㈠ 神經網路到底能幹什麼
神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路可以用於模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。
神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。
㈡ 人工神經網路的應用分析
經過幾十年的發展,神經網路理論在模式識別、自動控制、信號處理、輔助決策、人工智慧等眾多研究領域取得了廣泛的成功。下面介紹神經網路在一些領域中的應用現狀。 在處理許多問題中,信息來源既不完整,又包含假象,決策規則有時相互矛盾,有時無章可循,這給傳統的信息處理方式帶來了很大的困難,而神經網路卻能很好的處理這些問題,並給出合理的識別與判斷。
1.信息處理
現代信息處理要解決的問題是很復雜的,人工神經網路具有模仿或代替與人的思維有關的功能, 可以實現自動診斷、問題求解,解決傳統方法所不能或難以解決的問題。人工神經網路系統具有很高的容錯性、魯棒性及自組織性,即使連接線遭到很高程度的破壞, 它仍能處在優化工作狀態,這點在軍事系統電子設備中得到廣泛的應用。現有的智能信息系統有智能儀器、自動跟蹤監測儀器系統、自動控制制導系統、自動故障診斷和報警系統等。
2. 模式識別
模式識別是對表徵事物或現象的各種形式的信息進行處理和分析,來對事物或現象進行描述、辨認、分類和解釋的過程。該技術以貝葉斯概率論和申農的資訊理論為理論基礎,對信息的處理過程更接近人類大腦的邏輯思維過程。現在有兩種基本的模式識別方法,即統計模式識別方法和結構模式識別方法。人工神經網路是模式識別中的常用方法,近年來發展起來的人工神經網路模式的識別方法逐漸取代傳統的模式識別方法。經過多年的研究和發展,模式識別已成為當前比較先進的技術,被廣泛應用到文字識別、語音識別、指紋識別、遙感圖像識別、人臉識別、手寫體字元的識別、工業故障檢測、精確制導等方面。 由於人體和疾病的復雜性、不可預測性,在生物信號與信息的表現形式上、變化規律(自身變化與醫學干預後變化)上,對其進行檢測與信號表達,獲取的數據及信息的分析、決策等諸多方面都存在非常復雜的非線性聯系,適合人工神經網路的應用。目前的研究幾乎涉及從基礎醫學到臨床醫學的各個方面,主要應用在生物信號的檢測與自動分析,醫學專家系統等。
1. 生物信號的檢測與分析
大部分醫學檢測設備都是以連續波形的方式輸出數據的,這些波形是診斷的依據。人工神經網路是由大量的簡單處理單元連接而成的自適應動力學系統, 具有巨量並行性,分布式存貯,自適應學習的自組織等功能,可以用它來解決生物醫學信號分析處理中常規法難以解決或無法解決的問題。神經網路在生物醫學信號檢測與處理中的應用主要集中在對腦電信號的分析,聽覺誘發電位信號的提取、肌電和胃腸電等信號的識別,心電信號的壓縮,醫學圖像的識別和處理等。
2. 醫學專家系統
傳統的專家系統,是把專家的經驗和知識以規則的形式存儲在計算機中,建立知識庫,用邏輯推理的方式進行醫療診斷。但是在實際應用中,隨著資料庫規模的增大,將導致知識「爆炸」,在知識獲取途徑中也存在「瓶頸」問題,致使工作效率很低。以非線性並行處理為基礎的神經網路為專家系統的研究指明了新的發展方向, 解決了專家系統的以上問題,並提高了知識的推理、自組織、自學習能力,從而神經網路在醫學專家系統中得到廣泛的應用和發展。在麻醉與危重醫學等相關領域的研究中,涉及到多生理變數的分析與預測,在臨床數據中存在著一些尚未發現或無確切證據的關系與現象,信號的處理,干擾信號的自動區分檢測,各種臨床狀況的預測等,都可以應用到人工神經網路技術。 1. 市場價格預測
對商品價格變動的分析,可歸結為對影響市場供求關系的諸多因素的綜合分析。傳統的統計經濟學方法因其固有的局限性,難以對價格變動做出科學的預測,而人工神經網路容易處理不完整的、模糊不確定或規律性不明顯的數據,所以用人工神經網路進行價格預測是有著傳統方法無法相比的優勢。從市場價格的確定機制出發,依據影響商品價格的家庭戶數、人均可支配收入、貸款利率、城市化水平等復雜、多變的因素,建立較為准確可靠的模型。該模型可以對商品價格的變動趨勢進行科學預測,並得到准確客觀的評價結果。
2. 風險評估
風險是指在從事某項特定活動的過程中,因其存在的不確定性而產生的經濟或財務的損失、自然破壞或損傷的可能性。防範風險的最佳辦法就是事先對風險做出科學的預測和評估。應用人工神經網路的預測思想是根據具體現實的風險來源, 構造出適合實際情況的信用風險模型的結構和演算法,得到風險評價系數,然後確定實際問題的解決方案。利用該模型進行實證分析能夠彌補主觀評估的不足,可以取得滿意效果。 從神經網路模型的形成開始,它就與心理學就有著密不可分的聯系。神經網路抽象於神經元的信息處理功能,神經網路的訓練則反映了感覺、記憶、學習等認知過程。人們通過不斷地研究, 變化著人工神經網路的結構模型和學習規則,從不同角度探討著神經網路的認知功能,為其在心理學的研究中奠定了堅實的基礎。近年來,人工神經網路模型已經成為探討社會認知、記憶、學習等高級心理過程機制的不可或缺的工具。人工神經網路模型還可以對腦損傷病人的認知缺陷進行研究,對傳統的認知定位機制提出了挑戰。
雖然人工神經網路已經取得了一定的進步,但是還存在許多缺陷,例如:應用的面不夠寬闊、結果不夠精確;現有模型演算法的訓練速度不夠高;演算法的集成度不夠高;同時我們希望在理論上尋找新的突破點, 建立新的通用模型和演算法。需進一步對生物神經元系統進行研究,不斷豐富人們對人腦神經的認識。
㈢ 神經網路主要用於什麼問題的求解
神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。這些領域主要包括:
模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。
http://ke..com/view/5348.htm?fr=ala0_1
㈣ 神經網路原理及應用
神經網路原理及應用
1. 什麼是神經網路?
神經網路是一種模擬動物神經網路行為特徵,進行分布式並行信息處理的演算法。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
人類的神經網路
2. 神經網路基礎知識
構成:大量簡單的基礎元件——神經元相互連接
工作原理:模擬生物的神經處理信息的方式
功能:進行信息的並行處理和非線性轉化
特點:比較輕松地實現非線性映射過程,具有大規模的計算能力
神經網路的本質:
神經網路的本質就是利用計算機語言模擬人類大腦做決定的過程。
3. 生物神經元結構
4. 神經元結構模型
xj為輸入信號,θi為閾值,wij表示與神經元連接的權值,yi表示輸出值
判斷xjwij是否大於閾值θi
5. 什麼是閾值?
臨界值。
神經網路是模仿大腦的神經元,當外界刺激達到一定的閾值時,神經元才會受刺激,影響下一個神經元。
6. 幾種代表性的網路模型
單層前向神經網路——線性網路
階躍網路
多層前向神經網路(反推學習規則即BP神經網路)
Elman網路、Hopfield網路、雙向聯想記憶網路、自組織競爭網路等等
7. 神經網路能幹什麼?
運用這些網路模型可實現函數逼近、數據聚類、模式分類、優化計算等功能。因此,神經網路廣泛應用於人工智慧、自動控制、機器人、統計學等領域的信息處理中。雖然神經網路的應用很廣,但是在具體的使用過程中到底應當選擇哪種網路結構比較合適是值得考慮的。這就需要我們對各種神經網路結構有一個較全面的認識。
8. 神經網路應用
㈤ 神經網路的應用領域有哪些
醫學領域
通過建立神經網路使檢測儀器自動判斷腫瘤為良性還是惡性
機械領域
自動化機器人(這個很多,大多都是試驗應用,控制機器人自我學習)
自動駕駛汽車,通過安裝攝像頭,讓計算機學習人類在各種路段(轉彎,堵車,下坡,上坡)的駕駛動作(轉向,剎車,減速,加速),從而達到自動駕駛。
㈥ 什麼是神經網路,舉例說明神經網路的應用
我想這可能是你想要的神經網路吧!
什麼是神經網路:
人工神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路的應用:
應用
在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人、復雜系統控制等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。
㈦ 神經網路優缺點,
優點:
(1)具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。
自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。
(2)具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
(3)具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
缺點:
(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。
(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網路就無法進行工作。
(3)把一切問題的特徵都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。
(4)理論和學習演算法還有待於進一步完善和提高。
(7)神經網路不會應用在哪個領域擴展閱讀:
神經網路發展趨勢
人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。
人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。
將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。
神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。
由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。
參考資料:網路-人工神經網路