt 是Powerpoint文件,比較大,如果網速不夠最好用滑鼠右鍵下載另存. 南搞小孩添言:很久之前,楓舞夢想智能機器人從自己手中誕生,SO在學專業的時候也有往這方面發展...考研的時候亦是朝著人工智慧的方向發展..但是很不幸的是楓舞考研失敗...SO 只好放棄這個美好的願望,為生活奔波.希望你能夠成為一個好的智能計算機工程師..楓舞已經努力的在給你提供條件資源哦~~

9. 人工神經網路是哪個流派的基礎

「純意念控制」人工神經康復機器人系統2014年6月14日在天津大學和天津市人民醫院共同舉辦的發表會上,由雙方共同研製的人工神經康復機器人「神工一號」正式亮相。
中文名
「純意念控制」人工神經康復機器人系統
發布時間
2014年6月14日
快速
導航
產品特色發展歷史
功能配置
「純意念控制」人工神經康復機器人系統在復合想像動作信息解析與處理、非同步腦——機介面訓練與識別、皮層——肌肉活動同步耦合優化、中風後抑鬱腦電非線性特徵提取與篩查等關鍵技術上取得了重大突破。
「純意念控制」人工神經康復機器人系統包括無創腦電感測模塊、想像動作特徵檢測模塊、運動意圖識別模塊、指令編碼介面模塊、刺激信息調理模塊、刺激電流輸出模塊6部分。
產品特色
「純意念控制」人工神經康復機器人系統最新研究成果將讓不少中風、癱瘓人士燃起重新獨立生活的希望。現已擁有包括23項授權國家發明專利、1項軟體著作權在內的自主知識產權集群,是全球首台適用於全肢體中風康復的「純意念控制」人工神經機器人系統。[1]
腦控機械外骨骼是利用被動機械牽引,非肌肉主動收縮激活。而「神工一號」則利用神經肌肉電刺激,模擬神經沖動的電刺激引起肌肉產生主動收縮,帶動骨骼和關節產生自主動作,與人體自主運動原理一致。
體驗者需要把裝有電極的腦電探測器戴在頭部,並在患病肢體的肌肉上安裝電極,藉助「神工一號」的連接,就可以用「意念」來「控制」自己本來無法行動的肢體了。[2]
發展歷史
「純意念控制」人工神經康復機器人系統技術歷時10年,是國家「863計劃「、「十二五」國家科技支撐計劃和國家優秀青年科學基金重點支持項目。
人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。
中文名
人工神經網路
外文名
artificial neural network
別稱
ANN
應用學科
人工智慧
適用領域范圍
模式分類
精品薦讀
「蠢萌」的神經網路
作者:牛油果進化論
快速
導航
基本特徵發展歷史網路模型學習類型分析方法特點優點研究方向發展趨勢應用分析
神經元
如圖所示
a1~an為輸入向量的各個分量
w1~wn為神經元各個突觸的權值
b為偏置
f為傳遞函數,通常為非線性函數。以下默認為hardlim()
t為神經元輸出
數學表示 t=f(WA'+b)
W為權向量
A為輸入向量,A'為A向量的轉置
b為偏置
f為傳遞函數
可見,一個神經元的功能是求得輸入向量與權向量的內積後,經一個非線性傳遞函數得到一個標量結果。
單個神經元的作用:把一個n維向量空間用一個超平面分割成兩部分(稱之為判斷邊界),給定一個輸入向量,神經元可以判斷出這個向量位於超平面的哪一邊。
該超平面的方程: Wp+b=0
W權向量
b偏置
p超平面上的向量
基本特徵
人工神經網路是由大量處理單元互聯組成的非線性、自適應信息處理系統。它是在現代神經科學研究成果的基礎上提出的,試圖通過模擬大腦神經網路處理、記憶信息的方式進行信息處理。人工神經網路具有四個基本特徵:
(1)非線性 非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處於激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。
人工神經網路
(2)非局限性 一個神經網路通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決於單個神經元的特徵,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子。
(3)非常定性 人工神經網路具有自適應、自組織、自學習能力。神經網路不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常採用迭代過程描寫動力系統的演化過程。
(4)非凸性 一個系統的演化方向,在一定條件下將取決於某個特定的狀態函數。例如能量函數,它的極值相應於系統比較穩定的狀態。非凸性是指這種函數有多個極值,故系統具有多個較穩定的平衡態,這將導致系統演化的多樣性。
人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理 ,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。它是涉及神經科學、思維科學、人工智慧、計算機科學等多個領域的交叉學科。
人工神經網路
人工神經網路是並行分布式系統,採用了與傳統人工智慧和信息處理技術完全不同的機理,克服了傳統的基於邏輯符號的人工智慧在處理直覺、非結構化信息方面的缺陷,具有自適應、自組織和實時學習的特點。[1]
發展歷史
1943年,心理學家W.S.McCulloch和數理邏輯學家W.Pitts建立了神經網路和數學模型,稱為MP模型。他們通過MP模型提出了神經元的形式化數學描述和網路結構方法,證明了單個神經元能執行邏輯功能,從而開創了人工神經網路研究的時代。1949年,心理學家提出了突觸聯系強度可變的設想。60年代,人工神經網路得到了進一步發展,更完善的神經網路模型被提出,其中包括感知器和自適應線性元件等。M.Minsky等仔細分析了以感知器為代表的神經網路系統的功能及局限後,於1969年出版了《Perceptron》一書,指出感知器不能解決高階謂詞問題。他們的論點極大地影響了神經網路的研究,加之當時串列計算機和人工智慧所取得的成就,掩蓋了發展新型計算機和人工智慧新途徑的必要性和迫切性,使人工神經網路的研究處於低潮。在此期間,一些人工神經網路的研究者仍然致力於這一研究,提出了適應諧振理論(ART網)、自組織映射、認知機網路,同時進行了神經網路數學理論的研究。以上研究為神經網路的研究和發展奠定了基礎。1982年,美國加州工學院物理學家J.J.Hopfield提出了Hopfield神經網格模型,引入了「計算能量」概念,給出了網路穩定性判斷。 1984年,他又提出了連續時間Hopfield神經網路模型,為神經計算機的研究做了開拓性的工作,開創了神經網路用於聯想記憶和優化計算的新途徑,有力地推動了神經網路的研究,1985年,又有學者提出了波耳茲曼模型,在學習中採用統計熱力學模擬退火技術,保證整個系統趨於全局穩定點。1986年進行認知微觀結構地研究,提出了並行分布處理的理論。1986年,Rumelhart, Hinton, Williams發展了BP演算法。Rumelhart和McClelland出版了《Parallel distribution processing: explorations in the microstructures of cognition》。迄今,BP演算法已被用於解決大量實際問題。1988年,Linsker對感知機網路提出了新的自組織理論,並在Shanon資訊理論的基礎上形成了最大互信息理論,從而點燃了基於NN的信息應用理論的光芒。1988年,Broomhead和Lowe用徑向基函數(Radial basis function, RBF)提出分層網路的設計方法,從而將NN的設計與數值分析和線性適應濾波相掛鉤。90年代初,Vapnik等提出了支持向量機(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)維數的概念。人工神經網路的研究受到了各個發達國家的重視,美國國會通過決議將1990年1月5日開始的十年定為「腦的十年」,國際研究組織號召它的成員國將「腦的十年」變為全球行為。在日本的「真實世界計算(RWC)」項目中,人工智慧的研究成了一個重要的組成部分。
人工神經網路
網路模型
人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。根據連接的拓撲結構,神經網路模型可以分為:[1]
人工神經網路
前向網路
網路中各個神經元接受前一級的輸入,並輸出到下一級,網路中沒有反饋,可以用一個有向無環路圖表示。這種網路實現信號從輸入空間到輸出空間的變換,它的信息處理能力來自於簡單非線性函數的多次復合。網路結構簡單,易於實現。反傳網路是一種典型的前向網路。[2]
反饋網路
網路內神經元間有反饋,可以用一個無向的完備圖表示。這種神經網路的信息處理是狀態的變換,可以用動力學系統理論處理。系統的穩定性與聯想記憶功能有密切關系。Hopfield網路、波耳茲曼機均屬於這種類型。
學習類型
學習是神經網路研究的一個重要內容,它的適應性是通過學習實現的。根據環境的變化,對權值進行調整,改善系統的行為。由Hebb提出的Hebb學習規則為神經網路的學習演算法奠定了基礎。Hebb規則認為學習過程最終發生在神經元之間的突觸部位,突觸的聯系強度隨著突觸前後神經元的活動而變化。在此基礎上,人們提出了各種學習規則和演算法,以適應不同網路模型的需要。有效的學習演算法,使得神經網路能夠通過連接權值的調整,構造客觀世界的內在表示,形成具有特色的信息處理方法,信息存儲和處理體現在網路的連接中。
人工神經網路
分類
根據學習環境不同,神經網路的學習方式可分為監督學習和非監督學習。在監督學習中,將訓練樣本的數據加到網路輸入端,同時將相應的期望輸出與網路輸出相比較,得到誤差信號,以此控制權值連接強度的調整,經多次訓練後收斂到一個確定的權值。當樣本情況發生變化時,經學習可以修改權值以適應新的環境。使用監督學習的神經網路模型有反傳網路、感知器等。非監督學習時,事先不給定標准樣本,直接將網路置於環境之中,學習階段與工作階段成為一體。此時,學習規律的變化服從連接權值的演變方程。非監督學習最簡單的例子是Hebb學習規則。競爭學習規則是一個更復雜的非監督學習的例子,它是根據已建立的聚類進行權值調整。自組織映射、適應諧振理論網路等都是與競爭學習有關的典型模型。
分析方法
研究神經網路的非線性動力學性質,主要採用動力學系統理論、非線性規劃理論和統計理論,來分析神經網路的演化過程和吸引子的性質,探索神經網路的協同行為和集體計算功能,了解神經信息處理機制。為了探討神經網路在整體性和模糊性方面處理信息的可能,混沌理論的概念和方法將會發揮作用。混沌是一個相當難以精確定義的數學概念。一般而言,「混沌」是指由確定性方程描述的動力學系統中表現出的非確定性行為,或稱之為確定的隨機性。「確定性」是因為它由內在的原因而不是外來的雜訊或干擾所產生,而「隨機性」是指其不規則的、不能預測的行為,只可能用統計的方法描述。

10. 神經網路 的四個基本屬性是什麼

神經網路 的四個基本屬性:

(1)非線性:非線性是自然界的普遍特徵。腦智能是一種非線性現象。人工神經元處於兩種不同的激活或抑制狀態,它們在數學上是非線性的。由閾值神經元組成的網路具有更好的性能,可以提高網路的容錯性和存儲容量。

(2)無限制性:神經網路通常由多個連接廣泛的神經元組成。一個系統的整體行為不僅取決於單個神經元的特性,而且還取決於單元之間的相互作用和互連。通過單元之間的大量連接來模擬大腦的非限制性。聯想記憶是一個典型的無限制的例子。

(3)非常定性:人工神經網路具有自適應、自組織和自學習的能力。神經網路處理的信息不僅會發生變化,而且非線性動態系統本身也在發生變化。迭代過程通常用來描述動態系統的演化。

(4)非凸性:在一定條件下,系統的演化方向取決於特定的狀態函數。例如,能量函數的極值對應於系統的相對穩定狀態。非凸性是指函數具有多個極值,系統具有多個穩定平衡態,從而導致系統演化的多樣性。

(10)神經網路是哪個方向下的擴展閱讀:

神經網路的特點優點:

人工神經網路的特點和優越性,主要表現在三個方面:

第一,具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。

第二,具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。

第三,具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。

閱讀全文

與神經網路是哪個方向下的相關的資料

熱點內容
網路作家哪個寫得好 瀏覽:603
江南大學網路連接 瀏覽:209
p一下網路用語是什麼意思 瀏覽:817
11325網路是什麼意思 瀏覽:954
計算機網路mac幀格式 瀏覽:799
上海品牌網路設備哪個好 瀏覽:420
應聘網路主播哪個平台好 瀏覽:49
抓好網路安全心得 瀏覽:530
寶寶的電腦網路怎麼連不上 瀏覽:659
物流網和計算機網路應用哪個專業好 瀏覽:882
要換5g手機才能用5g網路嗎 瀏覽:541
安卓移動網路信號參數 瀏覽:99
移動網路寬頻圖像縮放 瀏覽:767
tlac100設置訪客網路 瀏覽:599
網路安全大賽游戲 瀏覽:390
網路安全存儲廠家 瀏覽:909
網路列印機共享登錄 瀏覽:945
網路零售存在的弊端有哪些以及如何解決 瀏覽:541
網路與新媒體和電氣哪個難 瀏覽:479
電腦網路老是自動掉線顯示受限 瀏覽:500

友情鏈接