導航:首頁 > 網路共享 > 多個神經網路聯合訓練共享權重

多個神經網路聯合訓練共享權重

發布時間:2023-03-10 14:27:52

❶ 神經網路,訓練樣本過多,怎樣先用一組數據訓練後再用另一組數據訓練(在上組數據訓練結果的基礎上)

繼承權重啊。
但是這樣的話新訓練的權重對於舊的數據是無效的。

❷ 神經網路淺談

人工智慧技術是當前炙手可熱的話題,而基於神經網路的深度學習技術更是熱點中的熱點。去年穀歌的Alpha Go 以4:1大比分的優勢戰勝韓國的李世石九段,展現了深度學習的強大威力,後續強化版的Alpha Master和無師自通的Alpha Zero更是在表現上完全碾壓前者。不論你怎麼看,以深度學習為代表的人工智慧技術正在塑造未來。

下圖為英偉達(NVIDIA)公司近年來的股價情況, 該公司的主要產品是「圖形處理器」(GPU),而GPU被證明能大大加快神經網路的訓練速度,是深度學習必不可少的計算組件。英偉達公司近年來股價的飛漲足以證明當前深度學習的井噴之勢。

好,話不多說,下面簡要介紹神經網路的基本原理、發展脈絡和優勢。

神經網路是一種人類由於受到生物神經細胞結構啟發而研究出的一種演算法體系,是機器學習演算法大類中的一種。首先讓我們來看人腦神經元細胞:

一個神經元通常具有多個樹突 ,主要用來接受傳入信息,而軸突只有一條,軸突尾端有許多軸突末梢,可以給其他多個神經元傳遞信息。軸突末梢跟其他神經元的樹突產生連接,從而傳遞信號

下圖是一個經典的神經網路(Artificial Neural Network,ANN):

乍一看跟傳統互聯網的拓撲圖有點類似,這也是稱其為網路的原因,不同的是節點之間通過有向線段連接,並且節點被分成三層。我們稱圖中的圓圈為神經元,左邊三個神經元組成的一列為輸入層,中間神經元列為隱藏層,右邊神經元列為輸出層,神經元之間的箭頭為權重。

神經元是計算單元,相當於神經元細胞的細胞核,利用輸入的數據進行計算,然後輸出,一般由一個線性計算部分和一個非線性計算部分組成;輸入層和輸出層實現數據的輸入輸出,相當於細胞的樹突和軸突末梢;隱藏層指既不是輸入也不是輸出的神經元層,一個神經網路可以有很多個隱藏層。

神經網路的關鍵不是圓圈代表的神經元,而是每條連接線對應的權重。每條連接線對應一個權重,也就是一個參數。權重具體的值需要通過神經網路的訓練才能獲得。我們實際生活中的學習體現在大腦中就是一系列神經網路迴路的建立與強化,多次重復的學習能讓迴路變得更加粗壯,使得信號的傳遞速度加快,最後對外表現為「深刻」的記憶。人工神經網路的訓練也借鑒於此,如果某種映射關系出現很多次,那麼在訓練過程中就相應調高其權重。

1943年,心理學家McCulloch和數學家Pitts參考了生物神經元的結構,發表了抽象的神經元模型MP:

符號化後的模型如下:

Sum函數計算各權重與輸入乘積的線性組合,是神經元中的線性計算部分,而sgn是取符號函數,當輸入大於0時,輸出1,反之輸出0,是神經元中的非線性部分。向量化後的公式為z=sgn(w^T a)(w^T=(w_1,w_2,w_3),a=〖(a_1,a_2,a_3)〗^T)。

但是,MP模型中,權重的值都是預先設置的,因此不能學習。該模型雖然簡單,並且作用有限,但已經建立了神經網路大廈的地基

1958年,計算科學家Rosenblatt提出了由兩層神經元組成(一個輸入層,一個輸出層)的神經網路。他給它起了一個名字–「感知器」(Perceptron)

感知器是當時首個可以學習的人工神經網路。Rosenblatt現場演示了其學習識別簡單圖像的過程,在當時引起了轟動,掀起了第一波神經網路的研究熱潮。

但感知器只能做簡單的線性分類任務。1969年,人工智慧領域的巨擘Minsky指出這點,並同時指出感知器對XOR(異或,即兩個輸入相同時輸出0,不同時輸出1)這樣的簡單邏輯都無法解決。所以,明斯基認為神經網路是沒有價值的。

隨後,神經網路的研究進入低谷,又稱 AI Winter 。

Minsky說過單層神經網路無法解決異或問題,但是當增加一個計算層以後,兩層神經網路不僅可以解決異或問題,而且具有非常好的非線性分類效果。

下圖為兩層神經網路(輸入層一般不算在內):

上圖中,輸出層的輸入是上一層的輸出。

向量化後的公式為:

注意:

每個神經元節點默認都有偏置變數b,加上偏置變數後的計算公式為:

同時,兩層神經網路不再使用sgn函數作為激勵函數,而採用平滑的sigmoid函數:

σ(z)=1/(1+e^(-z) )

其圖像如下:

理論證明: 兩層及以上的神經網路可以無限逼近真實的對應函數,從而模擬數據之間的真實關系 ,這是神經網路強大預測能力的根本。但兩層神經網路的計算量太大,當時的計算機的計算能力完全跟不上,直到1986年,Rumelhar和Hinton等人提出了反向傳播(Backpropagation,BP)演算法,解決了兩層神經網路所需要的復雜計算量問題,帶動了業界使用兩層神經網路研究的熱潮。

但好景不長,演算法的改進僅使得神經網路風光了幾年,然而計算能力不夠,局部最優解,調參等一系列問題一直困擾研究人員。90年代中期,由Vapnik等人發明的SVM(Support Vector Machines,支持向量機)演算法誕生,很快就在若干個方面體現出了對比神經網路的優勢:無需調參;高效;全局最優解。

由於以上原因,SVM迅速打敗了神經網路演算法成為主流。神經網路的研究再一次進入低谷, AI Winter again 。

多層神經網路一般指兩層或兩層以上的神經網路(不包括輸入層),更多情況下指兩層以上的神經網路。

2006年,Hinton提出使用 預訓練 」(pre-training)和「微調」(fine-tuning)技術能優化神經網路訓練,大幅度減少訓練多層神經網路的時間

並且,他給多層神經網路相關的學習方法賦予了一個新名詞–「 深度學習 」,以此為起點,「深度學習」紀元開始了:)

「深度學習」一方面指神經網路的比較「深」,也就是層數較多;另一方面也可以指神經網路能學到很多深層次的東西。研究發現,在權重參數不變的情況下,增加神經網路的層數,能增強神經網路的表達能力。

但深度學習究竟有多強大呢?沒人知道。2012年,Hinton與他的學生在ImageNet競賽中,用多層的卷積神經網路成功地對包含一千類別的一百萬張圖片進行了訓練,取得了分類錯誤率15%的好成績,這個成績比第二名高了近11個百分點,充分證明了多層神經網路識別效果的優越性。

同時,科研人員發現GPU的大規模並行矩陣運算模式完美地契合神經網路訓練的需要,在同等情況下,GPU的速度要比CPU快50-200倍,這使得神經網路的訓練時間大大減少,最終再一次掀起了神經網路研究的熱潮,並且一直持續到現在。

2016年基於深度學習的Alpha Go在圍棋比賽中以4:1的大比分優勢戰勝了李世石,深度學習的威力再一次震驚了世界。

神經網路的發展歷史曲折盪漾,既有被捧上神壇的高潮,也有無人問津的低谷,中間經歷了數次大起大落,我們姑且稱之為「三起三落」吧,其背後則是演算法的改進和計算能力的持續發展。

下圖展示了神經網路自發明以來的發展情況及一些重大時間節點。

當然,對於神經網路我們也要保持清醒的頭腦。由上圖,每次神經網路研究的興盛期持續10年左右,從最近2012年算起,或許10年後的2022年,神經網路的發展將再次遇到瓶頸。

神經網路作為機器學習的一種,其模型訓練的目的,就是使得參數盡可能的與真實的模型逼近。理論證明,兩層及以上的神經網路可以無限逼近真實的映射函數。因此,給定足夠的訓練數據和訓練時間,總能通過神經網路找到無限逼近真實關系的模型。

具體做法:首先給所有權重參數賦上隨機值,然後使用這些隨機生成的參數值,來預測訓練數據中的樣本。假設樣本的預測目標為yp ,真實目標為y,定義值loss,計算公式如下:

loss = (yp -y) ^2

這個值稱之為 損失 (loss),我們的目標就是使對所有訓練數據的損失和盡可能的小,這就轉化為求loss函數極值的問題。

一個常用方法是高等數學中的求導,但由於參數不止一個,求導後計算導數等於0的運算量很大,所以常用梯度下降演算法來解決這樣的優化問題。梯度是一個向量,由函數的各自變數的偏導數組成。

比如對二元函數 f =(x,y),則梯度∇f=(∂f/∂x,∂f/∂y)。梯度的方向是函數值上升最快的方向。梯度下降演算法每次計算參數在當前的梯度,然後讓參數向著梯度的反方向前進一段距離,不斷重復,直到梯度接近零時截止。一般這個時候,所有的參數恰好達到使損失函數達到一個最低值的狀態。下圖為梯度下降的大致運行過程:

在神經網路模型中,由於結構復雜,每次計算梯度的代價很大。因此還需要使用 反向傳播 (Back Propagation)演算法。反向傳播演算法利用了神經網路的結構進行計算,不一次計算所有參數的梯度,而是從後往前。首先計算輸出層的梯度,然後是第二個參數矩陣的梯度,接著是中間層的梯度,再然後是第一個參數矩陣的梯度,最後是輸入層的梯度。計算結束以後,所要的兩個參數矩陣的梯度就都有了。當然,梯度下降只是其中一個優化演算法,其他的還有牛頓法、RMSprop等。

確定loss函數的最小值後,我們就確定了整個神經網路的權重,完成神經網路的訓練。

在神經網路中一樣的參數數量,可以用更深的層次去表達。

由上圖,不算上偏置參數的話,共有三層神經元,33個權重參數。

由下圖,保持權重參數不變,但增加了兩層神經元。

在多層神經網路中,每一層的輸入是前一層的輸出,相當於在前一層的基礎上學習,更深層次的神經網路意味著更深入的表示特徵,以及更強的函數模擬能力。更深入的表示特徵可以這樣理解,隨著網路的層數增加,每一層對於前一層次的抽象表示更深入。

如上圖,第一個隱藏層學習到「邊緣」的特徵,第二個隱藏層學習到「邊緣」組成的「形狀」的特徵,第三個隱藏層學習到由「形狀」組成的「圖案」的特徵,最後的隱藏層學習到由「圖案」組成的「目標」的特徵。通過抽取更抽象的特徵來對事物進行區分,從而獲得更好的區分與分類能力。

前面提到, 明斯基認為Rosenblatt提出的感知器模型不能處理最簡單的「異或」(XOR)非線性問題,所以神經網路的研究沒有前途,但當增加一層神經元後,異或問題得到了很好地解決,原因何在?原來從輸入層到隱藏層,數據發生了空間變換,坐標系發生了改變,因為矩陣運算本質上就是一種空間變換。

如下圖,紅色和藍色的分界線是最終的分類結果,可以看到,該分界線是一條非常平滑的曲線。

但是,改變坐標系後,分界線卻表現為直線,如下圖:

同時,非線性激勵函數的引入使得神經網路對非線性問題的表達能力大大加強。

對於傳統的樸素貝葉斯、決策樹、支持向量機SVM等分類器,提取特徵是一個非常重要的前置工作。在正式訓練之前,需要花費大量的時間在數據的清洗上,這樣分類器才能清楚地知道數據的維度,要不然基於概率和空間距離的線性分類器是沒辦法進行工作的。然而在神經網路中,由於巨量的線性分類器的堆疊(並行和串列)以及卷積神經網路的使用,它對雜訊的忍耐能力、對多通道數據上投射出來的不同特徵偏向的敏感程度會自動重視或忽略,這樣我們在處理的時候,就不需要使用太多的技巧用於數據的清洗了。有趣的是,業內大佬常感嘆,「你可能知道SVM等機器學習的所有細節,但是效果並不好,而神經網路更像是一個黑盒,很難知道它究竟在做什麼,但工作效果卻很好」。

人類對機器學習的環節干預越少,就意味著距離人工智慧的方向越近。神經網路的這個特性非常有吸引力。

1) 谷歌的TensorFlow開發了一個非常有意思的神經網路 入門教程 ,用戶可以非常方便地在網頁上更改神經網路的參數,並且能看到實時的學習效率和結果,非常適合初學者掌握神經網路的基本概念及神經網路的原理。網頁截圖如下:

2) 深度學習領域大佬吳恩達不久前發布的《 神經網路和深度學習 》MOOC,現在可以在網易雲課堂上免費觀看了,並且還有中文字幕。

3) 《神經網路於深度學習》(Michael Nielsen著)、《白話深度學習與TensorFlow》也是不錯的入門書籍。

如何理解人工智慧神經網路中的權值共享問題

權值(權重)共享這個詞是由LeNet5模型提出來的。以CNN為例,在對一張圖偏進行卷積的過程中,使用的是同一個卷積核的參數。比如一個3×3×1的卷積核,這個卷積核內9個的參數被整張圖共享,而不會因為圖像內位置的不同而改變卷積核內的權系數。說的再直白一些,就是用一個卷積核不改變其內權系數的情況下卷積處理整張圖片(當然CNN中每一層不會只有一個卷積核的,這樣說只是為了方便解釋而已)。

❹ ENAS:首個權值共享的神經網路搜索方法,千倍加速 | ICML 2018

論文: Efficient Neural Architecture Search via Parameter Sharing

  神經網路結構搜索(NAS)目前在圖像分類的模型結構設計上有很大的成果,但十分耗時,主要花在搜索到的網路(child model)的訓練。論文的主要工作是提出 Efficient Neural Architecture Search (ENAS),強制所有的child model進行權重共享,避免從零開始訓練,從而達到提高效率的目的。雖然不同的模型使用不同的權重,但從遷移學習和多任務學習的研究結果來看,將當前任務的模型A學習到的參數應用於別的任務的模型B是可行的。從實驗看來,不僅共享參數是可行的,而且能帶來很強的表現,實驗僅用單張1080Ti,相對與NAS有1000x倍加速

  NAS的搜索結果可以看作是大圖中的子圖,可以用單向無環圖(DAG)來表示搜索空間,每個搜索的結構可以認為是圖2的DAG一個子網。ENAS定義的DAG為所有子網的疊加,其中每個節點的每種計算類型都有自己的參數,當特定的計算方法激活時,參數才使用。因此,ENAS的設計允許子網進行參數共享,下面會介紹具體細節

  為了設計循環單元(recurrent cell),採用 節點的DAG,節點代表計算類型,邊代表信息流向,ENAS的controller也是RNN,主要定義:1) 激活的邊 2) 每個節點的計算類型。在NAS(Zoph 2017),循環單元的搜索空間在預先定義結構的拓撲結構(二叉樹)上,僅學習每個節點的計算類型,而NAS則同時學習拓撲結構和計算類型,更靈活

  為了創建循環單元,the controller RNN首先採樣 個block的結果,取 , 為當前單元輸入信息(例如word embedding), 為前一個time step的隱藏層輸出,具體步驟如下:

  注意到每對節點( )都有獨立的參數 ,根據選擇的索引決定使用哪個參數,因此,ENAS的所有循環單元能同一個共享參數集合。論文的搜索空間包含指數數量的配置,假設有N個節點和4種激活函數,則共有 種配置

  ENAS的controller為100個隱藏單元的LSTM,通過softmax分類器以自回歸(autoregressive fashion)的方式進行選擇的決定,上一個step的輸出作為下一個step的輸入embedding,controller的第一個step則接受空embedding輸入。學習的參數主要有controller LSTM的參數 和子網的共享權重 ,ENAS的訓練分兩個交叉的階段,第一階段在完整的訓練集上進行共享權重 學習,第二階段訓練controller LSTM的參數

  固定controller的策略 ,然後進行 進行隨機梯度下降(SGD)來最小化交叉熵損失函數的期望 , 為模型 在mini-batch上的交叉熵損失,模型 從 采樣而來

  梯度的計算如公式1, 上從 采樣來的,集合所有模型的梯度進行更新。公式1是梯度的無偏估計,但有一個很高的方差(跟NAS一樣,采樣的模型性能差異),而論文發現,當 時,訓練的效果還行

  固定 然後更新策略參數 ,目標是最大化期望獎勵 ,使用Adam優化器,梯度計算使用Williams的REINFORCE方法,加上指數滑動平均來降低方差, 的計算在獨立的驗證集上進行,整體基本跟Zoph的NAS一樣

  訓練好的ENAS進行新模型構造,首先從訓練的策略 采樣幾個新的結構,對於每個采樣的模型,計算其在驗證集的minibatch上的准確率,取准確率最高的模型進行從零開始的重新訓練,可以對所有采樣的網路進行從零訓練,但是論文的方法准確率差不多,經濟效益更大

  對於創建卷積網路,the controller每個decision block進行兩個決定,這些決定構成卷積網路的一層:

  做 次選擇產生 層的網路,共 種網路,在實驗中,L取12

  NASNet提出設計小的模塊,然後堆疊成完整的網路,主要設計convolutional cell和rection cell

  使用ENAS生成convolutional cell,構建B節點的DAG來代表單元內的計算,其中node 1和node 2代表單元輸入,為完整網路中前兩個單元的輸出,剩餘的 個節點,預測兩個選擇:1) 選擇兩個之前的節點作為當前節點輸入 2) 選擇用於兩個輸入的計算類型,共5種運算元:identity, separable convolution with kernel size 3 × 3 and 5 × 5, and average pooling and max pooling with kernel size 3×3,然後將運算元結果相加。對於 ,搜索過程如下:

  對於rection cell,可以同樣地使用上面的搜索空間生成: 1) 如圖5采樣一個計算圖 2) 將所有計算的stride改為2。這樣rection cell就能將輸入縮小為1/2,controller共預測 blocks
  最後計算下搜索空間的復雜度,對於node i ,troller選擇前 個節點中的兩個,然後選擇五種運算元的兩種,共 種坑的單元。因為兩種單元是獨立的,所以搜索空間的大小最終為 ,對於 ,大約 種網路

  節點的計算做了一點修改,增加highway connections,例如 修改為 ,其中 , 為elementwise乘法。搜索到的結果如圖6所示,有意思的是:1) 激活方法全部為tanh或ReLU 2) 結構可能為局部最優,隨機替換節點的激活函數都會造成大幅的性能下降 3) 搜索的輸出是6個node的平均,與mixture of contexts(MoC)類似

  單1080Ti訓練了10小時,Penn Treebank上的結果如表1所示,PPL越低則性能越好,可以看到ENAS不準復雜度低,參數量也很少

  表2的第一塊為最好的分類網路DenseNet的結構,第二塊為ENAS設計整個卷積網路的結果(感覺這里不應有micro search space),第三塊為設計單元的結果

  全網路搜索的最優結構如圖7所示,達到4.23%錯誤率,比NAS的效果要好,大概單卡搜索7小時,相對NAS有50000x倍加速

  單元搜索的結構如圖8所示,單卡搜索11.5小時, ,錯誤率為3.54%,加上CutOut增強後比NASNet要好。論文發現ENAS搜索的結構都是局部最優的,修改都會帶來性能的降低,而ENAS不採樣多個網路進行訓練,這個給NAS帶來很大性能的提升

  NAS是自動設計網路結構的重要方法,但需要耗費巨大的資源,導致不能廣泛地應用,而論文提出的 Efficient Neural Architecture Search (ENAS),在搜索時對子網的參數進行共享,相對於NAS有超過1000x倍加速,單卡搜索不到半天,而且性能並沒有降低,十分值得參考



❺ BP神經網路連接權值如何確定

確認方法:
統計學認為,在統計中計算平均數等指標時,對各個變數值具有權衡輕重作用的數值就稱為權數。
例子:求下列數串的平均數
3、4、3、3、3、2、4、4、3、3、
一般求法為(3+4+3+3+3+2+4+4+3+3)/10=3.2
加權求法為(6*3+3*4+2)/10=3.2
其中3出現6次,4出現3次,2出現1次.6、3、1就叫權數。這種方法叫加權法。
一般說的平均數,就是把所有的數加起來,再除以這些數的總個數。表示為:
(p1+p2+p3+…..+pn)/n;
但有的數據記錄中有一些相同的數據,在計算的時候,那一個數有幾個相同數,就把這個數乘上幾,這個幾,就叫權,加權,就是乘上幾後再加。平均數還是要除以總個數。
還是以上面的各個數為例:
它們每個數都有一些相同數,表示為:k1,k2,k3…….kn;
加權平均的公式是:(k1p1+k2p2+k3p3+……knpn)/(k1+k2+k3+…..kn)

❻ 神經網路權值怎麼確定

神經網路的權值是通過對網路的訓練得到的。如果使用MATLAB的話不要自己設定,newff之後會自動賦值。也可以手動:net.IW{}= ; net.bias{}=。一般來說輸入歸一化,那麼w和b取0-1的隨機數就行。神經網路的權值確定的目的是為了讓神經網路在訓練過程中學習到有用的信息,這意味著參數梯度不應該為0。

參數初始化要滿足兩個必要條件:

1、各個激活層不會出現飽和現象,比如對於sigmoid激活函數,初始化值不能太大或太小,導致陷入其飽和區。

2、各個激活值不為0,如果激活層輸出為零,也就是下一層卷積層的輸入為零,所以這個卷積層對權值求偏導為零,從而導致梯度為0。

(6)多個神經網路聯合訓練共享權重擴展閱讀:

神經網路和權值的關系。

在訓練智能體執行任務時,會選擇一個典型的神經網路框架,並相信它有潛力為這個任務編碼特定的策略。注意這里只是有潛力,還要學習權重參數,才能將這種潛力變化為能力。

受到自然界早成行為及先天能力的啟發,在這項工作中,研究者構建了一個能自然執行給定任務的神經網路。也就是說,找到一個先天的神經網路架構,然後只需要隨機初始化的權值就能執行任務。研究者表示,這種不用學習參數的神經網路架構在強化學習與監督學習都有很好的表現。

其實如果想像神經網路架構提供的就是一個圈,那麼常規學習權值就是找到一個最優點(或最優參數解)。但是對於不用學習權重的神經網路,它就相當於引入了一個非常強的歸納偏置,以至於,整個架構偏置到能直接解決某個問題。

但是對於不用學習權重的神經網路,它相當於不停地特化架構,或者說降低模型方差。這樣,當架構越來越小而只包含最優解時,隨機化的權值也就能解決實際問題了。如研究者那樣從小架構到大架構搜索也是可行的,只要架構能正好將最優解包圍住就行了。

❼ 卷積神經網路的 卷積層、激活層、池化層、全連接層

數據輸入的是一張圖片(輸入層),CONV表示卷積層,RELU表示激勵層,POOL表示池化層,Fc表示全連接層

全連接神經網路需要非常多的計算資源才能支撐它來做反向傳播和前向傳播,所以說全連接神經網路可以存儲非常多的參數,如果你給它的樣本如果沒有達到它的量級的時候,它可以輕輕鬆鬆把你給他的樣本全部都記下來,這會出現過擬合的情況。

所以我們應該把神經元和神經元之間的連接的權重個數降下來,但是降下來我們又不能保證它有較強的學習能力,所以這是一個糾結的地方,所以有一個方法就是 局部連接+權值共享 ,局部連接+權值共享不僅權重參數降下來了,而且學習能力並沒有實質的降低,除此之外還有其它的好處,下來看一下,下面的這幾張圖片:

一個圖像的不同表示方式

這幾張圖片描述的都是一個東西,但是有的大有的小,有的靠左邊,有的靠右邊,有的位置不同,但是我們構建的網路識別這些東西的時候應該是同一結果。為了能夠達到這個目的,我們可以讓圖片的不同位置具有相同的權重(權值共享),也就是上面所有的圖片,我們只需要在訓練集中放一張,我們的神經網路就可以識別出上面所有的,這也是 權值共享 的好處。

而卷積神經網路就是局部連接+權值共享的神經網路。

現在我們對卷積神經網路有一個初步認識了,下面具體來講解一下卷積神經網路,卷積神經網路依舊是層級結構,但層的功能和形式做了改變,卷積神經網路常用來處理圖片數據,比如識別一輛汽車:

在圖片輸出到神經網路之前,常常先進行圖像處理,有 三種 常見的圖像的處理方式:

均值化和歸一化

去相關和白化

圖片有一個性質叫做局部關聯性質,一個圖片的像素點影響最大的是它周邊的像素點,而距離這個像素點比較遠的像素點二者之間關系不大。這個性質意味著每一個神經元我們不用處理全局的圖片了(和上一層全連接),我們的每一個神經元只需要和上一層局部連接,相當於每一個神經元掃描一小區域,然後許多神經元(這些神經元權值共享)合起來就相當於掃描了全局,這樣就構成一個特徵圖,n個特徵圖就提取了這個圖片的n維特徵,每個特徵圖是由很多神經元來完成的。

在卷積神經網路中,我們先選擇一個局部區域(filter),用這個局部區域(filter)去掃描整張圖片。 局部區域所圈起來的所有節點會被連接到下一層的 一個節點上 。我們拿灰度圖(只有一維)來舉例:

局部區域

圖片是矩陣式的,將這些以矩陣排列的節點展成了向量。就能更好的看出來卷積層和輸入層之間的連接,並不是全連接的,我們將上圖中的紅色方框稱為filter,它是2*2的,這是它的尺寸,這不是固定的,我們可以指定它的尺寸。

我們可以看出來當前filter是2*2的小窗口,這個小窗口會將圖片矩陣從左上角滑到右下角,每滑一次就會一下子圈起來四個,連接到下一層的一個神經元,然後產生四個權重,這四個權重(w1、w2、w3、w4)構成的矩陣就叫做卷積核。

卷積核是演算法自己學習得到的,它會和上一層計算,比如,第二層的0節點的數值就是局部區域的線性組合(w1 0+w2 1+w3 4+w4 5),即被圈中節點的數值乘以對應的權重後相加。

卷積核計算

卷積操作

我們前面說過圖片不用向量表示是為了保留圖片平面結構的信息。 同樣的,卷積後的輸出若用上圖的向量排列方式則丟失了平面結構信息。 所以我們依然用矩陣的方式排列它們,就得到了下圖所展示的連接,每一個藍色結點連接四個黃色的結點。

卷積層的連接方式

圖片是一個矩陣然後卷積神經網路的下一層也是一個矩陣,我們用一個卷積核從圖片矩陣左上角到右下角滑動,每滑動一次,當然被圈起來的神經元們就會連接下一層的一個神經元,形成參數矩陣這個就是卷積核,每次滑動雖然圈起來的神經元不同,連接下一層的神經元也不同,但是產生的參數矩陣確是一樣的,這就是 權值共享

卷積核會和掃描的圖片的那個局部矩陣作用產生一個值,比如第一次的時候,(w1 0+w2 1+w3 4+w4 5),所以,filter從左上到右下的這個過程中會得到一個矩陣(這就是下一層也是一個矩陣的原因),具體過程如下所示:

卷積計算過程

上圖中左邊是圖矩陣,我們使用的filter的大小是3 3的,第一次滑動的時候,卷積核和圖片矩陣作用(1 1+1 0+1 1+0 0+1 1+1 0+0 1+0 0+1 1)=4,會產生一個值,這個值就是右邊矩陣的第一個值,filter滑動9次之後,會產生9個值,也就是說下一層有9個神經元,這9個神經元產生的值就構成了一個矩陣,這矩陣叫做特徵圖,表示image的某一維度的特徵,當然具體哪一維度可能並不知道,可能是這個圖像的顏色,也有可能是這個圖像的輪廓等等。

單通道圖片總結 :以上就是單通道的圖片的卷積處理,圖片是一個矩陣,我們用指定大小的卷積核從左上角到右下角來滑動,每次滑動所圈起來的結點會和下一層的一個結點相連,連接之後就會形成局部連接,每一條連接都會產生權重,這些權重就是卷積核,所以每次滑動都會產生一個卷積核,因為權值共享,所以這些卷積核都是一樣的。卷積核會不斷和當時卷積核所圈起來的局部矩陣作用,每次產生的值就是下一層結點的值了,這樣多次產生的值組合起來就是一個特徵圖,表示某一維度的特徵。也就是從左上滑動到右下這一過程中會形成一個特徵圖矩陣(共享一個卷積核),再從左上滑動到右下又會形成另一個特徵圖矩陣(共享另一個卷積核),這些特徵圖都是表示特徵的某一維度。

三個通道的圖片如何進行卷積操作?

至此我們應該已經知道了單通道的灰度圖是如何處理的,實際上我們的圖片都是RGB的圖像,有三個通道,那麼此時圖像是如何卷積的呢?

彩色圖像

filter窗口滑的時候,我們只是從width和height的角度來滑動的,並沒有考慮depth,所以每滑動一次實際上是產生一個卷積核,共享這一個卷積核,而現在depth=3了,所以每滑動一次實際上產生了具有三個通道的卷積核(它們分別作用於輸入圖片的藍色、綠色、紅色通道),卷積核的一個通道核藍色的矩陣作用產生一個值,另一個和綠色的矩陣作用產生一個值,最後一個和紅色的矩陣作用產生一個值,然後這些值加起來就是下一層結點的值,結果也是一個矩陣,也就是一張特徵圖。

三通道的計算過程

要想有多張特徵圖的話,我們可以再用新的卷積核來進行左上到右下的滑動,這樣就會形成 新的特徵圖

三通道圖片的卷積過程

也就是說增加一個卷積核,就會產生一個特徵圖,總的來說就是輸入圖片有多少通道,我們的卷積核就需要對應多少通道,而本層中卷積核有多少個,就會產生多少個特徵圖。這樣卷積後輸出可以作為新的輸入送入另一個卷積層中處理,有幾個特徵圖那麼depth就是幾,那麼下一層的每一個特徵圖就得用相應的通道的卷積核來對應處理,這個邏輯要清楚,我們需要先了解一下 基本的概念:

卷積計算的公式

4x4的圖片在邊緣Zero padding一圈後,再用3x3的filter卷積後,得到的Feature Map尺寸依然是4x4不變。

填充

當然也可以使用5x5的filte和2的zero padding可以保持圖片的原始尺寸,3x3的filter考慮到了像素與其距離為1以內的所有其他像素的關系,而5x5則是考慮像素與其距離為2以內的所有其他像素的關系。

規律: Feature Map的尺寸等於

(input_size + 2 * padding_size − filter_size)/stride+1

我們可以把卷積層的作用 總結一點: 卷積層其實就是在提取特徵,卷積層中最重要的是卷積核(訓練出來的),不同的卷積核可以探測特定的形狀、顏色、對比度等,然後特徵圖保持了抓取後的空間結構,所以不同卷積核對應的特徵圖表示某一維度的特徵,具體什麼特徵可能我們並不知道。特徵圖作為輸入再被卷積的話,可以則可以由此探測到"更大"的形狀概念,也就是說隨著卷積神經網路層數的增加,特徵提取的越來越具體化。

激勵層的作用可以理解為把卷積層的結果做 非線性映射

激勵層

上圖中的f表示激勵函數,常用的激勵函數幾下幾種:

常用的激勵函數

我們先來看一下激勵函數Sigmoid導數最小為0,最大為1/4,

激勵函數Sigmoid

Tanh激活函數:和sigmoid相似,它會關於x軸上下對應,不至於朝某一方面偏向

Tanh激活函數

ReLU激活函數(修正線性單元):收斂快,求梯度快,但較脆弱,左邊的梯度為0

ReLU激活函數

Leaky ReLU激活函數:不會飽和或者掛掉,計算也很快,但是計算量比較大

Leaky ReLU激活函數

一些激勵函數的使用技巧 :一般不要用sigmoid,首先試RELU,因為快,但要小心點,如果RELU失效,請用Leaky ReLU,某些情況下tanh倒是有不錯的結果。

這就是卷積神經網路的激勵層,它就是將卷積層的線性計算的結果進行了非線性映射。可以從下面的圖中理解。它展示的是將非線性操作應用到一個特徵圖中。這里的輸出特徵圖也可以看作是"修正"過的特徵圖。如下所示:

非線性操作

池化層:降低了各個特徵圖的維度,但可以保持大分重要的信息。池化層夾在連續的卷積層中間,壓縮數據和參數的量,減小過擬合,池化層並沒有參數,它只不過是把上層給它的結果做了一個下采樣(數據壓縮)。下采樣有 兩種 常用的方式:

Max pooling :選取最大的,我們定義一個空間鄰域(比如,2x2 的窗口),並從窗口內的修正特徵圖中取出最大的元素,最大池化被證明效果更好一些。

Average pooling :平均的,我們定義一個空間鄰域(比如,2x2 的窗口),並從窗口內的修正特徵圖算出平均值

Max pooling

我們要注意一點的是:pooling在不同的depth上是分開執行的,也就是depth=5的話,pooling進行5次,產生5個池化後的矩陣,池化不需要參數控制。池化操作是分開應用到各個特徵圖的,我們可以從五個輸入圖中得到五個輸出圖。

池化操作

無論是max pool還是average pool都有分信息被舍棄,那麼部分信息被舍棄後會損壞識別結果嗎?

因為卷積後的Feature Map中有對於識別物體不必要的冗餘信息,我們下采樣就是為了去掉這些冗餘信息,所以並不會損壞識別結果。

我們來看一下卷積之後的冗餘信息是怎麼產生的?

我們知道卷積核就是為了找到特定維度的信息,比如說某個形狀,但是圖像中並不會任何地方都出現這個形狀,但卷積核在卷積過程中沒有出現特定形狀的圖片位置卷積也會產生一個值,但是這個值的意義就不是很大了,所以我們使用池化層的作用,將這個值去掉的話,自然也不會損害識別結果了。

比如下圖中,假如卷積核探測"橫折"這個形狀。 卷積後得到3x3的Feature Map中,真正有用的就是數字為3的那個節點,其餘數值對於這個任務而言都是無關的。 所以用3x3的Max pooling後,並沒有對"橫折"的探測產生影響。 試想在這里例子中如果不使用Max pooling,而讓網路自己去學習。 網路也會去學習與Max pooling近似效果的權重。因為是近似效果,增加了更多的參數的代價,卻還不如直接進行最大池化處理。

最大池化處理

在全連接層中所有神經元都有權重連接,通常全連接層在卷積神經網路尾部。當前面卷積層抓取到足以用來識別圖片的特徵後,接下來的就是如何進行分類。 通常卷積網路的最後會將末端得到的長方體平攤成一個長長的向量,並送入全連接層配合輸出層進行分類。比如,在下面圖中我們進行的圖像分類為四分類問題,所以卷積神經網路的輸出層就會有四個神經元。

四分類問題

我們從卷積神經網路的輸入層、卷積層、激活層、池化層以及全連接層來講解卷積神經網路,我們可以認為全連接層之間的在做特徵提取,而全連接層在做分類,這就是卷積神經網路的核心。

閱讀全文

與多個神經網路聯合訓練共享權重相關的資料

熱點內容
安廣網路屬於哪個網路 瀏覽:873
香港機場免費無線網路 瀏覽:673
萬能移動網路機頂盒遙控 瀏覽:394
蘋果8p網路差怎麼改善 瀏覽:146
網路營銷究竟是幹嘛的 瀏覽:4
武漢移動網路好嗎 瀏覽:712
網路營銷推廣工具 瀏覽:943
如何把管家婆做成網路版 瀏覽:601
移動網路進不去虛幻官網 瀏覽:421
html檢測網路連接 瀏覽:148
鞍山網路營銷微博 瀏覽:371
抑鬱網路語是什麼 瀏覽:916
網路借款哪個劃算 瀏覽:186
電視網路連接正常但上不了網 瀏覽:316
無線只有網路沒有信號怎麼回事 瀏覽:286
電腦網路口閃橙色綠色 瀏覽:824
陰陽師網路異常怎麼辦 瀏覽:740
路由器登不上顯示網路問題 瀏覽:835
隨身wifi哪個牌子網路好 瀏覽:713
無線網路保密檢查 瀏覽:343

友情鏈接