㈠ 神經網路到底能幹什麼
神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路可以用於模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。
神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。
㈡ 神經網路主要用於什麼問題的求解
神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。這些領域主要包括:
模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。
http://ke..com/view/5348.htm?fr=ala0_1
㈢ AlphaGo的神奇全靠它,詳解人工神經網路!
Alphago在不被看好的情況下,以4比1擊敗了圍棋世界冠軍李世石,令其名震天下。隨著AlphaGo知名度的不斷提高,人們不禁好奇,究竟是什麼使得AlphaGo得以戰勝人類大腦?AlphaGo的核心依託——人工神經網路。
什麼是神經網路?
人工神經網路是一種模仿生物神經網路(動物的中樞神經系統,特別是大腦)的結構和功能的數學模型或計算模型。神經網路由大量的人工神經元聯結進行計算。大多數情況下人工神經網路能在外界信息的基礎上改變內部結構,是一種自適應系統。現代神經網路是一種非線性統計性數據建模工具,常用來對輸入和輸出間復雜的關系進行建模,或用來探索數據的模式。
神經網路是一種運算模型,由大量的節點(或稱“神經元”,或“單元”)和之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
例如,用於手寫識別的一個神經網路是被可由一個輸入圖像的像素被激活的一組輸入神經元所定義的。在通過函數(由網路的設計者確定)進行加權和變換之後,這些神經元被激活然後被傳遞到其他神經元。重復這一過程,直到最後一個輸出神經元被激活。這樣決定了被讀取的字。
它的構築理念是受到人或其他動物神經網路功能的運作啟發而產生的。人工神經網路通常是通過一個基於數學統計學類型的學習方法得以優化,所以人工神經網路也是數學統計學方法的一種實際應用,通過統計學的標准數學方法我們能夠得到大量的可以用函數來表達的局部結構空間,另一方面在人工智慧學的人工感知領域,我們通過數學統計學的應用可以來做人工感知方面的決定問題(也就是說通過統計學的方法,人工神經網路能夠類似人一樣具有簡單的決定能力和簡單的判斷能力),這種方法比起正式的邏輯學推理演算更具有優勢。
人工神經網路是一個能夠學習,能夠總結歸納的系統,也就是說它能夠通過已知數據的實驗運用來學習和歸納總結。人工神經網路通過對局部情況的對照比較(而這些比較是基於不同情況下的自動學習和要實際解決問題的復雜性所決定的),它能夠推理產生一個可以自動識別的系統。與之不同的基於符號系統下的學習方法,它們也具有推理功能,只是它們是建立在邏輯演算法的基礎上,也就是說它們之所以能夠推理,基礎是需要有一個推理演算法則的集合。
2AlphaGo的原理回頂部
AlphaGo的原理
首先,AlphaGo同優秀的選手進行了150000場比賽,通過人工神經網路找到這些比賽的模式。然後通過總結,它會預測選手在任何位置高概率進行的一切可能。AlphaGo的設計師通過讓其反復的和早期版本的自己對戰來提高神經網路,使其逐步提高獲勝的機會。
從廣義上講,神經網路是一個非常復雜的數學模型,通過對其高達數百萬參數的調整來改變的它的行為。神經網路學習的意思是,電腦一直持續對其參數進行微小的調整,來嘗試使其不斷進行微小的改進。在學習的第一階段,神經網路提高模仿選手下棋的概率。在第二階段,它增加自我發揮,贏得比賽的概率。反復對極其復雜的功能進行微小的調整,聽起來十分瘋狂,但是如果有足夠長的時間,足夠快的計算能力,非常好的網路實施起來並不苦難。並且這些調整都是自動進行的。
經過這兩個階段的訓練,神經網路就可以同圍棋業余愛好者下一盤不錯的棋了。但對於職業來講,它還有很長的路要走。在某種意義上,它並不思考每一手之後的幾步棋,而是通過對未來結果的推算來決定下在哪裡。為了達到職業級別,AlphaGp需要一種新的估算方法。
為了克服這一障礙,研究人員採取的辦法是讓它反復的和自己進行對戰,以此來使其不斷其對於勝利的估算能力。盡可能的提高每一步的獲勝概率。(在實踐中,AlphaGo對這個想法進行了稍微復雜的調整。)然後,AlphaGo再結合多線程來使用這一方法進行下棋。
我們可以看到,AlphaGo的評估系統並沒有基於太多的圍棋知識,通過分析現有的無數場比賽的棋譜,以及無數次的自我對戰練習,AlphaGo的神經網路進行了數以十億計的微小調整,即便每次只是一個很小的增量改進。這些調整幫助AlphaGp建立了一個估值系統,這和那些出色圍棋選手的直覺相似,對於棋盤上的每一步棋都了如指掌。
此外AlphaGo也使用搜索和優化的思想,再加上神經網路的學習功能,這兩者有助於找到棋盤上更好的位置。這也是目前AlphaGo能夠高水平發揮的原因。
3神經網路的延伸和限制回頂部
神經網路的延伸和限制
神經網路的這種能力也可以被用在其他方面,比如讓神經網路學習一種藝術風格,然後再將這種風格應用到其他圖像上。這種想法很簡單:首先讓神經網路接觸到大量的圖像,然後來確認這些圖像的風格,接著將新的圖像帶入這種風格。
這雖然不是偉大的藝術,但它仍然是一個顯著的利用神經網路來捕捉直覺並且應用在其他地方的例子。
在過去的幾年中,神經網路在許多領域被用來捕捉直覺和模式識別。許多項目使用神經這些網路,涉及的任務如識別藝術風格或好的視頻游戲的發展戰略。但也有非常不同的網路模擬的直覺驚人的例子,比如語音和自然語言。
由於這種多樣性,我看到AlphaGo本身不是一個革命性的突破,而是作為一個極其重要的發展前沿:建立系統,可以捕捉的直覺和學會識別模式的能力。此前計算機科學家們已經做了幾十年,沒有取得長足的進展。但現在,神經網路的成功已經大大擴大,我們可以利用電腦攻擊范圍內的潛在問題。
事實上,目前現有的神經網路的理解能力是非常差的。神經網路很容易被愚弄。用神經網路識別圖像是一個不錯的手段。但是實驗證明,通過對圖像進行細微的改動,就可以愚弄圖像。例如,下面的圖像左邊的圖是原始圖,研究人員對中間的圖像進行了微小的調整後,神經網路就無法區分了,就將原圖顯示了出來。
另一個限制是,現有的系統往往需要許多模型來學習。例如,AlphaGo從150000場對戰來學習。這是一個很龐大額度數字!很多情況下,顯然無法提供如此龐大的模型案例。
㈣ 人工神經網路可以解決哪些問題
信息領域中的應用:信息處理、模式識別、數據壓縮等。
自動化領域:系統辨識、神經控制器、智能檢測等。
工程領域:汽車工程、軍事工程、化學工程、水利工程等。
在醫學中的應用:生物信號的檢測與分析、生物活性研究、醫學專家系統等。
經濟領域的應用:市場價格預測、風險評估等。
此外還有很多應用,比如交通領域的應用,心理學領域的應用等等。神經網路的應用領域是非常廣的。
㈤ 人工智慧:什麼是人工神經網路
許多 人工智慧 計算機系統的核心技術是人工神經網路(ANN),而這種網路的靈感來源於人類大腦中的生物結構。
通過使用連接的「神經元」結構,這些網路可以通過「學習」並在沒有人類參與的情況下處理和評估某些數據。
這樣的實際實例之一是使用人工神經網路(ANN)識別圖像中的對象。在構建一個識別「貓「圖像的一個系統中,將在包含標記為「貓」的圖像的數據集上訓練人工神經網路,該數據集可用作任何進行分析的參考點。正如人們可能學會根據尾巴或皮毛等獨特特徵來識別狗一樣,人工神經網路(ANN)也可以通過將每個圖像分解成不同的組成部分(如顏色和形狀)進行識別。
實際上,神經網路提供了位於託管數據之上的排序和分類級別,可基於相似度來輔助數據的聚類和分組。可以使用人工神經網路(ANN)生成復雜的垃圾郵件過濾器,查找欺詐行為的演算法以及可以精確了解情緒的客戶關系工具。
人工神經網路如何工作
人工神經網路的靈感來自人腦的神經組織,使用類似於神經元的計算節點構造而成,這些節點沿著通道(如神經突觸的工作方式)進行信息交互。這意味著一個計算節點的輸出將影響另一個計算節點的處理。
神經網路標志著人工智慧發展的巨大飛躍,在此之前,人工智慧一直依賴於使用預定義的過程和定期的人工干預來產生所需的結果。人工神經網路可以使分析負載分布在多個互連層的網路中,每個互連層包含互連節點。在處理信息並對其進行場景處理之後,信息將傳遞到下一個節點,然後向下傳遞到各個層。這個想法是允許將其他場景信息接入網路,以通知每個階段的處理。
單個「隱藏」層神經網路的基本結構
就像漁網的結構一樣,神經網路的一個單層使用鏈將處理節點連接在一起。大量的連接使這些節點之間的通信得到增強,從而提高了准確性和數據處理吞吐量。
然後,人工神經網路將許多這樣的層相互疊放以分析數據,從而創建從第一層到最後一層的輸入和輸出數據流。盡管其層數將根據人工神經網路的性質及其任務而變化,但其想法是將數據從一層傳遞到另一層,並隨其添加附加的場景信息。
人腦是用3D矩陣連接起來的,而不是大量堆疊的圖層。就像人類大腦一樣,節點在接收到特定刺激時會在人工神經網路上「發射」信號,並將信號傳遞到另一個節點。但是,對於人工神經網路,輸入信號定義為實數,輸出為各種輸入的總和。
這些輸入的值取決於它們的權重,該權重用於增加或減少與正在執行的任務相對應的輸入數據的重要性。其目標是採用任意數量的二進制數值輸入並將其轉換為單個二進制數值輸出。
更復雜的神經網路提高了數據分析的復雜性
早期的神經網路模型使用淺層結構,其中只使用一個輸入和輸出層。而現代的系統由一個輸入層和一個輸出層組成,其中輸入層首先將數據輸入網路,多個「隱藏」層增加了數據分析的復雜性。
這就是「深度學習」一詞的由來——「深度」部分專門指任何使用多個「隱藏」層的神經網路。
聚會的例子
為了說明人工神經網路在實際中是如何工作的,我們將其簡化為一個實際示例。
想像一下你被邀請參加一個聚會,而你正在決定是否參加,這可能需要權衡利弊,並將各種因素納入決策過程。在此示例中,只選擇三個因素——「我的朋友會去嗎?」、「聚會地點遠嗎?」、「天氣會好嗎?」
通過將這些考慮因素轉換為二進制數值,可以使用人工神經網路對該過程進行建模。例如,我們可以為「天氣」指定一個二進制數值,即『1'代表晴天,『0'代表惡劣天氣。每個決定因素將重復相同的格式。
然而,僅僅賦值是不夠的,因為這不能幫助你做出決定。為此需要定義一個閾值,即積極因素的數量超過消極因素的數量。根據二進制數值,合適的閾值可以是「2」。換句話說,在決定參加聚會之前,需要兩個因素的閾值都是「1」,你才會決定去參加聚會。如果你的朋友要參加聚會(『1'),並且天氣很好(『1'),那麼這就表示你可以參加聚會。
如果天氣不好(『0'),並且聚會地點很遠(『0'),則達不到這一閾值,即使你的朋友參加(『1'),你也不會參加聚會。
神經加權
誠然,這是神經網路基本原理的一個非常基本的例子,但希望它有助於突出二進制值和閾值的概念。然而,決策過程要比這個例子復雜得多,而且通常情況下,一個因素比另一個因素對決策過程的影響更大。
要創建這種變化,可以使用「神經加權」——-通過乘以因素的權重來確定因素的二進制值對其他因素的重要性。
盡管示例中的每個注意事項都可能使你難以決策,但你可能會更重視其中一個或兩個因素。如果你不願意在大雨中出行去聚會,那惡劣的天氣將會超過其他兩個考慮因素。在這一示例中,可以通過賦予更高的權重來更加重視天氣因素的二進制值:
天氣= w5
朋友= w2
距離= w2
如果假設閾值現在已設置為6,則惡劣的天氣(值為0)將阻止其餘輸入達到所需的閾值,因此該節點將不會「觸發」(這意味著你將決定不參加聚會)。
雖然這是一個簡單的示例,但它提供了基於提供的權重做出決策的概述。如果要將其推斷為圖像識別系統,則是否參加聚會(輸入)的各種考慮因素將是給定圖像的折衷特徵,即顏色、大小或形狀。例如,對識別狗進行訓練的系統可以對形狀或顏色賦予更大的權重。
當神經網路處於訓練狀態時,權重和閾值將設置為隨機值。然後,當訓練數據通過網路傳遞時將不斷進行調整,直到獲得一致的輸出為止。
神經網路的好處
神經網路可以有機地學習。也就是說,神經網路的輸出結果並不受輸入數據的完全限制。人工神經網路可以概括輸入數據,使其在模式識別系統中具有價值。
他們還可以找到實現計算密集型答案的捷徑。人工神經網路可以推斷數據點之間的關系,而不是期望數據源中的記錄是明確關聯的。
它們也可以是容錯的。當神經網路擴展到多個系統時,它們可以繞過無法通信的缺失節點。除了圍繞網路中不再起作用的部分進行路由之外,人工神經網路還可以通過推理重新生成數據,並幫助確定不起作用的節點。這對於網路的自診斷和調試非常有用。
但是,深度神經網路提供的最大優勢是能夠處理和聚類非結構化數據,例如圖片、音頻文件、視頻、文本、數字等數據。在分析層次結構中,每一層節點都在前一層的輸出上進行訓練,深層神經網路能夠處理大量的這種非結構化數據,以便在人類處理分析之前找到相似之處。
神經網路的例子
神經網路應用還有許多示例,可以利用它從復雜或不精確數據中獲得見解的能力。
圖像識別人工神經網路可以解決諸如分析特定物體的照片等問題。這種演算法可以用來區分狗和貓。更重要的是,神經網路已經被用於只使用細胞形狀信息來診斷癌症。
近30年來,金融神經網路被用於匯率預測、股票表現和選擇預測。神經網路也被用來確定貸款信用評分,學習正確識別良好的或糟糕的信用風險。而電信神經網路已被電信公司用於通過實時評估網路流量來優化路由和服務質量。