Ⅰ 如何理解人工智慧神經網路中的權值共享問題
權值(權重)共享這個詞是由LeNet5模型提出來的。以CNN為例,在對一張圖偏進行卷積的過程中,使用的是同一個卷積核的參數。比如一個3×3×1的卷積核,這個卷積核內9個的參數被整張圖共享,而不會因為圖像內位置的不同而改變卷積核內的權系數。說的再直白一些,就是用一個卷積核不改變其內權系數的情況下卷積處理整張圖片(當然CNN中每一層不會只有一個卷積核的,這樣說只是為了方便解釋而已)。
Ⅱ 吳恩達 卷積神經網路 CNN
應用計算機視覺時要面臨的一個挑戰是數據的輸入可能會非常大。例如一張 1000x1000x3 的圖片,神經網路輸入層的維度將高達三百萬,使得網路權重 W 非常龐大。這樣會造成兩個後果:
神經網路結構復雜,數據量相對較少,容易出現過擬合;
所需內存和計算量巨大。
因此,一般的神經網路很難處理蘊含著大量數據的圖像。解決這一問題的方法就是使用卷積神經網路
我們之前提到過,神經網路由淺層到深層,分別可以檢測出圖片的邊緣特徵、局部特徵(例如眼睛、鼻子等),到最後面的一層就可以根據前面檢測的特徵來識別整體面部輪廓。這些工作都是依託卷積神經網路來實現的。
卷積運算(Convolutional Operation)是卷積神經網路最基本的組成部分。我們以邊緣檢測為例,來解釋卷積是怎樣運算的。
圖片最常做的邊緣檢測有兩類:垂直邊緣(Vertical Edges)檢測和水平邊緣(Horizontal Edges)檢測。
比如檢測一張6x6像素的灰度圖片的vertical edge,設計一個3x3的矩陣(稱之為filter或kernel),讓原始圖片和filter矩陣做卷積運算(convolution),得到一個4x4的圖片。 具體的做法是,將filter矩陣貼到原始矩陣上(從左到右從上到下),依次可以貼出4x4種情況。 讓原始矩陣與filter重合的部分做element wise的乘積運算再求和 ,所得的值作為4x4矩陣對應元素的值。如下圖是第一個元素的計算方法,以此類推。
可以看到,卷積運算的求解過程是從左到右,由上到下,每次在原始圖片矩陣中取與濾波器同等大小的一部分,每一部分中的值與濾波器中的值對應相乘後求和,將結果組成一個矩陣。
下圖對應一個垂直邊緣檢測的例子:
如果將最右邊的矩陣當作圖像,那麼中間一段亮一些的區域對應最左邊的圖像中間的垂直邊緣。
下圖3x3濾波器,通常稱為垂直 索伯濾波器 (Sobel filter):
看看用它來處理知名的Lena照片會得到什麼:
現在可以解釋卷積操作的用處了:用輸出圖像中更亮的像素表示原始圖像中存在的邊緣。
你能看出為什麼邊緣檢測圖像可能比原始圖像更有用嗎?
回想一下MNIST手寫數字分類問題。在MNIST上訓練的CNN可以找到某個特定的數字。比如發現數字1,可以通過使用邊緣檢測發現圖像上兩個突出的垂直邊緣。
通常,卷積有助於我們找到特定的局部圖像特徵(如邊緣),用在後面的網路中。
假設輸入圖片的大小為 n×n,而濾波器的大小為 f×f,則卷積後的輸出圖片大小為 (n−f+1)×(n−f+1)。
這樣就有兩個問題:
為了解決這些問題,可以在進行卷積操作前,對原始圖片在邊界上進行填充(Padding),以增加矩陣的大小。通常將 0 作為填充值。
設每個方向擴展像素點數量為 p,則填充後原始圖片的大小為 (n+2p)×(n+2p),濾波器大小保持 f×f不變,則輸出圖片大小為 (n+2p−f+1)×(n+2p−f+1)。
因此,在進行卷積運算時,我們有兩種選擇:
在計算機視覺領域,f通常為奇數。原因包括 Same 卷積中 p=(f−1)/ 2 能得到自然數結果,並且濾波器有一個便於表示其所在位置的中心點。
卷積過程中,有時需要通過填充來避免信息損失,有時也需要通過設置 步長(Stride) 來壓縮一部分信息。
步長表示濾波器在原始圖片的水平方向和垂直方向上每次移動的距離。之前,步長被默認為 1。而如果我們設置步長為 2,則卷積過程如下圖所示:
設步長為 s,填充長度為p, 輸入圖片大小為n x n, 濾波器大小為f x f, 則卷積後圖片的尺寸為:
注意公式中有一個向下取整的符號,用於處理商不為整數的情況。向下取整反映著當取原始矩陣的圖示藍框完全包括在圖像內部時,才對它進行運算。
如果我們想要對三通道的 RGB 圖片進行卷積運算,那麼其對應的濾波器組也同樣是三通道的。過程是將每個單通道(R,G,B)與對應的濾波器進行卷積運算求和,然後再將三個通道的和相加,將 27 個乘積的和作為輸出圖片的一個像素值。
如果想同時檢測垂直和水平邊緣,或者更多的邊緣檢測,可以增加更多的濾波器組。例如設置第一個濾波器組實現垂直邊緣檢測,第二個濾波器組實現水平邊緣檢測。設輸入圖片的尺寸為 n×n×nc(nc為通道數),濾波器尺寸為 f×f×nc,則卷積後的輸出圖片尺寸為 (n−f+1)×(n−f+1)×n′c,n′c為濾波器組的個數。
與之前的卷積過程相比較,卷積神經網路的單層結構多了激活函數和偏移量;而與標准神經網路相比,濾波器的數值對應著權重 W[l],卷積運算對應著 W[l]與 A[l−1]的乘積運算,所選的激活函數變為 ReLU。
對於一個 3x3x3 的濾波器,包括偏移量 b(27+1)在內共有 28 個參數。不論輸入的圖片有多大,用這一個濾波器來提取特徵時,參數始終都是 28 個,固定不變。即選定濾波器組後,參數的數目與輸入圖片的尺寸無關。因此,卷積神經網路的參數相較於標准神經網路來說要少得多。這是 CNN 的優點之一。
圖像中的相鄰像素傾向於具有相似的值,因此通常卷積層相鄰的輸出像素也具有相似的值。這意味著,卷積層輸出中包含的大部分信息都是冗餘的。如果我們使用邊緣檢測濾波器並在某個位置找到強邊緣,那麼我們也可能會在距離這個像素1個偏移的位置找到相對較強的邊緣。但是它們都一樣是邊緣,我們並沒有找到任何新東西。池化層解決了這個問題。這個網路層所做的就是通過減小輸入的大小降低輸出值的數量。池化一般通過簡單的最大值、最小值或平均值操作完成。以下是池大小為2的最大池層的示例:
在計算神經網路的層數時,通常只統計具有權重和參數的層,因此池化層通常和之前的卷積層共同計為一層。
圖中的 FC3 和 FC4 為全連接層,與標準的神經網路結構一致。
個人推薦 一個直觀感受卷積神經網路的網站 。
相比標准神經網路,對於大量的輸入數據,卷積過程有效地減少了 CNN 的參數數量,原因有以下兩點:
-參數共享(Parameter sharing):特徵檢測如果適用於圖片的某個區域,那麼它也可能適用於圖片的其他區域。即在卷積過程中,不管輸入有多大,一個特徵探測器(濾波器)就能對整個輸入的某一特徵進行探測。
-稀疏連接(Sparsity of connections):在每一層中,由於濾波器的尺寸限制,輸入和輸出之間的連接是稀疏的,每個輸出值只取決於輸入在局部的一小部分值。
池化過程則在卷積後很好地聚合了特徵,通過降維來減少運算量。
由於 CNN 參數數量較小,所需的訓練樣本就相對較少,因此在一定程度上不容易發生過擬合現象。並且 CNN 比較擅長捕捉區域位置偏移。即進行物體檢測時,不太受物體在圖片中位置的影響,增加檢測的准確性和系統的健壯性。
在神經網路可以收斂的前提下,隨著網路深度增加,網路的表現先是逐漸增加至飽和,然後迅速下降
需要注意,網路退化問題不是過擬合導致的,即便在模型訓練過程中,同樣的訓練輪次下,退化的網路也比稍淺層的網路的訓練錯誤更高,如下圖所示。
這一點並不符合常理:如果存在某個 K層網路是當前F的最優的網路,我們構造更深的網路。那麼K之後的層數可以擬合成恆等映射,就可以取得和F一直的結果。如果K不是最佳層數,那麼我們比K深,可以訓練出的一定會不差於K的。總而言之,與淺層網路相比,更深的網路的表現不應該更差。因此,一個合理的猜測就是, 對神經網路來說,恆等映射並不容易擬合。
也許我們可以對網路單元進行一定的改造,來改善退化問題?這也就引出了殘差網路的基本思路
既然神經網路不容易擬合一個恆等映射,那麼一種思路就是構造天然的恆等映射。
實驗表明,殘差網路 很好地解決了深度神經網路的退化問題 ,並在ImageNet和CIFAR-10等圖像任務上取得了非常好的結果,同等層數的前提下殘差網路也 收斂得更快 。這使得前饋神經網路可以採用更深的設計。除此之外, 去除個別神經網路層,殘差網路的表現不會受到顯著影響 ,這與傳統的前饋神經網路大相徑庭。
2018年的一篇論文,The Shattered Gradients Problem: If resnets are the answer, then what is the question,指出了一個新的觀點,盡管殘差網路提出是為了解決梯度彌散和網路退化的問題, 它解決的實際上是梯度破碎問題
作者通過可視化的小型實驗(構建和訓練一個神經網路發現,在淺層神經網路中,梯度呈現為棕色雜訊(brown noise),深層神經網路的梯度呈現為白雜訊。在標准前饋神經網路中,隨著深度增加, 神經元梯度的相關性(corelation)按指數級減少 (1 / 2^L) ;同時, 梯度的空間結構也隨著深度增加被逐漸消除 。這也就是梯度破碎現象。
梯度破碎為什麼是一個問題呢?這是因為許多優化方法假設梯度在相鄰點上是相似的,破碎的梯度會大大減小這類優化方法的有效性。另外,如果梯度表現得像白雜訊,那麼某個神經元對網路輸出的影響將會很不穩定。
相較標准前饋網路, 殘差網路中梯度相關性減少的速度從指數級下降到亞線性級 ) (1 / sqrt(L)) ,深度殘差網路中,神經元梯度介於棕色雜訊與白雜訊之間(參見上圖中的c,d,e);殘差連接可以 極大地保留梯度的空間結構 。殘差結構緩解了梯度破碎問題。
1x1 卷積指濾波器的尺寸為 1。當通道數為 1 時,1x1 卷積意味著卷積操作等同於乘積操作。
而當通道數更多時,1x1 卷積的作用實際上類似全連接層的神經網路結構,從而降低(或升高,取決於濾波器組數)數據的維度。
池化能壓縮數據的高度(nH)及寬度(nW),而 1×1 卷積能壓縮數據的通道數(nC)。在如下圖所示的例子中,用 filters個大小為 1×1×32 的濾波器進行卷積,就能使原先數據包含的 32個通道壓縮為 filters 個。
在這之前,網路大都是這樣子的:
也就是卷積層和池化層的順序連接。這樣的話,要想提高精度,增加網路深度和寬度是一個有效途徑,但也面臨著參數量過多、過擬合等問題。(當然,改改超參數也可以提高性能)
有沒有可能在同一層就可以提取不同(稀疏或不稀疏)的特徵呢(使用不同尺寸的卷積核)?於是,2014年,在其他人都還在一味的增加網路深度時(比如vgg),GoogleNet就率先提出了卷積核的並行合並(也稱Bottleneck Layer),如下圖。
和卷積層、池化層順序連接的結構(如VGG網路)相比,這樣的結構主要有以下改進:
按照這樣的結構來增加網路的深度,雖然可以提升性能,但是還面臨計算量大(參數多)的問題。為改善這種現象,GooLeNet借鑒Network-in-Network的思想,使用1x1的卷積核實現降維操作(也間接增加了網路的深度),以此來減小網路的參數量(這里就不對兩種結構的參數量進行定量比較了),如圖所示。
最後實現的inception v1網路是上圖結構的順序連接
由於卷積這門課的其他內容和計算機視覺關系比較密切。對我理解推薦系統幫助不大。所以這個系列就到這里。吳恩達的課還是很好的,作業和課和測驗我都認真做啦。
Ⅲ CNN中卷積層、池化層和全連接層分別有什麼作用和區別
如下:
卷積層:提取特徵。「不全連接,參數共享」的特點大大降低了網路參數,保證了網路的稀疏性,防止過擬合。之所以可以「參數共享」,是因為樣本存在局部相關的特性。
池化層:有MaxPool和AveragePool等。其中MaxPool應用廣泛。因為經過MaxPool可以減小卷積核的尺寸,同時又可以保留相應特徵,所以主要用來降維。
全連接層:在全連接的過程中丟失位置信息,可以理解為降低了學習過程中的參數敏感度;很多分類問題需要通過softmax層進行輸出;進行非線性變換等等。但是現在已經有很多網路結構去掉了最後的全連接層。我也是入坑沒多久,對這一點理解仍很粗淺。
Ⅳ 人工智慧CNN卷積神經網路如何共享權值
首先權值共享就是濾波器共享,濾波器的參數是固定的,即是用相同的濾波器去掃一遍圖像,提取一次特徵特徵,得到feature map。在卷積網路中,學好了一個濾波器,就相當於掌握了一種特徵,這個濾波器在圖像中滑動,進行特徵提取,然後所有進行這樣操作的區域都會被採集到這種特徵,就好比上面的水平線。
Ⅳ 如何理解卷積神經網路中的權值共享
所謂的權值共享就是說,給一張輸入圖片,用一個filter去掃這張圖,filter裡面的數就叫權重,這張圖每個位置是被同樣的filter掃的,所以權重是一樣的,也就是共享。 這么說可能還不太明白,如果你能理解什麼叫全連接神經網路的話,那麼從一個盡量減少參數個數的角度去理解就可以了。 對於一張輸入圖片,大小為W*H,如果使用全連接網路,生成一張X*Y的feature map,需要W*H*X*Y個參數,如果原圖長寬是10^2級別的,而且XY大小和WH差不多的話,那麼這樣一層網路需要的參數個數是10^8~10^12級別。 這么多參數肯定是不行的,那麼我們就想辦法減少參數的個數對於輸出層feature map上的每一個像素,他與原圖片的每一個像素都有連接,每一個鏈接都需要一個參數。但注意到圖像一般都是局部相關的,那麼如果輸出層的每一個像素只和輸入層圖片的一個局部相連,那麼需要參數的個數就會大大減少。假設輸出層每個像素只與輸入圖片上F*F的一個小方塊有連接,也就是說輸出層的這個像素值,只是通過原圖的這個F*F的小方形中的像素值計算而來,那麼對於輸出層的每個像素,需要的參數個數就從原來的W*H減小到了F*F。如果對於原圖片的每一個F*F的方框都需要計算這樣一個輸出值,那麼需要的參數只是W*H*F*F,如果原圖長寬是10^2級別,而F在10以內的話,那麼需要的參數的個數只有10^5~10^6級別,相比於原來的10^8~10^12小了很多很多。
Ⅵ PART 4 W1 卷積神經網路介紹
一個是圖像分類:如貓臉識別等;一個是目標檢測:如無人駕駛技術中的各種交通信號檢測技術
1. 卷積操作及過濾器/卷積核的概念
如上圖所示:最左側矩陣是一個灰度圖像,中間是一個3*3的小矩陣,稱為「卷積核」或「過濾器」。
卷積:先把卷積核放到灰度圖像左上角(綠色框),蓋住灰度圖像上一個3*3的矩陣區域,然後9對對應的元素相乘,然後求和(得到0),然後把卷積核逐漸移動一行一行的「掃描」,最終得到最右側矩陣。上述操作叫做「卷積」,最右側矩陣是卷積的輸出。
2. 垂直邊緣檢測
仍以上圖為例,可以看到3*3的卷積核具體的數值構成為「左邊一列1,中間一列0,右邊一列-1」,這種卷積核在「掃描」灰度圖像時,可以檢測到灰度圖像的垂直邊緣。分析如下:
1)假設正在掃描的灰度區域沒有垂直邊緣,意味著區域內的值在左右方向上分布差不多,與卷積核做完運算後,左邊的乘1,右邊的乘-1,相加正好有一定的抵消作用,其實計算出來的結果會接近0。即:卷積結果接近0代表沒有邊緣。
2)有垂直邊緣分為兩種情況:目標區域「左邊值較大,右邊值較小」 或「左邊值較小,右邊值較大」。前一種情況在卷積操作後會得到一個較大的正值,後一種情況卷積操作後會得到一個較大的負值。
可以看出,較大的正值代表著目標區域的變化趨勢與卷積核相同,即檢測到的是與卷積核相同的邊緣,而較大的負值代表目標區域的變化趨勢與卷積核相反,即檢測到的是與卷積核相反的邊緣。
3. 卷積應用在卷積神經網路中
卷積操作如何應用於神經網路中?簡言之,卷積核本身就是網路要學習的參數。如上圖所示,我們並不是事先設定好要檢測垂直邊緣或水平邊緣或其它什麼邊緣,而是要網路去學習要檢測什麼東西。
1. padding的原因
在上節展示的卷積操作中,可以看出,假設輸入圖像的大小為n*n,而卷積核的大小為f*f,那麼卷積核從輸入圖像的左上角掃描到右下角,最終得到的結果大小為(n-f+1)*(n-f+1),意味著如果一次次進行卷積,那麼結果的尺寸會越來越小
另外,顯然輸入圖像邊緣的像素被使用的較少(最邊緣的像素僅被使用一次),這顯然會造成信息的丟失。
2. 如何進行padding
非常簡單:把輸入圖像的四周補充p = (f-1)/2 圈的0,這樣輸入的圖像尺寸變成了(n+2p)*(n+2p),因此卷積後的大小變成了(n+2p -f + 1)*(n+2p -f + 1)=n*n,即與原始的圖像有了相同的大小,且原始圖像邊緣的像素也被較多的利用到。
3. 幾點補充
(1)卷積核的尺寸設置為 奇數 :因為① 這樣(f-1)/2就恰好是整數了,方便進行padding,② 有中心像素,便於表徵卷積核的位置,等。
(2)根據是否進行padding,分為 普通卷積(valid) 和 同尺寸卷積(same)
1. 步長概念
在上文中講到卷積,即使用一個卷積核對輸入圖像進行「掃描」並進行相應計算時,提到這個「掃描」是逐個像素逐個像素的邁進的。但是,並不一定非得這樣,也可以每次跨越兩個或更多個像素,這就是「步長」的概念,一般用s表示
2. 卷積結果尺寸與步長的關系
前文提到,若輸入圖像尺寸為n*n,卷積核尺寸為f*f,則卷積結果尺寸為(n+f-1)*(n+f-1),若算上padding操作,則結果為(n+2p -f + 1)*(n+2p -f + 1)。這是在步長s=1的前提下成立。若步長不為1,則結果為floor((n+2p-f)/s+1)**2
3. 其它:數學中的卷積和神經網路中的卷積
需要說明的是,神經網路中所說的卷積和數學中說的卷積不是一回事,但數學中的卷積是啥就不追究了。
神經網路中的卷積操作,在數學的描述上,更像是一種「交叉相關性」的計算,可以看出,若目標區域與卷積核有類似的分布,則會計算出較大的正值(正相關),若有相反的分布,則會計算出較大的負值(負相關),若沒什麼關系,則會計算出接近0的值(不相關)。卷積操作的確很像一種相關性的計算。
1. RGB圖像的數學構成
灰度圖像是一個n*n的二維矩陣,彩色圖像則是n*n*3 的三維矩陣,最外圍的三個維度分別代表了RGB三原色的值,其中數字「3」在卷積神經網路中被稱為通道數或信道數
2. 對RGB圖像進行卷積
在對灰度圖像進行卷積時,使用的是f*f的二維卷積核。在對RGB圖像進行卷積時,則卷積核的維度也+1,變成了f*f*3。一次卷積的結果仍然是把所有的值加起來輸出一個值。即: 一個三維的圖像,和一個三維的卷積核,在進行完卷積操作後,輸出的是一個二維的矩陣(如上圖) 。
3. 當使用多個卷積核時的輸出
如上圖所示,可以使用多個卷積核(一個亮黃色,一個屎黃色)。根據前文描述,一個立體的卷積核在一個立體的矩陣上掃描完,結果是一個二維的。但當使用多個卷積核時,則輸出了多個二維矩陣,這些二維矩陣沿著第三個維度排列到一起,使得結果重新變成了三維。此時,第三個維度的尺寸,反應的是卷積核數,也就是說 卷積核數就是信道數 。直觀理解,每一個卷積核代表著檢測了某一種特徵,多個卷積核就是同時檢測了多種特徵,傳遞了多種信息。
1. 一個卷積層的數據的基本流
如上圖所示,由於卷積核本身就是一堆待學參數w,所以卷積操作本質還是「加權求和」,之後會加入偏置值,然後進行非線性變換,然後輸出(到下一層),可見還是那一套。
需要提一下的是,卷積的輸入不一定是原始圖像構成的矩陣,還有可能是上一個卷積的結果。原始圖像是彩色的,有多個通道。卷積時可以用多個卷積核,最終產生的結果也是立體的。因此原始的輸入與中間卷積層的輸出,在數學形式上是統一的。因此可以「輸入->卷積層->卷積層->...」這樣操作。
2. 卷積層的參數規模
一個卷積層總的參數規模(包括w,不包括b)為: ,即:卷積核的大小的平方*上層輸出的通道數)*本層所用的卷積核數。與上層輸入的大小無關(但與通道數有關)
3. 一個卷積層涉及到的超參
卷積核的大小、是否padding、步長、卷積核數。
1. 一個示例
上圖為一個簡單的卷積神經網路示例: 一層一層的卷積,最後把所有的元素展開成一個一維向量,然後加一個全連接層。
2. 注意以下幾點:
1⃣️ 實際上CNN會有卷積層、池化層、全連接層,而非僅有卷積和全連接;
2⃣️ 從數據的構成形式上看,按照網路從前往後的順序,圖片尺寸不斷減小,信道數量不斷增加。一般遵從這個趨勢。
1. 池化
如上圖所示,假設輸入是一個4*4的矩陣,現在我們把它分割成2*2四個子矩陣(或者說使用一個2*2的核以2為步長掃描矩陣),對四個子區域分別求最大值,最終得到一個值為9、2、6、3的2*2的矩陣輸出。這種操作就叫池化,具體為最大值池化。
2. 池化的作用
1⃣️ 一般來說,較大的值往往代表學到了一個重要或典型的特徵,把原始輸入以某種方式濾除掉一些不重要的值,只保留一些較大的值,相當於 強化了一些重要信息的表達 。2⃣️ 降低圖片的尺寸,可以節省空間、加速運算等。
3. 池化的特點
並沒有需要學習的參數(w、b之類的),也因此「池化層」一般並不被稱為單獨的一層。在卷積神經網路中,通常把一個卷積層+一個池化層的組合叫一層。
4. 池化的超參數及經驗值
池化層沒有要學習的參數,只有核心的兩個超參:池化核的大小、池化步長。此外還有池化所用的rece操作:最大或者平均(沒有其它選項)。
一般把池化核的大小設置為3或2,步長為2。注意:步長為2意味著把圖片減小到原來的一半。
rece操作最常用最大池化,偶爾用平均池化,不會用其它操作。
上圖為一個典型的卷積神經網路示例,描述如下:
輸入層 :彩色的手寫數字圖片,數學構成為32*32*3的矩陣,其中3為通道數。
Layer 1-卷積層 :1)使用6個5*5*3的卷積核,以步長為1對輸入層進行卷積,輸出28*28*6的矩陣,2)然後使用2*2的最大池化,步長為2,最終輸出14*14*6的矩陣。其中14為圖片尺寸,6為信道數。
Layer2-卷積層 :1)使用16個5*5*3的卷積核以步長1對上層輸出進行卷積,輸出10*10*16的矩陣,2)然後使用2*2的最大池化,步長為2,最終輸出5*5*16的矩陣。
Layer3-全連接層: 把上層輸出的5*5*16矩陣展開成1*400的一維向量,以120*400的權重矩陣送入本層120個神經元,激活後輸出。
Layer4-全連接層: 120->84,激活後輸出
輸出層 :84 -> 10,然後softmax後輸出。
1. 參數少
假如原始圖片尺寸為100*100*3,假設使用全連接,即使第二層僅用100個神經元,那也已經產生了100*100*3*100 = 300w個參數,難以想像。
假設使用卷積層,使用10個10*10*3的卷積核,那就是只有3000個參數,而能輸出的矩陣規模是91*91*10=81000
2. 參數少的原因
1)稀疏連接:卷積核掃描矩陣產生輸出,這個過程就從「神經元連接」的角度看,輸入的左上角只連著輸出的左上角,右上角只連右上角,而非「全連接」,參數就會少很多。2)參數共享:這么稀疏的連接,還是使用了同一套參數,進一步減少了參數的量。
3. 參數共享的其它好處
如果圖片上有一隻貓,那麼不管這個貓在圖片的什麼位置,都不改變「這是一張貓的照片」。使用參數共享時,相當於用同樣的特徵提取作用到整個圖片的各個區域,適應平移不變性,增強魯棒性。
Ⅶ 卷積神經網路主要做什麼用的
卷積網路的特點主要是卷積核參數共享,池化操作。
參數共享的話的話是因為像圖片等結構化的數據在不同的區域可能會存在相同的特徵,那麼就可以把卷積核作為detector,每一層detect不同的特徵,但是同層的核是在圖片的不同地方找相同的特徵。然後把底層的特徵組合傳給後層,再在後層對特徵整合(一般深度網路是說不清楚後面的網路層得到了什麼特徵的)。
而池化主要是因為在某些任務中降采樣並不會影響結果。所以可以大大減少參數量,另外,池化後在之前同樣大小的區域就可以包含更多的信息了。
綜上,所有有這種特徵的數據都可以用卷積網路來處理。有卷積做視頻的,有卷積做文本處理的(當然這兩者由於是序列信號,天然更適合用lstm處理)
另外,卷積網路只是個工具,看你怎麼使用它,有必要的話你可以隨意組合池化和卷積的順序,可以改變網路結構來達到自己所需目的的,不必太被既定框架束縛。
Ⅷ 卷積神經網路(CNN)基礎
在七月初七情人節,牛郎織女相見的一天,我終於學習了CNN(來自CS231n),感覺感觸良多,所以趕快記下來,別忘了,最後祝大家情人節快樂5555555.正題開始!
CNN一共有卷積層(CONV)、ReLU層(ReLU)、池化層(Pooling)、全連接層(FC(Full Connection))下面是各個層的詳細解釋。
卷積,尤其是圖像的卷積,需要一個濾波器,用濾波器對整個圖像進行遍歷,我們假設有一個32*32*3的原始圖像A,濾波器的尺寸為5*5*3,用w表示,濾波器中的數據就是CNN的參數的一部分,那麼在使用濾波器w對A進行濾波的話,可以用下面的式子表示:
其中x為原始圖像的5*5*3的一部分,b是偏置項置為1。在對A進行濾波之後,產生的是一個28*28*1的數據。那麼假設我們存在6個濾波器,這六個濾波器之間彼此是獨立的,也就是他們內部的數據是不同的且沒有相關性的。可以理解為一個濾波器查找整幅圖像的垂直邊緣,一個查找水平邊緣,一個查找紅色,一個查找黑色這樣。那麼我就可以產生6個28*28*1的數據,將它們組合到一起就可以產生28*28*6的數據,這就是卷積層主要做的工作。
CNN可以看作一系列的卷積層和ReLU層對原始數據結構進行處理的神經網路,處理的過程可以用下面這幅圖表示
特別要注意的是濾波器的深度一定要與上一層傳來的數據的深度相同,就像上圖的第二個卷積層在處理傳來的28*28*6的數據時要使用5*5*6的濾波器.
濾波器在圖像上不斷移動對圖像濾波,自然存在步長的問題,在上面我們舉的例子都是步長為1的情況,如果步長為3的話,32*32*3的圖像經過5*5*3的濾波器卷積得到的大小是(32-5)/3+1=10, 註:步長不能為2因為(32-5)/2+1=14.5是小數。
所以當圖像大小是N,濾波器尺寸為F時,步長S,那麼卷積後大小為(N-F)/S+1
我們從上面的圖中可以看到圖像的長和寬在逐漸的減小,在經過超過5層之後極可能只剩下1*1的空間尺度,這樣是十分不好的,而且也不利於我們接下來的計算,所以我們想讓卷積層處理完之後圖像在空間尺度上大小不變,所以我們引入了pad the border的操作。pad其實就是在圖像周圍補0,擴大圖像的尺寸,使得卷積後圖像大小不變。在CNN中,主要存在4個超參數,濾波器個數K,濾波器大小F,pad大小P和步長S,其中P是整數,當P=1時,對原始數據的操作如圖所示:
那麼在pad操作後卷積後的圖像大小為:(N-F+2*P)/S+1
而要想讓卷積層處理後圖像空間尺度不變,P的值可以設為P=(F-1)/2
卷積層輸入W 1 *H 1 *D 1 大小的數據,輸出W 2 *H 2 *D 2 的數據,此時的卷積層共有4個超參數:
K:濾波器個數
P:pad屬性值
S:濾波器每次移動的步長
F:濾波器尺寸
此時輸出的大小可以用輸入和超參計算得到:
W 2 =(W 1 -F+2P)/S+1
H 2 =(H 1 -F+2P)/S+1
D 2 =D 1
1*1的濾波器也是有意義的,它在深度方向做卷積,例如1*1*64的濾波器對56*56*64的數據卷積得到56*56的數據
F通常是奇數,這樣可以綜合考慮上下左右四個方向的數據。
卷積層從神經元的角度看待可以有兩個性質: 參數共享和局域連接 。對待一個濾波器,例如5*5*3的一個濾波器,對32*32*3的數據卷積得到28*28的數據,可以看作存在28*28個神經元,每個對原圖像5*5*3的區域進行計算,這28*28個神經元由於使用同一個濾波器,所以參數相同,我們稱這一特性為 參數共享 。
針對不同的濾波器,我們可以看到他們會看到同一區域的圖像,相當於在深度方向存在多個神經元,他們看著相同區域叫做 局域連接
參數共享減少了參數的數量,防止了過擬合
局域連接為查找不同特徵更豐富的表現圖像提供了可能。
卷積就像是對原圖像的另一種表達。
激活函數,對於每一個維度經過ReLU函數輸出即可。不改變數據的空間尺度。
通過pad操作,輸出圖像在控制項上並沒有變化,但是深度發生了變化,越來越龐大的數據給計算帶來了困難,也出現了冗餘的特徵,所以需要進行池化操作,池化不改變深度,只改變長寬,主要有最大值和均值兩種方法,一般的池化濾波器大小F為2步長為2,對於最大值池化可以用下面的圖像清晰的表示:
卷積層輸入W 1 *H 1 *D 1 大小的數據,輸出W 2 *H 2 *D 2 的數據,此時的卷積層共有2個超參數:
S:濾波器每次移動的步長
F:濾波器尺寸
此時輸出的大小可以用輸入和超參計算得到:
W 2 =(W 1 -F)/S+1
H 2 =(H 1 -F)/S+1
D 2 =D 1
將最後一層(CONV、ReLU或Pool)處理後的數據輸入全連接層,對於W 2 *H 2 *D 2 數據,我們將其展成1*1*W 2 *H 2 *D 2 大小的數據,輸入層共有W 2 *H 2 *D 2 個神經元,最後根據問題確定輸出層的規模,輸出層可以用softmax表示。也就是說,全連接層就是一個常見的BP神經網路。而這個網路也是參數最多的部分,是接下來想要去掉的部分。完整的神經網路可以用下面的圖表示:
[(CONV-ReLU)*N-POOL?]*M-(FC-RELU)*K,SoftMax
1.更小的濾波器與更深的網路
2.只有CONV層而去掉池化與全鏈接
最早的CNN,用於識別郵編,結構為:
CONV-POOL-CONV-POOL-CONV-FC
濾波器大小5*5,步長為1,池化層2*2,步長為2
2012年由於GPU技術所限,原始AlexNet為兩個GPU分開計算,這里介紹合起來的結構。
輸入圖像為227*227*3
1.首次使用ReLU
2.使用Norm layers,現在已經拋棄,因為效果不大
3.數據經過預處理(例如大小變化,顏色變化等)
4.失活比率0.5
5.batch size 128
6.SGD Momentum 參數0.9(SGD和Momentum見我的其他文章)
7.學習速率 0.01,准確率不在提升時減少10倍,1-2次後達到收斂
8.L2權重減少0.0005
9.錯誤率15.4%
改進自AlexNet,主要改變:
1.CONV1的濾波器從11*11步長S=4改為7*7步長為2.
2.CONV3,4,5濾波器數量有384,384,256改為512,1024,512(濾波器數量為2的n次冪有利於計算機計算可以提高效率)
錯誤率:14.8%後繼續改進至11.2%
當前最好的最易用的CNN網路,所有卷積層濾波器的大小均為3*3,步長為1,pad=1,池化層為2*2的最大值池化,S=2。
主要參數來自全連接層,這也是想要去掉FC的原因。
具有高度的統一性和線性的組合,易於理解,十分方便有VGG-16,VGG-19等多種結構。
錯誤率7.3%
完全移除FC層,參數只有500萬,使用Inception模塊(不太理解,有時間繼續看)
准確率6.67%
准確率3.6%
擁有極深的網路結構,且越深准確率越高。是傳統CNN不具備的特點,傳統CNN並非越深越准確。需要訓練時間較長但是快於VGG
1.每個卷積層使用Batch Normalization
2.Xavier/2初始化
3.SGD+Momentum(0.9)
4.Learning rate:0.1,准確率不變減小10倍(因為Batch Normalization所以比AlexNet大)
5.mini-batch size 256
6.Weight decay of 0.00001
7.不適用失活(因為Batch Normalization)
具體的梯度過程學完ResNet再說吧。