導航:首頁 > 網路共享 > 神經網路與軟體與數學

神經網路與軟體與數學

發布時間:2022-07-26 09:50:05

① 計算機專業(不是軟體工程)數學這門課重要不

說不重要的都是。。。編程上的戰五渣。。。。。

計算機專業其實就是數學科學的一門分支,非常重要。。。

如果你是本科的話,就更加重要了,如果你沒有數學基礎,你編出來的程序只能是簡單的程序,就連初學者看看書都能寫得出的程序,好像計算器,播放器,或者是QQ之類的只要看看書都能寫得出來的玩意。。

真正高科技的,如模式識別,人工神經網路,人工智慧,都要求要非常強大的數學功底,線性代數,高等數學,甚至概率論一個都不能少。
特別是比較火的人臉識別,玩的就是線性代數。
還有應用比較廣泛的人工神經網路,就是用高等數學和線性的結合體,可以用於車牌識別等領域。。

我覺得只有掌握了模式識別或者是人工神經網路的才能叫做計算機專業會編程的,才不會那麼容易被時代而淘汰。。。

還有壓縮文件用的是統計學的概念。。。。只有充分掌握數學才能學好計算機科學。。。。。。

再說,你不會數學,你連國外論文都看不懂。。。
不會用數學知識編程,只能淪為碼農,寫著及其簡單的程序,一個不小心就會被淘汰。。。。

② 神經網路到底能幹什麼

神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路可以用於模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。

神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。

③ 有人可以介紹一下什麼是"神經網路"嗎

由於神經網路是多學科交叉的產物,各個相關的學科領域對神經網路
都有各自的看法,因此,關於神經網路的定義,在科學界存在許多不同的
見解。目前使用得最廣泛的是T.Koholen的定義,即"神經網路是由具有適
應性的簡單單元組成的廣泛並行互連的網路,它的組織能夠模擬生物神經
系統對真實世界物體所作出的交互反應。"

如果我們將人腦神經信息活動的特點與現行馮·諾依曼計算機的工作方
式進行比較,就可以看出人腦具有以下鮮明特徵:

1. 巨量並行性。
在馮·諾依曼機中,信息處理的方式是集中、串列的,即所有的程序指
令都必須調到CPU中後再一條一條地執行。而人在識別一幅圖像或作出一項
決策時,存在於腦中的多方面的知識和經驗會同時並發作用以迅速作出解答。
據研究,人腦中約有多達10^(10)~10^(11)數量級的神經元,每一個神經元
具有103數量級的連接,這就提供了巨大的存儲容量,在需要時能以很高的
反應速度作出判斷。

2. 信息處理和存儲單元結合在一起。
在馮·諾依曼機中,存儲內容和存儲地址是分開的,必須先找出存儲器的
地址,然後才能查出所存儲的內容。一旦存儲器發生了硬體故障,存儲器中
存儲的所有信息就都將受到毀壞。而人腦神經元既有信息處理能力又有存儲
功能,所以它在進行回憶時不僅不用先找存儲地址再調出所存內容,而且可
以由一部分內容恢復全部內容。當發生"硬體"故障(例如頭部受傷)時,並
不是所有存儲的信息都失效,而是僅有被損壞得最嚴重的那部分信息丟失。

3. 自組織自學習功能。
馮·諾依曼機沒有主動學習能力和自適應能力,它只能不折不扣地按照
人們已經編制好的程序步驟來進行相應的數值計算或邏輯計算。而人腦能夠
通過內部自組織、自學習的能力,不斷地適應外界環境,從而可以有效地處
理各種模擬的、模糊的或隨機的問題。

神經網路研究的主要發展過程大致可分為四個階段:

1. 第一階段是在五十年代中期之前。

西班牙解剖學家Cajal於十九世紀末創立了神經元學說,該學說認為神經
元的形狀呈兩極,其細胞體和樹突從其他神經元接受沖動,而軸索則將信號
向遠離細胞體的方向傳遞。在他之後發明的各種染色技術和微電極技術不斷
提供了有關神經元的主要特徵及其電學性質。

1943年,美國的心理學家W.S.McCulloch和數學家W.A.Pitts在論文《神經
活動中所蘊含思想的邏輯活動》中,提出了一個非常簡單的神經元模型,即
M-P模型。該模型將神經元當作一個功能邏輯器件來對待,從而開創了神經
網路模型的理論研究。

1949年,心理學家D.O. Hebb寫了一本題為《行為的組織》的書,在這本
書中他提出了神經元之間連接強度變化的規則,即後來所謂的Hebb學習法則。
Hebb寫道:"當神經細胞A的軸突足夠靠近細胞B並能使之興奮時,如果A重
復或持續地激發B,那麼這兩個細胞或其中一個細胞上必然有某種生長或代
謝過程上的變化,這種變化使A激活B的效率有所增加。"簡單地說,就是
如果兩個神經元都處於興奮狀態,那麼它們之間的突觸連接強度將會得到增
強。

五十年代初,生理學家Hodykin和數學家Huxley在研究神經細胞膜等效電
路時,將膜上離子的遷移變化分別等效為可變的Na+電阻和K+電阻,從而建
立了著名的Hodykin-Huxley方程。

這些先驅者的工作激發了許多學者從事這一領域的研究,從而為神經計
算的出現打下了基礎。

2. 第二階段從五十年代中期到六十年代末。

1958年,F.Rosenblatt等人研製出了歷史上第一個具有學習型神經網路
特點的模式識別裝置,即代號為Mark I的感知機(Perceptron),這一重
大事件是神經網路研究進入第二階段的標志。對於最簡單的沒有中間層的
感知機,Rosenblatt證明了一種學習演算法的收斂性,這種學習演算法通過迭代
地改變連接權來使網路執行預期的計算。

稍後於Rosenblatt,B.Widrow等人創造出了一種不同類型的會學習的神經
網路處理單元,即自適應線性元件Adaline,並且還為Adaline找出了一種有
力的學習規則,這個規則至今仍被廣泛應用。Widrow還建立了第一家神經計
算機硬體公司,並在六十年代中期實際生產商用神經計算機和神經計算機軟
件。

除Rosenblatt和Widrow外,在這個階段還有許多人在神經計算的結構和
實現思想方面作出了很大的貢獻。例如,K.Steinbuch研究了稱為學習矩陣
的一種二進制聯想網路結構及其硬體實現。N.Nilsson於1965年出版的
《機器學習》一書對這一時期的活動作了總結。

3. 第三階段從六十年代末到八十年代初。

第三階段開始的標志是1969年M.Minsky和S.Papert所著的《感知機》一書
的出版。該書對單層神經網路進行了深入分析,並且從數學上證明了這種網
絡功能有限,甚至不能解決象"異或"這樣的簡單邏輯運算問題。同時,他們
還發現有許多模式是不能用單層網路訓練的,而多層網路是否可行還很值得
懷疑。

由於M.Minsky在人工智慧領域中的巨大威望,他在論著中作出的悲觀結論
給當時神經網路沿感知機方向的研究潑了一盆冷水。在《感知機》一書出版
後,美國聯邦基金有15年之久沒有資助神經網路方面的研究工作,前蘇聯也
取消了幾項有前途的研究計劃。

但是,即使在這個低潮期里,仍有一些研究者繼續從事神經網路的研究工
作,如美國波士頓大學的S.Grossberg、芬蘭赫爾辛基技術大學的T.Kohonen
以及日本東京大學的甘利俊一等人。他們堅持不懈的工作為神經網路研究的
復興開辟了道路。

4. 第四階段從八十年代初至今。

1982年,美國加州理工學院的生物物理學家J.J.Hopfield採用全互連型
神經網路模型,利用所定義的計算能量函數,成功地求解了計算復雜度為
NP完全型的旅行商問題(Travelling Salesman Problem,簡稱TSP)。這
項突破性進展標志著神經網路方面的研究進入了第四階段,也是蓬勃發展
的階段。

Hopfield模型提出後,許多研究者力圖擴展該模型,使之更接近人腦的
功能特性。1983年,T.Sejnowski和G.Hinton提出了"隱單元"的概念,並且
研製出了Boltzmann機。日本的福島邦房在Rosenblatt的感知機的基礎上,
增加隱層單元,構造出了可以實現聯想學習的"認知機"。Kohonen應用3000
個閾器件構造神經網路實現了二維網路的聯想式學習功能。1986年,
D.Rumelhart和J.McClelland出版了具有轟動性的著作《並行分布處理-認知
微結構的探索》,該書的問世宣告神經網路的研究進入了高潮。

1987年,首屆國際神經網路大會在聖地亞哥召開,國際神經網路聯合會
(INNS)成立。隨後INNS創辦了刊物《Journal Neural Networks》,其他
專業雜志如《Neural Computation》,《IEEE Transactions on Neural
Networks》,《International Journal of Neural Systems》等也紛紛
問世。世界上許多著名大學相繼宣布成立神經計算研究所並制訂有關教育
計劃,許多國家也陸續成立了神經網路學會,並召開了多種地區性、國際性
會議,優秀論著、重大成果不斷涌現。

今天,在經過多年的准備與探索之後,神經網路的研究工作已進入了決
定性的階段。日本、美國及西歐各國均制訂了有關的研究規劃。

日本制訂了一個"人類前沿科學計劃"。這項計劃為期15-20年,僅
初期投資就超過了1萬億日元。在該計劃中,神經網路和腦功能的研究佔有
重要地位,因為所謂"人類前沿科學"首先指的就是有關人類大腦以及通過
借鑒人腦而研製新一代計算機的科學領域。

在美國,神經網路的研究得到了軍方的強有力的支持。美國國防部投資
4億美元,由國防部高級研究計劃局(DAPRA)制訂了一個8年研究計劃,
並成立了相應的組織和指導委員會。同時,海軍研究辦公室(ONR)、空軍
科研辦公室(AFOSR)等也紛紛投入巨額資金進行神經網路的研究。DARPA認
為神經網路"看來是解決機器智能的唯一希望",並認為"這是一項比原子彈
工程更重要的技術"。美國國家科學基金會(NSF)、國家航空航天局(NASA)
等政府機構對神經網路的發展也都非常重視,它們以不同的形式支持了眾多
的研究課題。

歐共體也制訂了相應的研究計劃。在其ESPRIT計劃中,就有一個項目是
"神經網路在歐洲工業中的應用",除了英、德兩國的原子能機構外,還有多
個歐洲大公司卷進這個研究項目,如英國航天航空公司、德國西門子公司等。
此外,西歐一些國家還有自己的研究計劃,如德國從1988年就開始進行一個
叫作"神經資訊理論"的研究計劃。

我國從1986年開始,先後召開了多次非正式的神經網路研討會。1990年
12月,由中國計算機學會、電子學會、人工智慧學會、自動化學會、通信學
會、物理學會、生物物理學會和心理學會等八個學會聯合在北京召開了"中
國神經網路首屆學術會議",從而開創了我國神經網路研究的新紀元。

④ 人工神經網路的發展趨勢

人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。
神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。
下面主要就神經網路與小波分析、混沌、粗集理論、分形理論的融合進行分析。
與小波分析的結合
1981年,法國地質學家Morlet在尋求地質數據時,通過對Fourier變換與加窗Fourier變換的異同、特點及函數構造進行創造性的研究,首次提出了小波分析的概念,建立了以他的名字命名的Morlet小波。1986年以來由於YMeyer、S.Mallat及IDaubechies等的奠基工作,小波分析迅速發展成為一門新興學科。Meyer所著的小波與運算元,Daubechies所著的小波十講是小波研究領域最權威的著作。
小波變換是對Fourier分析方法的突破。它不但在時域和頻域同時具有良好的局部化性質,而且對低頻信號在頻域和對高頻信號在時域里都有很好的解析度,從而可以聚集到對象的任意細節。小波分析相當於一個數學顯微鏡,具有放大、縮小和平移功能,通過檢查不同放大倍數下的變化來研究信號的動態特性。因此,小波分析已成為地球物理、信號處理、圖像處理、理論物理等諸多領域的強有力工具。
小波神經網路將小波變換良好的時頻局域化特性和神經網路的自學習功能相結合,因而具有較強的逼近能力和容錯能力。在結合方法上,可以將小波函數作為基函數構造神經網路形成小波網路,或者小波變換作為前饋神經網路的輸入前置處理工具,即以小波變換的多解析度特性對過程狀態信號進行處理,實現信噪分離,並提取出對加工誤差影響最大的狀態特性,作為神經網路的輸入。
小波神經網路在電機故障診斷、高壓電網故障信號處理與保護研究、軸承等機械故障診斷以及許多方面都有應用,將小波神經網路用於感應伺服電機的智能控制,使該系統具有良好的跟蹤控制性能,以及好的魯棒性,利用小波包神經網路進行心血管疾病的智能診斷,小波層進行時頻域的自適應特徵提取,前向神經網路用來進行分類,正確分類率達到94%。
小波神經網路雖然應用於很多方面,但仍存在一些不足。從提取精度和小波變換實時性的要求出發,有必要根據實際情況構造一些適應應用需求的特殊小波基,以便在應用中取得更好的效果。另外,在應用中的實時性要求,也需要結合DSP的發展,開發專門的處理晶元,從而滿足這方面的要求。
混沌神經網路
混沌第一個定義是上世紀70年代才被Li-Yorke第一次提出的。由於它具有廣泛的應用價值,自它出現以來就受到各方面的普遍關注。混沌是一種確定的系統中出現的無規則的運動,混沌是存在於非線性系統中的一種較為普遍的現象,混沌運動具有遍歷性、隨機性等特點,能在一定的范圍內按其自身規律不重復地遍歷所有狀態。混沌理論所決定的是非線性動力學混沌,目的是揭示貌似隨機的現象背後可能隱藏的簡單規律,以求發現一大類復雜問題普遍遵循的共同規律。
1990年Kaihara、T.Takabe和M.Toyoda等人根據生物神經元的混沌特性首次提出混沌神經網路模型,將混沌學引入神經網路中,使得人工神經網路具有混沌行為,更加接近實際的人腦神經網路,因而混沌神經網路被認為是可實現其真實世界計算的智能信息處理系統之一,成為神經網路的主要研究方向之一。
與常規的離散型Hopfield神經網路相比較,混沌神經網路具有更豐富的非線性動力學特性,主要表現如下:在神經網路中引入混沌動力學行為;混沌神經網路的同步特性;混沌神經網路的吸引子。
當神經網路實際應用中,網路輸入發生較大變異時,應用網路的固有容錯能力往往感到不足,經常會發生失憶現象。混沌神經網路動態記憶屬於確定性動力學運動,記憶發生在混沌吸引子的軌跡上,通過不斷地運動(回憶過程)一一聯想到記憶模式,特別對於那些狀態空間分布的較接近或者發生部分重疊的記憶模式,混沌神經網路總能通過動態聯想記憶加以重現和辨識,而不發生混淆,這是混沌神經網路所特有的性能,它將大大改善Hopfield神經網路的記憶能力。混沌吸引子的吸引域存在,形成了混沌神經網路固有容錯功能。這將對復雜的模式識別、圖像處理等工程應用發揮重要作用。
混沌神經網路受到關注的另一個原因是混沌存在於生物體真實神經元及神經網路中,並且起到一定的作用,動物學的電生理實驗已證實了這一點。
混沌神經網路由於其復雜的動力學特性,在動態聯想記憶、系統優化、信息處理、人工智慧等領域受到人們極大的關注。針對混沌神經網路具有聯想記憶功能,但其搜索過程不穩定,提出了一種控制方法可以對混沌神經網路中的混沌現象進行控制。研究了混沌神經網路在組合優化問題中的應用。
為了更好的應用混沌神經網路的動力學特性,並對其存在的混沌現象進行有效的控制,仍需要對混沌神經網路的結構進行進一步的改進和調整,以及混沌神經網路演算法的進一步研究。
基於粗集理論
粗糙集(Rough Sets)理論是1982年由波蘭華沙理工大學教授Z.Pawlak首先提出,它是一個分析數據的數學理論,研究不完整數據、不精確知識的表達、學習、歸納等方法。粗糙集理論是一種新的處理模糊和不確定性知識的數學工具,其主要思想就是在保持分類能力不變的前提下,通過知識約簡,導出問題的決策或分類規則。目前,粗糙集理論已被成功應用於機器學習、決策分析、過程式控制制、模式識別與數據挖掘等領域。
粗集和神經網路的共同點是都能在自然環境下很好的工作,但是,粗集理論方法模擬人類的抽象邏輯思維,而神經網路方法模擬形象直覺思維,因而二者又具有不同特點。粗集理論方法以各種更接近人們對事物的描述方式的定性、定量或者混合性信息為輸入,輸入空間與輸出空間的映射關系是通過簡單的決策表簡化得到的,它考慮知識表達中不同屬性的重要性確定哪些知識是冗餘的,哪些知識是有用的,神經網路則是利用非線性映射的思想和並行處理的方法,用神經網路本身結構表達輸入與輸出關聯知識的隱函數編碼。
在粗集理論方法和神經網路方法處理信息中,兩者存在很大的兩個區別:其一是神經網路處理信息一般不能將輸入信息空間維數簡化,當輸入信息空間維數較大時,網路不僅結構復雜,而且訓練時間也很長;而粗集方法卻能通過發現數據間的關系,不僅可以去掉冗餘輸入信息,而且可以簡化輸入信息的表達空間維數。其二是粗集方法在實際問題的處理中對雜訊較敏感,因而用無雜訊的訓練樣本學習推理的結果在有雜訊的環境中應用效果不佳。而神經網路方法有較好的抑制雜訊干擾的能力。
因此將兩者結合起來,用粗集方法先對信息進行預處理,即把粗集網路作為前置系統,再根據粗集方法預處理後的信息結構,構成神經網路信息處理系統。通過二者的結合,不但可減少信息表達的屬性數量,減小神經網路構成系統的復雜性,而且具有較強的容錯及抗干擾能力,為處理不確定、不完整信息提供了一條強有力的途徑。
目前粗集與神經網路的結合已應用於語音識別、專家系統、數據挖掘、故障診斷等領域,將神經網路和粗集用於聲源位置的自動識別,將神經網路和粗集用於專家系統的知識獲取中,取得比傳統專家系統更好的效果,其中粗集進行不確定和不精確數據的處理,神經網路進行分類工作。
雖然粗集與神經網路的結合已應用於許多領域的研究,為使這一方法發揮更大的作用還需考慮如下問題:模擬人類抽象邏輯思維的粗集理論方法和模擬形象直覺思維的神經網路方法更加有效的結合;二者集成的軟體和硬體平台的開發,提高其實用性。
與分形理論的結合
自從美國哈佛大學數學系教授Benoit B. Mandelbrot於20世紀70年代中期引入分形這一概念,分形幾何學(Fractal geometry)已經發展成為科學的方法論--分形理論,且被譽為開創了20世紀數學重要階段。現已被廣泛應用於自然科學和社會科學的幾乎所有領域,成為現今國際上許多學科的前沿研究課題之一。
由於在許多學科中的迅速發展,分形已成為一門描述自然界中許多不規則事物的規律性的學科。它已被廣泛應用在生物學、地球地理學、天文學、計算機圖形學等各個領域。
用分形理論來解釋自然界中那些不規則、不穩定和具有高度復雜結構的現象,可以收到顯著的效果,而將神經網路與分形理論相結合,充分利用神經網路非線性映射、計算能力、自適應等優點,可以取得更好的效果。
分形神經網路的應用領域有圖像識別、圖像編碼、圖像壓縮,以及機械設備系統的故障診斷等。分形圖像壓縮/解壓縮方法有著高壓縮率和低遺失率的優點,但運算能力不強,由於神經網路具有並行運算的特點,將神經網路用於分形圖像壓縮/解壓縮中,提高了原有方法的運算能力。將神經網路與分形相結合用於果實形狀的識別,首先利用分形得到幾種水果輪廓數據的不規則性,然後利用3層神經網路對這些數據進行辨識,繼而對其不規則性進行評價。
分形神經網路已取得了許多應用,但仍有些問題值得進一步研究:分形維數的物理意義;分形的計算機模擬和實際應用研究。隨著研究的不斷深入,分形神經網路必將得到不斷的完善,並取得更好的應用效果。?

⑤ 神經網路的發展趨勢如何

神經網路的雲集成模式還不是很成熟,應該有發展潛力,但神經網路有自己的硬傷,不知道能夠達到怎樣的效果,所以決策支持系統中並不是很熱門,但是神經網路無視過程的優點也是無可替代的,雲網路如果能夠對神經網路提供一個互補的輔助決策以控制誤差的話,也許就能使神經網路成熟起來
1 人工神經網路產生的背景
自古以來,關於人類智能本源的奧秘,一直吸引著無數哲學家和自然科學家的研究熱情。生物學家、神經學家經過長期不懈的努力,通過對人腦的觀察和認識,認為人腦的智能活動離不開腦的物質基礎,包括它的實體結構和其中所發生的各種生物、化學、電學作用,並因此建立了神經元網路理論和神經系統結構理論,而神經元理論又是此後神經傳導理論和大腦功能學說的基礎。在這些理論基礎之上,科學家們認為,可以從仿製人腦神經系統的結構和功能出發,研究人類智能活動和認識現象。另一方面,19世紀之前,無論是以歐氏幾何和微積分為代表的經典數學,還是以牛頓力學為代表的經典物理學,從總體上說,這些經典科學都是線性科學。然而,客觀世界是如此的紛繁復雜,非線性情況隨處可見,人腦神經系統更是如此。復雜性和非線性是連接在一起的,因此,對非線性科學的研究也是我們認識復雜系統的關鍵。為了更好地認識客觀世界,我們必須對非線性科學進行研究。人工神經網路作為一種非線性的、與大腦智能相似的網路模型,就這樣應運而生了。所以,人工神經網路的創立不是偶然的,而是20世紀初科學技術充分發展的產物。
2 人工神經網路的發展
人工神經網路的研究始於40年代初。半個世紀以來,經歷了興起、高潮與蕭條、高潮及穩步發展的遠為曲折的道路。
1943年,心理學家W.S.Mcculloch和數理邏輯學家W.Pitts 提出了M—P模型,這是第一個用數理語言描述腦的信息處理過程的模型, 雖然神經元的功能比較弱,但它為以後的研究工作提供了依據。1949年,心理學家D.O.Hebb提出突觸聯系可變的假設,根據這一假設提出的學習規律為神經網路的學習演算法奠定了基礎。 1957 年, 計算機科學家Rosenblatt提出了著名的感知機模型,它的模型包含了現代計算機的一些原理,是第一個完整的人工神經網路,第一次把神經網路研究付諸工程實現。由於可應用於模式識別,聯想記憶等方面,當時有上百家實驗室投入此項研究,美國軍方甚至認為神經網路工程應當比「原子彈工程」更重要而給予巨額資助,並在聲納信號識別等領域取得一定成績。1960年,B.Windrow和E.Hoff提出了自適應線性單元, 它可用於自適應濾波、預測和模式識別。至此,人工神經網路的研究工作進入了第一個高潮。
1969年,美國著名人工智慧學者M.Minsky和S.Papert編寫了影響很大的Perceptron一書,從理論上證明單層感知機的能力有限,諸如不能解決異或問題,而且他們推測多層網路的感知機能力也不過如此,他們的分析恰似一瓢冷水,很多學者感到前途渺茫而紛紛改行,原先參與研究的實驗室紛紛退出,在這之後近10年,神經網路研究進入了一個緩慢發展的蕭條期。這期間,芬蘭學者T.Kohonen 提出了自組織映射理論,反映了大腦神經細胞的自組織特性、記憶方式以及神經細胞興奮刺激的規律;美國學者S.A.Grossberg的自適應共振理論(ART );日本學者K.Fukushima提出了認知機模型;ShunIchimari則致力於神經網路有關數學理論的研究等,這些研究成果對以後的神經網路的發展產生了重要影響。
美國生物物理學家J.J.Hopfield於1982年、1984年在美國科學院院刊發表的兩篇文章,有力地推動了神經網路的研究,引起了研究神經網路的又一次熱潮。 1982 年, 他提出了一個新的神經網路模型——hopfield網路模型。他在這種網路模型的研究中,首次引入了網路能量函數的概念,並給出了網路穩定性的判定依據。1984年,他又提出了網路模型實現的電子電路,為神經網路的工程實現指明了方向,他的研究成果開拓了神經網路用於聯想記憶的優化計算的新途徑,並為神經計算機研究奠定了基礎。1984年Hinton等人將模擬退火演算法引入到神經網路中,提出了Boltzmann機網路模型,BM 網路演算法為神經網路優化計算提供了一個有效的方法。1986年,D.E.Rumelhart和J.LMcclelland提出了誤差反向傳播演算法,成為至今為止影響很大的一種網路學習方法。1987年美國神經計算機專家R.Hecht—Nielsen提出了對向傳播神經網路,該網路具有分類靈活,演算法簡練的優點,可用於模式分類、函數逼近、統計分析和數據壓縮等領域。1988年L.Ochua 等人提出了細胞神經網路模型,它在視覺初級加工上得到了廣泛應用。
為適應人工神經網路的發展,1987年成立了國際神經網路學會,並決定定期召開國際神經網路學術會議。1988年1月Neural Network 創刊。1990年3月IEEE Transaction on Neural Network問世。 我國於1990年12月在北京召開了首屆神經網路學術大會,並決定以後每年召開一次。1991 年在南京成立了中國神經網路學會。 IEEE 與INNS 聯合召開的IJCNN92已在北京召開。 這些為神經網路的研究和發展起了推波助瀾的作用,人工神經網路步入了穩步發展的時期。
90年代初,諾貝爾獎獲得者Edelman提出了Darwinism模型,建立了神經網路系統理論。同年,Aihara等在前人推導和實驗的基礎上,給出了一個混沌神經元模型,該模型已成為一種經典的混沌神經網路模型,該模型可用於聯想記憶。 Wunsch 在90OSA 年會上提出了一種AnnualMeeting,用光電執行ART,學習過程有自適應濾波和推理功能,具有快速和穩定的學習特點。1991年,Hertz探討了神經計算理論, 對神經網路的計算復雜性分析具有重要意義;Inoue 等提出用耦合的混沌振盪子作為某個神經元,構造混沌神經網路模型,為它的廣泛應用前景指明了道路。1992年,Holland用模擬生物進化的方式提出了遺傳演算法, 用來求解復雜優化問題。1993年方建安等採用遺傳演算法學習,研究神經網路控制器獲得了一些結果。1994年Angeline等在前人進化策略理論的基礎上,提出一種進化演算法來建立反饋神經網路,成功地應用到模式識別,自動控制等方面;廖曉昕對細胞神經網路建立了新的數學理論和方法,得到了一系列結果。HayashlY根據動物大腦中出現的振盪現象,提出了振盪神經網路。1995年Mitra把人工神經網路與模糊邏輯理論、 生物細胞學說以及概率論相結合提出了模糊神經網路,使得神經網路的研究取得了突破性進展。Jenkins等人研究光學神經網路, 建立了光學二維並行互連與電子學混合的光學神經網路,它能避免網路陷入局部最小值,並最後可達到或接近最理想的解;SoleRV等提出流體神經網路,用來研究昆蟲社會,機器人集體免疫系統,啟發人們用混沌理論分析社會大系統。1996年,ShuaiJW』等模擬人腦的自發展行為, 在討論混沌神經網路的基礎上提出了自發展神經網路。1997、1998年董聰等創立和完善了廣義遺傳演算法,解決了多層前向網路的最簡拓樸構造問題和全局最優逼近問題。
隨著理論工作的發展,神經網路的應用研究也取得了突破性進展,涉及面非常廣泛,就應用的技術領域而言有計算機視覺,語言的識別、理解與合成,優化計算,智能控制及復雜系統分析,模式識別,神經計算機研製,知識推理專家系統與人工智慧。涉及的學科有神經生理學、認識科學、數理科學、心理學、信息科學、計算機科學、微電子學、光學、動力學、生物電子學等。美國、日本等國在神經網路計算機軟硬體實現的開發方面也取得了顯著的成績,並逐步形成產品。在美國,神經計算機產業已獲得軍方的強有力支持,國防部高級研究計劃局認為「神經網路是解決機器智能的唯一希望」,僅一項8 年神經計算機計劃就投資4億美元。在歐洲共同體的ESPRIT計劃中, 就有一項特別項目:「神經網路在歐洲工業中的應用」,單是生產神經網路專用晶元這一項就投資2200萬美元。據美國資料聲稱,日本在神經網路研究上的投資大約是美國的4倍。我國也不甘落後,自從1990 年批准了南開大學的光學神經計算機等3項課題以來, 國家自然科學基金與國防預研基金也都為神經網路的研究提供資助。另外,許多國際著名公司也紛紛捲入對神經網路的研究,如Intel、IBM、Siemens、HNC。神經計算機產品開始走向商用階段,被國防、企業和科研部門選用。在舉世矚目的海灣戰爭中,美國空軍採用了神經網路來進行決策與控制。在這種刺激和需求下,人工神經網路定會取得新的突破,迎來又一個高潮。自1958年第一個神經網路誕生以來,其理論與應用成果不勝枚舉。人工神經網路是一個快速發展著的一門新興學科,新的模型、新的理論、新的應用成果正在層出不窮地涌現出來。
3 人工神經網路的發展前景
針對神經網路存在的問題和社會需求,今後發展的主要方向可分為理論研究和應用研究兩個方面。
(1)利用神經生理與認識科學研究大腦思維及智能的機理、 計算理論,帶著問題研究理論。
人工神經網路提供了一種揭示智能和了解人腦工作方式的合理途徑,但是由於人類起初對神經系統了解非常有限,對於自身腦結構及其活動機理的認識還十分膚淺,並且帶有某種「先驗」。例如, Boltzmann機引入隨機擾動來避免局部極小,有其卓越之處,然而缺乏必要的腦生理學基礎,毫無疑問,人工神經網路的完善與發展要結合神經科學的研究。而且,神經科學,心理學和認識科學等方面提出的一些重大問題,是向神經網路理論研究提出的新挑戰,這些問題的解決有助於完善和發展神經網路理論。因此利用神經生理和認識科學研究大腦思維及智能的機理,如有新的突破,將會改變智能和機器關系的認識。
利用神經科學基礎理論的研究成果,用數理方法探索智能水平更高的人工神經網路模型,深入研究網路的演算法和性能,如神經計算、進化計算、穩定性、收斂性、計算復雜性、容錯性、魯棒性等,開發新的網路數理理論。由於神經網路的非線性,因此非線性問題的研究是神經網路理論發展的一個最大動力。特別是人們發現,腦中存在著混沌現象以來,用混沌動力學啟發神經網路的研究或用神經網路產生混沌成為擺在人們面前的一個新課題,因為從生理本質角度出發是研究神經網路的根本手段。
(2)神經網路軟體模擬, 硬體實現的研究以及神經網路在各個科學技術領域應用的研究。
由於人工神經網路可以用傳統計算機模擬,也可以用集成電路晶元組成神經計算機,甚至還可以用光學的、生物晶元的方式實現,因此研製純軟體模擬,虛擬模擬和全硬體實現的電子神經網路計算機潛力巨大。如何使神經網路計算機與傳統的計算機和人工智慧技術相結合也是前沿課題;如何使神經網路計算機的功能向智能化發展,研製與人腦功能相似的智能計算機,如光學神經計算機,分子神經計算機,將具有十分誘人的前景。
4 哲理
(1)人工神經網路打開了認識論的新領域
認識與腦的問題,長期以來一直受到人們的關注,因為它不僅是有關人的心理、意識的心理學問題,也是有關人的思維活動機制的腦科學與思維科學問題,而且直接關繫到對物質與意識的哲學基本問題的回答。人工神經網路的發展使我們能夠更進一步地既唯物又辯證地理解認識與腦的關系,打開認識論的新領域。人腦是一個復雜的並行系統,它具有「認知、意識、情感」等高級腦功能,用人工進行模擬,有利於加深對思維及智能的認識,已對認知和智力的本質的研究產生了極大的推動作用。在研究大腦的整體功能和復雜性方面,人工神經網路給人們帶來了新的啟迪。由於人腦中存在混沌現象,混沌可用來理解腦中某些不規則的活動,從而混沌動力學模型能用作人對外部世界建模的工具,可用來描述人腦的信息處理過程。混沌和智能是有關的,神經網路中引入混沌學思想有助於提示人類形象思維等方面的奧秘。人工神經網路之所以再度興起,關鍵在於它反映了事物的非線性,抓住了客觀世界的本質,而且它在一定程度上正面回答了智能系統如何從環境中自主學習這一最關鍵的問題,從認知的角度講,所謂學習,就是對未知現象或規律的發現和歸納。由於神經網路具有高度的並行性,高度的非線性全局作用,良好的容錯性與聯想記憶功能以及十分強的自適應、自學習功能,而使得它成為揭示智能和了解人腦工作方式的合理途徑。但是,由於認知問題的復雜性,目前,我們對於腦神經網的運行和神經細胞的內部處理機制,如信息在人腦是如何傳輸、存貯、加工的?記憶、聯想、判斷是如何形成的?大腦是否存在一個操作系統?還沒有太多的認識,因此要製造人工神經網路來模仿人腦各方面的功能,還有待於人們對大腦信息處理機理認識的深化。
(2)人工神經網路發展的推動力來源於實踐、 理論和問題的相互作用
隨著人們社會實踐范圍的不斷擴大,社會實踐層次的不斷深入,人們所接觸到的自然現象也越來越豐富多彩、紛繁復雜,這就促使人們用不同的原因加以解釋不同種類的自然現象,當不同種類的自然現象可以用同樣的原因加以解釋,這樣就出現了不同學科的相互交叉、綜合,人工神經網路就這樣產生了。在開始階段,由於這些理論化的網路模型比較簡單,還存在許多問題,而且這些模型幾乎沒有得到實踐的檢驗,因而神經網路的發展比較緩慢。隨著理論研究的深入,問題逐漸地解決特別是工程上得到實現以後,如聲納識別成功,才迎來了神經網路的第一個發展高潮。可Minisky認為感知器不能解決異或問題, 多層感知器也不過如此,神經網路的研究進入了低谷,這主要是因為非線性問題沒得到解決。隨著理論的不斷豐富,實踐的不斷深入, 現在已證明Minisky的悲觀論調是錯誤的。今天,高度發達的科學技術逐漸揭示了非線性問題是客觀世界的本質。問題、理論、實踐的相互作用又迎來了人工神經網路的第二次高潮。目前人工神經網路的問題是智能水平不高,還有其它理論和實現方面的問題,這就迫使人們不斷地進行理論研究,不斷實踐,促使神經網路不斷向前發展。總之,先前的原因遇到了解釋不同的新現象,促使人們提出更加普遍和精確的原因來解釋。理論是基礎,實踐是動力,但單純的理論和實踐的作用還不能推動人工神經網路的發展,還必須有問題提出,才能吸引科學家進入研究的特定范圍,引導科學家從事相關研究,從而逼近科學發現,而後實踐又提出新問題,新問題又引發新的思考,促使科學家不斷思考,不斷完善理論。人工神經網路的發展無不體現著問題、理論和實踐的辯證統一關系。
(3 )人工神經網路發展的另一推動力來源於相關學科的貢獻及不同學科專家的競爭與協同
人工神經網路本身就是一門邊緣學科,它的發展有更廣闊的科學背景,亦即是眾多科研成果的綜合產物,控制論創始人Wiener在其巨著《控制論》中就進行了人腦神經元的研究;計算機科學家Turing就提出過B網路的設想;Prigogine提出非平衡系統的自組織理論,獲得諾貝爾獎;Haken研究大量元件聯合行動而產生宏觀效果, 非線性系統「混沌」態的提出及其研究等,都是研究如何通過元件間的相互作用建立復雜系統,類似於生物系統的自組織行為。腦科學與神經科學的進展迅速反映到人工神經網路的研究中,例如生物神經網路理論,視覺中發現的側抑制原理,感受野概念等,為神經網路的發展起了重要的推動作用。從已提出的上百種人工神經網路模型中,涉及學科之多,令人目不暇接,其應用領域之廣,令人嘆為觀止。不同學科專家為了在這一領域取得領先水平,存在著不同程度的競爭,所有這些有力地推動了人工神經網路的發展。人腦是一個功能十分強大、結構異常復雜的信息系統,隨著資訊理論、控制論、生命科學,計算機科學的發展,人們越來越驚異於大腦的奇妙,至少到目前為止,人類大腦信號處理機制對人類自身來說,仍是一個黑盒子,要揭示人腦的奧秘需要神經學家、心理學家、計算機科學家、微電子學家、數學家等專家的共同努力,對人類智能行為不斷深入研究,為人工神經網路發展提供豐富的理論源泉。另外,還要有哲學家的參與,通過哲學思想和自然科學多種學科的深層結合,逐步孕育出探索人類思維本質和規律的新方法,使思維科學從朦朧走向理性。而且,不同領域專家的競爭與協調同有利於問題清晰化和尋求最好的解決途徑。縱觀神經網路的發展歷史,沒有相關學科的貢獻,不同學科專家的競爭與協同,神經網路就不會有今天。當然,人工神經網路在各個學科領域應用的研究反過來又推動其它學科的發展,推動自身的完善和發展。

⑥ 人工神經網路基礎的目錄

第1章 緒論
1.1 引言
1.2 生物神經元和生物神經網路簡介
1.3 人工神經元和人工神經網路人工神經網路的基礎知識。為了更好地學習人工神經網路的需要,在不同章節較多而通俗地插入介紹了生物神經系統的結構和功能特點以及人類認知心理學等方面的有用知識。對BP型前向多層網路、Hopfield網路、波爾茲曼機概率型網路、自組織特徵映射網路和自適應諧(ART)網路等基本類型的人工神經網路進行了較為詳細的和基礎性的介紹。
思考與討論
參考文獻
第2章 前向多層網路
2.1 人工神經網路入門:單個神經元分類識別器
2.2 感知機:歷史和概念
2.3 前向多層網路誤差反向傳遞演算法:BP網路
2.4 BP網路及有教師學習的概念模型
2.5 BP網路應用舉例
2.6 徑向基函數網路
思考與討論
參考文獻
第3章 Hopfield網路
3.1 引言
3.2 網路模型
3.3 Hopfield網路的聯想記憶功能
3.4 Hopfield網路的最優化處理和計算功能
思考與討論
參考文獻
第4章 波爾茲曼機(BM)網路簡介
4.1 概述
4.2 波爾茲曼機的基本原理
4.3 波爾茲曼機的實驗應用舉例
4.4 波爾茲曼機小結
思考與討論
參考文獻
第5章 自組織特徵映射網路(SOFM)
5.1 引言
5.2 自組織特徵提取的演算法及其數學證明
5.3 競爭學習和自穩定學習
5.4 Kohonen網路:具有確定側反饋的多神經元SOFM網路
5.5 SOFM網路應用舉例:Kohonen神經網路語音打字機
思考與討論
參考文獻
第6章 ART網路
6.1 引言
6.2 ART-1網路
6.3 ART-2網路
6.4 ART-3網路簡介
6.5 結語
思考與討論
參考文獻
第7章 人工神經網路的軟體實踐和模擬
7.1 引言
7.2 利用參數和函數進行網路設計和模擬示例
7.3 MATLAB的GUI設計與分析
7.4 人工神經網路的Simulink模擬
參考文獻

⑦ 學習數學建模需要掌握哪些軟體啊每個軟體具體拿來做什麼用啊謝謝!

MATLAB
??????? MATLAB是一個高性能的科技計算軟體,廣泛應用於數學計算、演算法開發、數學建模、系統模擬、數據分析處理及可視化、科學和工程繪圖、應用系統開發, 包括建立用戶界面。當前它的使用范圍涵蓋了工業、電子、醫療、建築等各領域。 MATLAB是英文Matrix Laboratory(矩陣實驗室)的縮寫,最早是由C.Moler用Fortran語言編寫的,用來方便地調用LINPACK和EISPACK矩陣代數軟體包的程序。後來他創立了MATHWORKS公司,對MATLAB作了大量的、堅持不懈的改進。現在MATLAB已經更新至5.x版,MATLAB提供的工具箱已覆蓋信號處理、系統控制、統計計算、優化計算、神經網路、小波分析、偏微分方程、模糊邏輯、動態系統模擬、系統辨識和符號運算等領域。 ??????? 目前在歐美各國MATLAB的使用十分普及。在大學的數學、工程和科學系科,MATLAB被用作許多課程的輔助教學手段;在科研機構和工業界,MATLAB是高質量新產品研究、開發和分析的主要工具之一。1997年,MATHWORKS公司總裁兼首席科學家Moler因其對MATLAB的貢獻當選為美國工程科學院院士。相關資料請瀏覽MATHWORKS公司主頁:http://www.mathworks.com/

Maple
??????? Maple是加拿大滑鐵盧大學(University of Waterloo)和Waterloo Maple Software公司注冊的一套為微積分、線性代數和微分方程等高等數學使用的軟體包。它是當今世界上最優秀的幾個數學軟體之一,它以良好的使用環境、強有力的符號計算、高精度的數值計算、靈活的圖形顯示和高效的編程功能,為越來越 多的教師、學生和科研人員所喜愛,並成為他們進行數學處理的工具。 ??????? Maple軟體適用於解決微積分、解析幾何、線性代數、微分方程、計算方法、概率統計等數學分支中的常見計算問題。 ??????? Maple採用字元行輸入方式,輸入時需要按照規定的格式輸入,雖然與常見的數學格式不同,但靈活方式,也很容易理解。輸出則可以顯字元方式和圖形方式,產生的圖形結果可以很方便地剪貼到Windows應用程序內。

Mathematica
??????? Mathematica是目前比較流行的符號運算軟體之一,它不僅可以完成微積分、線性代數及數學各個分支公式推演中的符號演算,而且可以數值求解非線性方程、優化等問題。它不僅是數學建模的得力助手,也是大學數學教育和科學研究不可或缺的工具。 ??????? Mathematica 3.0是目前最新版本。若有興趣,請進一步瀏覽Wolfram公司主頁:http://www.wolfram.com/

LINDO
??????? LINDO是一種專門用於求解數學規劃問題的軟體包。由於LINDO執行速度快,易於方便地輸入、求解和分析數學規劃問題,因此在教學、科研和工業界得到廣泛應用。 LINDO主要用於求解線性規劃、非線性規劃、二次規劃和整數規劃等問題,也可以用於一些線性和非線性方程組的求解以及代數方程求根等。LINDO中包含了一種建模語言和許多常用的數學函數(包括大量概率函數),可供使用者建立數學規劃問題模型時調用。 ??????? LINDO有多種組件和版本,版權由美國Lindo System Inc.擁有,有關該軟體的發行版本、發行價格和最新信息可從該公司網站http://www.lindo.com/獲取。

一般老師會建議用MATLAB,功能強大,比較全面。
規劃時用lindo。
我現在用maple,只是算題方便。
還有很多其他軟體,就看你具體做什麼,不過還是把一個用熟了比較好。

⑧ 人工神經網路的發展

現代意義上對神經網路(特指人工神經網路)的研究一般認為從1943年美國芝加哥大學的生理學家W.S. McCulloch和W.A. Pitts提出M-P神經元模型開始,到今年正好六十年。在這六十年中,神經網路的發展走過了一段曲折的道路。1965年M. Minsky和S. Papert在《感知機》一書中指出感知機的缺陷並表示出對這方面研究的悲觀態度,使得神經網路的研究從興起期進入了停滯期,這是神經網路發展史上的第一個轉折。到了20世紀80年代初,J.J. Hopfield的工作和D. Rumelhart等人的PDP報告顯示出神經網路的巨大潛力,使得該領域的研究從停滯期進入了繁榮期,這是神經網路發展史上的第二個轉折。
到了20世紀90年代中後期,隨著研究者們對神經網路的局限有了更清楚的認識,以及支持向量機等似乎更有前途的方法的出現,「神經網路」這個詞不再象前些年那麼「火爆」了。很多人認為神經網路的研究又開始陷入了低潮,並認為支持向量機將取代神經網路。有趣的是,著名學者C.-J. Lin於2003年1月在德國馬克斯·普朗克研究所所做的報告中說,支持向量機雖然是一個非常熱門的話題,但目前最主流的分類工具仍然是決策樹和神經網路。由著名的支持向量機研究者說出這番話,顯然有一種特殊的意味。
事實上,目前神經網路的境遇與1965年之後真正的低潮期相比有明顯的不同。在1965年之後的很長一段時期里,美國和前蘇聯沒有資助任何一項神經網路的研究課題,而今天世界各國對神經網路的研究仍然有大量的經費支持;1965年之後90%以上的神經網路研究者改變了研究方向,而今天無論是國際還是國內都有一支相對穩定的研究隊伍。實際上,神經網路在1965年之後陷入低潮是因為當時該領域的研究在一定意義上遭到了否定,而今天的相對平靜是因為該領域已經走向成熟,很多技術開始走進生產和生活,從而造成了原有研究空間的縮小。
在科學研究中通常有這么一個現象,當某個領域的論文大量涌現的時候,往往正是該領域很不成熟、研究空間很大的時候,而且由於這時候人們對該領域研究的局限缺乏清楚的認識,其熱情往往具有很大的盲目性。從這個意義上說,過去若干年裡各領域研究者一擁而上、各種專業刊物滿眼「神經網路」的風光,其實是一種畸形繁榮的景象,而對神經網路的研究現在才進入了一個比較理智、正常的發展期。在這段時期中,通過對以往研究中存在的問題和局限進行反思,並適當借鑒相關領域的研究進展,將可望開拓新的研究空間,為該領域的進一步發展奠定基礎。

⑨ 神經網路是一種控制方式他的硬體如何選型

通常,神經網路都是通過編程實現的,因為神經網路本質上是種數學模型。但是,當前已經有硬體實現方案,即FPGA現場可編程門陣列來實現。
人工神經網路作為一種新型的信息處理系統,由於基於傳統軟體實現,存在並行程度低和速度慢的缺點,使神經網路的實現不能滿足實時性的要求,造成了理論研究與實際應用脫節。另外,用軟體實現神經網路所需計算機體積龐大,不適合嵌入式場合的應用。而神經網路的硬體實現的最大特點就是體現了系統的並行性,處理速度快,易於滿足實時性要求。另外,演算法的復雜程度以及在實際工程中應用的可行性仍需要通過硬體的實現效果來檢驗。因此,神經網路的硬體實現意義重大。
FPGA 現場可編程門陣列是一個具有大量通用邏輯單元的器件,並且它的內部邏輯可以根據實際需要進行相應的改變。這種可重新配置的結構特徵非常適合實現神經網路。

閱讀全文

與神經網路與軟體與數學相關的資料

熱點內容
網路是怎樣連接的圖書圖片 瀏覽:594
網路機頂盒不能聯網怎麼回事 瀏覽:601
東單網路營銷有哪些平台 瀏覽:957
網路安全法29條規定 瀏覽:463
網路管理功能的路由器 瀏覽:831
丹江口市公司無線網路地址 瀏覽:500
電腦上怎麼調整網路信號 瀏覽:261
手機網路連接設置 瀏覽:378
明日之後購物網路異常 瀏覽:403
網路共享和遠程登錄的區別 瀏覽:107
網路教育電氣自動化哪個專業好 瀏覽:119
手機老搜索其他網路 瀏覽:85
網路營銷中怎麼樣把流量變銷量 瀏覽:440
華為手機怎麼顯示連接的網路 瀏覽:876
如何添加網路掃描盤 瀏覽:525
移動信號挺好但是數據網路極差 瀏覽:999
網路教育哪個平台好點 瀏覽:339
全球網路共享大會 瀏覽:672
聯通網路不能用路由器怎麼辦 瀏覽:207
英菲克網路機頂盒哪個型號好用 瀏覽:171

友情鏈接