Ⅰ 「阿爾法狗」採用的深度學習方法屬於人工智慧中的什麼學派
阿爾法狗使用的是深度強化學習方法,是深度學習和強化學習的結合體.
深度學習是神經網路屬於連接派,強化學習屬於行為派.
阿爾法狗是連接派和行為派的結合體.
除了連接派和行為派之外,人工智慧的另一大門派是符號派,符號派當前的進展是知識圖譜,也是人工智慧目前的研究熱點.
Ⅱ 機器學習有哪些主要流派它們分別有什麼貢獻
機器學習5大流派:
①符號主義:使用符號、規則和邏輯來表徵知識和進行邏輯推理,最突出的貢獻演算法是:規則和決策樹
②貝葉斯派:獲取發生的可能性來進行概率推理,最突出的貢獻演算法是:樸素貝葉斯或馬爾可夫
③聯結主義:使用概率矩陣和加權神經元來動態地識別和歸納模式,最突出的貢獻演算法是:神經網路
④進化主義:生成變化,然後為特定目標獲取其中最優的,最突出的貢獻演算法是:遺傳演算法
⑤Analogizer:根據約束條件來優化函數(盡可能走到更高,但同時不要離開道路),最突出的貢獻演算法是:支持向量機
Ⅲ 人工神經網路是哪個流派的基礎
「純意念控制」人工神經康復機器人系統2014年6月14日在天津大學和天津市人民醫院共同舉辦的發表會上,由雙方共同研製的人工神經康復機器人「神工一號」正式亮相。
中文名
「純意念控制」人工神經康復機器人系統
發布時間
2014年6月14日
快速
導航
產品特色發展歷史
功能配置
「純意念控制」人工神經康復機器人系統在復合想像動作信息解析與處理、非同步腦——機介面訓練與識別、皮層——肌肉活動同步耦合優化、中風後抑鬱腦電非線性特徵提取與篩查等關鍵技術上取得了重大突破。
「純意念控制」人工神經康復機器人系統包括無創腦電感測模塊、想像動作特徵檢測模塊、運動意圖識別模塊、指令編碼介面模塊、刺激信息調理模塊、刺激電流輸出模塊6部分。
產品特色
「純意念控制」人工神經康復機器人系統最新研究成果將讓不少中風、癱瘓人士燃起重新獨立生活的希望。現已擁有包括23項授權國家發明專利、1項軟體著作權在內的自主知識產權集群,是全球首台適用於全肢體中風康復的「純意念控制」人工神經機器人系統。[1]
腦控機械外骨骼是利用被動機械牽引,非肌肉主動收縮激活。而「神工一號」則利用神經肌肉電刺激,模擬神經沖動的電刺激引起肌肉產生主動收縮,帶動骨骼和關節產生自主動作,與人體自主運動原理一致。
體驗者需要把裝有電極的腦電探測器戴在頭部,並在患病肢體的肌肉上安裝電極,藉助「神工一號」的連接,就可以用「意念」來「控制」自己本來無法行動的肢體了。[2]
發展歷史
「純意念控制」人工神經康復機器人系統技術歷時10年,是國家「863計劃「、「十二五」國家科技支撐計劃和國家優秀青年科學基金重點支持項目。
人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。
中文名
人工神經網路
外文名
artificial neural network
別稱
ANN
應用學科
人工智慧
適用領域范圍
模式分類
精品薦讀
「蠢萌」的神經網路
作者:牛油果進化論
快速
導航
基本特徵發展歷史網路模型學習類型分析方法特點優點研究方向發展趨勢應用分析
神經元
如圖所示
a1~an為輸入向量的各個分量
w1~wn為神經元各個突觸的權值
b為偏置
f為傳遞函數,通常為非線性函數。以下默認為hardlim()
t為神經元輸出
數學表示 t=f(WA'+b)
W為權向量
A為輸入向量,A'為A向量的轉置
b為偏置
f為傳遞函數
可見,一個神經元的功能是求得輸入向量與權向量的內積後,經一個非線性傳遞函數得到一個標量結果。
單個神經元的作用:把一個n維向量空間用一個超平面分割成兩部分(稱之為判斷邊界),給定一個輸入向量,神經元可以判斷出這個向量位於超平面的哪一邊。
該超平面的方程: Wp+b=0
W權向量
b偏置
p超平面上的向量
基本特徵
人工神經網路是由大量處理單元互聯組成的非線性、自適應信息處理系統。它是在現代神經科學研究成果的基礎上提出的,試圖通過模擬大腦神經網路處理、記憶信息的方式進行信息處理。人工神經網路具有四個基本特徵:
(1)非線性 非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處於激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。
人工神經網路
(2)非局限性 一個神經網路通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決於單個神經元的特徵,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子。
(3)非常定性 人工神經網路具有自適應、自組織、自學習能力。神經網路不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常採用迭代過程描寫動力系統的演化過程。
(4)非凸性 一個系統的演化方向,在一定條件下將取決於某個特定的狀態函數。例如能量函數,它的極值相應於系統比較穩定的狀態。非凸性是指這種函數有多個極值,故系統具有多個較穩定的平衡態,這將導致系統演化的多樣性。
人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理 ,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。它是涉及神經科學、思維科學、人工智慧、計算機科學等多個領域的交叉學科。
人工神經網路
人工神經網路是並行分布式系統,採用了與傳統人工智慧和信息處理技術完全不同的機理,克服了傳統的基於邏輯符號的人工智慧在處理直覺、非結構化信息方面的缺陷,具有自適應、自組織和實時學習的特點。[1]
發展歷史
1943年,心理學家W.S.McCulloch和數理邏輯學家W.Pitts建立了神經網路和數學模型,稱為MP模型。他們通過MP模型提出了神經元的形式化數學描述和網路結構方法,證明了單個神經元能執行邏輯功能,從而開創了人工神經網路研究的時代。1949年,心理學家提出了突觸聯系強度可變的設想。60年代,人工神經網路得到了進一步發展,更完善的神經網路模型被提出,其中包括感知器和自適應線性元件等。M.Minsky等仔細分析了以感知器為代表的神經網路系統的功能及局限後,於1969年出版了《Perceptron》一書,指出感知器不能解決高階謂詞問題。他們的論點極大地影響了神經網路的研究,加之當時串列計算機和人工智慧所取得的成就,掩蓋了發展新型計算機和人工智慧新途徑的必要性和迫切性,使人工神經網路的研究處於低潮。在此期間,一些人工神經網路的研究者仍然致力於這一研究,提出了適應諧振理論(ART網)、自組織映射、認知機網路,同時進行了神經網路數學理論的研究。以上研究為神經網路的研究和發展奠定了基礎。1982年,美國加州工學院物理學家J.J.Hopfield提出了Hopfield神經網格模型,引入了「計算能量」概念,給出了網路穩定性判斷。 1984年,他又提出了連續時間Hopfield神經網路模型,為神經計算機的研究做了開拓性的工作,開創了神經網路用於聯想記憶和優化計算的新途徑,有力地推動了神經網路的研究,1985年,又有學者提出了波耳茲曼模型,在學習中採用統計熱力學模擬退火技術,保證整個系統趨於全局穩定點。1986年進行認知微觀結構地研究,提出了並行分布處理的理論。1986年,Rumelhart, Hinton, Williams發展了BP演算法。Rumelhart和McClelland出版了《Parallel distribution processing: explorations in the microstructures of cognition》。迄今,BP演算法已被用於解決大量實際問題。1988年,Linsker對感知機網路提出了新的自組織理論,並在Shanon資訊理論的基礎上形成了最大互信息理論,從而點燃了基於NN的信息應用理論的光芒。1988年,Broomhead和Lowe用徑向基函數(Radial basis function, RBF)提出分層網路的設計方法,從而將NN的設計與數值分析和線性適應濾波相掛鉤。90年代初,Vapnik等提出了支持向量機(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)維數的概念。人工神經網路的研究受到了各個發達國家的重視,美國國會通過決議將1990年1月5日開始的十年定為「腦的十年」,國際研究組織號召它的成員國將「腦的十年」變為全球行為。在日本的「真實世界計算(RWC)」項目中,人工智慧的研究成了一個重要的組成部分。
人工神經網路
網路模型
人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。根據連接的拓撲結構,神經網路模型可以分為:[1]
人工神經網路
前向網路
網路中各個神經元接受前一級的輸入,並輸出到下一級,網路中沒有反饋,可以用一個有向無環路圖表示。這種網路實現信號從輸入空間到輸出空間的變換,它的信息處理能力來自於簡單非線性函數的多次復合。網路結構簡單,易於實現。反傳網路是一種典型的前向網路。[2]
反饋網路
網路內神經元間有反饋,可以用一個無向的完備圖表示。這種神經網路的信息處理是狀態的變換,可以用動力學系統理論處理。系統的穩定性與聯想記憶功能有密切關系。Hopfield網路、波耳茲曼機均屬於這種類型。
學習類型
學習是神經網路研究的一個重要內容,它的適應性是通過學習實現的。根據環境的變化,對權值進行調整,改善系統的行為。由Hebb提出的Hebb學習規則為神經網路的學習演算法奠定了基礎。Hebb規則認為學習過程最終發生在神經元之間的突觸部位,突觸的聯系強度隨著突觸前後神經元的活動而變化。在此基礎上,人們提出了各種學習規則和演算法,以適應不同網路模型的需要。有效的學習演算法,使得神經網路能夠通過連接權值的調整,構造客觀世界的內在表示,形成具有特色的信息處理方法,信息存儲和處理體現在網路的連接中。
人工神經網路
分類
根據學習環境不同,神經網路的學習方式可分為監督學習和非監督學習。在監督學習中,將訓練樣本的數據加到網路輸入端,同時將相應的期望輸出與網路輸出相比較,得到誤差信號,以此控制權值連接強度的調整,經多次訓練後收斂到一個確定的權值。當樣本情況發生變化時,經學習可以修改權值以適應新的環境。使用監督學習的神經網路模型有反傳網路、感知器等。非監督學習時,事先不給定標准樣本,直接將網路置於環境之中,學習階段與工作階段成為一體。此時,學習規律的變化服從連接權值的演變方程。非監督學習最簡單的例子是Hebb學習規則。競爭學習規則是一個更復雜的非監督學習的例子,它是根據已建立的聚類進行權值調整。自組織映射、適應諧振理論網路等都是與競爭學習有關的典型模型。
分析方法
研究神經網路的非線性動力學性質,主要採用動力學系統理論、非線性規劃理論和統計理論,來分析神經網路的演化過程和吸引子的性質,探索神經網路的協同行為和集體計算功能,了解神經信息處理機制。為了探討神經網路在整體性和模糊性方面處理信息的可能,混沌理論的概念和方法將會發揮作用。混沌是一個相當難以精確定義的數學概念。一般而言,「混沌」是指由確定性方程描述的動力學系統中表現出的非確定性行為,或稱之為確定的隨機性。「確定性」是因為它由內在的原因而不是外來的雜訊或干擾所產生,而「隨機性」是指其不規則的、不能預測的行為,只可能用統計的方法描述。
Ⅳ 人工智慧,機器學習與深度學習,到底是什麼關系
有人說,人工智慧(AI)是未來,人工智慧是科幻,人工智慧也是我們日常生活中的一部分。這些評價可以說都是正確的,就看你指的是哪一種人工智慧。
今年早些時候,Google DeepMind的AlphaGo打敗了韓國的圍棋大師李世乭九段。在媒體描述DeepMind勝利的時候,將人工智慧(AI)、機器學習(machine learning)和深度學習(deep learning)都用上了。這三者在AlphaGo擊敗李世乭的過程中都起了作用,但它們說的並不是一回事。
今天我們就用最簡單的方法——同心圓,可視化地展現出它們三者的關系和應用。
向左轉|向右轉
人工神經網路(Artificial Neural Networks)是早期機器學習中的一個重要的演算法,歷經數十年風風雨雨。神經網路的原理是受我們大腦的生理結構——互相交叉相連的神經元啟發。但與大腦中一個神經元可以連接一定距離內的任意神經元不同,人工神經網路具有離散的層、連接和數據傳播的方向。
例如,我們可以把一幅圖像切分成圖像塊,輸入到神經網路的第一層。在第一層的每一個神經元都把數據傳遞到第二層。第二層的神經元也是完成類似的工作,把數據傳遞到第三層,以此類推,直到最後一層,然後生成結果。
每一個神經元都為它的輸入分配權重,這個權重的正確與否與其執行的任務直接相關。最終的輸出由這些權重加總來決定。
我們仍以停止(Stop)標志牌為例。將一個停止標志牌圖像的所有元素都打碎,然後用神經元進行「檢查」:八邊形的外形、救火車般的紅顏色、鮮明突出的字母、交通標志的典型尺寸和靜止不動運動特性等等。神經網路的任務就是給出結論,它到底是不是一個停止標志牌。神經網路會根據所有權重,給出一個經過深思熟慮的猜測——「概率向量」。
這個例子里,系統可能會給出這樣的結果:86%可能是一個停止標志牌;7%的可能是一個限速標志牌;5%的可能是一個風箏掛在樹上等等。然後網路結構告知神經網路,它的結論是否正確。
即使是這個例子,也算是比較超前了。直到前不久,神經網路也還是為人工智慧圈所淡忘。其實在人工智慧出現的早期,神經網路就已經存在了,但神經網路對於「智能」的貢獻微乎其微。主要問題是,即使是最基本的神經網路,也需要大量的運算。神經網路演算法的運算需求難以得到滿足。
不過,還是有一些虔誠的研究團隊,以多倫多大學的Geoffrey Hinton為代表,堅持研究,實現了以超算為目標的並行演算法的運行與概念證明。但也直到GPU得到廣泛應用,這些努力才見到成效。
我們回過頭來看這個停止標志識別的例子。神經網路是調制、訓練出來的,時不時還是很容易出錯的。它最需要的,就是訓練。需要成百上千甚至幾百萬張圖像來訓練,直到神經元的輸入的權值都被調製得十分精確,無論是否有霧,晴天還是雨天,每次都能得到正確的結果。
只有這個時候,我們才可以說神經網路成功地自學習到一個停止標志的樣子;或者在Facebook的應用里,神經網路自學習了你媽媽的臉;又或者是2012年吳恩達(Andrew Ng)教授在Google實現了神經網路學習到貓的樣子等等。
吳教授的突破在於,把這些神經網路從基礎上顯著地增大了。層數非常多,神經元也非常多,然後給系統輸入海量的數據,來訓練網路。在吳教授這里,數據是一千萬YouTube視頻中的圖像。吳教授為深度學習(deep learning)加入了「深度」(deep)。這里的「深度」就是說神經網路中眾多的層。
現在,經過深度學習訓練的圖像識別,在一些場景中甚至可以比人做得更好:從識別貓,到辨別血液中癌症的早期成分,到識別核磁共振成像中的腫瘤。Google的AlphaGo先是學會了如何下圍棋,然後與它自己下棋訓練。它訓練自己神經網路的方法,就是不斷地與自己下棋,反復地下,永不停歇。
|深度學習,給人工智慧以璀璨的未來
深度學習使得機器學習能夠實現眾多的應用,並拓展了人工智慧的領域范圍。深度學習摧枯拉朽般地實現了各種任務,使得似乎所有的機器輔助功能都變為可能。無人駕駛汽車,預防性醫療保健,甚至是更好的電影推薦,都近在眼前,或者即將實現。
人工智慧就在現在,就在明天。有了深度學習,人工智慧甚至可以達到我們暢想的科幻小說一般。你的C-3PO我拿走了,你有你的終結者就好了。
Ⅳ 神經網路的歷史是什麼
沃倫·麥卡洛克和沃爾特·皮茨(1943)基於數學和一種稱為閾值邏輯的演算法創造了一種神經網路的計算模型。這種模型使得神經網路的研究分裂為兩種不同研究思路。一種主要關注大腦中的生物學過程,另一種主要關注神經網路在人工智慧里的應用。
一、赫布型學習
二十世紀40年代後期,心理學家唐納德·赫布根據神經可塑性的機制創造了一種對學習的假說,現在稱作赫布型學習。赫布型學習被認為是一種典型的非監督式學習規則,它後來的變種是長期增強作用的早期模型。從1948年開始,研究人員將這種計算模型的思想應用到B型圖靈機上。
法利和韋斯利·A·克拉克(1954)首次使用計算機,當時稱作計算器,在MIT模擬了一個赫布網路。納撒尼爾·羅切斯特(1956)等人模擬了一台 IBM 704計算機上的抽象神經網路的行為。
弗蘭克·羅森布拉特創造了感知機。這是一種模式識別演算法,用簡單的加減法實現了兩層的計算機學習網路。羅森布拉特也用數學符號描述了基本感知機里沒有的迴路,例如異或迴路。這種迴路一直無法被神經網路處理,直到保羅·韋伯斯(1975)創造了反向傳播演算法。
在馬文·明斯基和西摩爾·派普特(1969)發表了一項關於機器學習的研究以後,神經網路的研究停滯不前。他們發現了神經網路的兩個關鍵問題。
第一是基本感知機無法處理異或迴路。第二個重要的問題是電腦沒有足夠的能力來處理大型神經網路所需要的很長的計算時間。直到計算機具有更強的計算能力之前,神經網路的研究進展緩慢。
二、反向傳播演算法與復興
後來出現的一個關鍵的進展是保羅·韋伯斯發明的反向傳播演算法(Werbos 1975)。這個演算法有效地解決了異或的問題,還有更普遍的訓練多層神經網路的問題。
在二十世紀80年代中期,分布式並行處理(當時稱作聯結主義)流行起來。戴維·魯姆哈特和詹姆斯·麥克里蘭德的教材對於聯結主義在計算機模擬神經活動中的應用提供了全面的論述。
神經網路傳統上被認為是大腦中的神經活動的簡化模型,雖然這個模型和大腦的生理結構之間的關聯存在爭議。人們不清楚人工神經網路能多大程度地反映大腦的功能。
支持向量機和其他更簡單的方法(例如線性分類器)在機器學習領域的流行度逐漸超過了神經網路,但是在2000年代後期出現的深度學習重新激發了人們對神經網路的興趣。
三、2006年之後的進展
人們用CMOS創造了用於生物物理模擬和神經形態計算的計算設備。最新的研究顯示了用於大型主成分分析和卷積神經網路的納米設備具有良好的前景。
如果成功的話,這會創造出一種新的神經計算設備,因為它依賴於學習而不是編程,並且它從根本上就是模擬的而不是數字化的,雖然它的第一個實例可能是數字化的CMOS設備。
在2009到2012年之間,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小組研發的循環神經網路和深前饋神經網路贏得了8項關於模式識別和機器學習的國際比賽。
例如,Alex Graves et al.的雙向、多維的LSTM贏得了2009年ICDAR的3項關於連筆字識別的比賽,而且之前並不知道關於將要學習的3種語言的信息。
IDSIA的Dan Ciresan和同事根據這個方法編寫的基於GPU的實現贏得了多項模式識別的比賽,包括IJCNN 2011交通標志識別比賽等等。
他們的神經網路也是第一個在重要的基準測試中(例如IJCNN 2012交通標志識別和NYU的揚·勒丘恩(Yann LeCun)的MNIST手寫數字問題)能達到或超過人類水平的人工模式識別器。
類似1980年Kunihiko Fukushima發明的neocognitron和視覺標准結構(由David H. Hubel和Torsten Wiesel在初級視皮層中發現的那些簡單而又復雜的細胞啟發)那樣有深度的、高度非線性的神經結構可以被多倫多大學傑弗里·辛頓實驗室的非監督式學習方法所訓練。
2012年,神經網路出現了快速的發展,主要原因在於計算技術的提高,使得很多復雜的運算變得成本低廉。以AlexNet為標志,大量的深度網路開始出現。
2014年出現了殘差神經網路,該網路極大解放了神經網路的深度限制,出現了深度學習的概念。
構成
典型的人工神經網路具有以下三個部分:
1、結構(Architecture)結構指定了網路中的變數和它們的拓撲關系。例如,神經網路中的變數可以是神經元連接的權重(weights)和神經元的激勵值(activities of the neurons)。
2、激勵函數(Activation Rule)大部分神經網路模型具有一個短時間尺度的動力學規則,來定義神經元如何根據其他神經元的活動來改變自己的激勵值。一般激勵函數依賴於網路中的權重(即該網路的參數)。
3、學習規則(Learning Rule)學習規則指定了網路中的權重如何隨著時間推進而調整。這一般被看做是一種長時間尺度的動力學規則。一般情況下,學習規則依賴於神經元的激勵值。它也可能依賴於監督者提供的目標值和當前權重的值。
例如,用於手寫識別的一個神經網路,有一組輸入神經元。輸入神經元會被輸入圖像的數據所激發。在激勵值被加權並通過一個函數(由網路的設計者確定)後,這些神經元的激勵值被傳遞到其他神經元。
這個過程不斷重復,直到輸出神經元被激發。最後,輸出神經元的激勵值決定了識別出來的是哪個字母。
Ⅵ 深度學習屬於連接主義學派提出的人工智慧實現模型嗎
是的,神經網路就是連接主義模型
Ⅶ 數學建模 有一種學派 叫神經網路派 無論什麼問題
一種神經網路建模方法。屬於智能信息處理技術領域。基於結構風險最小化原則,結合合作協作進化演算法,同時進行神經網路的網路結構和連接權值學習,最終得到網路結構和連接權值之間最優折衷,方法具體包括數據處理、網路學習和網路估計預測三個基本步驟。同時進行網路結構和連接權值的學習,較好地解決了傳統神經網路學習中存在的結果與初始值相關、收斂速度慢、易陷於局部最小值、誤差函數必須可導、過學習等實際問題,提高了網路的學習能力和泛化能力。可應用於心臟病智能診斷、工業領域中的故障診斷、軟測量等,經濟領域的股票價格預測、商品價格預測等
Ⅷ 神經網路研究屬於什麼學派
符號主義
符號主義
符號主義
符號主義符號主義
符號主義
符號主義符號主義符號主義符號主義
符號主義
Ⅸ 人工智慧有哪幾個主要學派
目前人工智慧的主要學派有下面三家:
(1)符號主義(symbolicism),又稱為邏輯主義(logicism)、心理學派(psychologism)或計算機學派(computerism),其原理主要為物理符號系統(即符號操作系統)假設和有限合理性原理。
(2)連接主義(connectionism),又稱為仿生學派(bionicsism)或生理學派(physiologism),其主要原理為神經網路及神經網路間的連接機制與學習演算法。
(3)行為主義(actionism),又稱為進化主義(evolutionism)或控制論學派(cyberneticsism),其原理為控制論及感知-動作型控制系統。
他們對人工智慧發展歷史具有不同的看法。
1、符號主義認為人工智慧源於數理邏輯。數理邏輯從19世紀末起得以迅速發展,到20世紀30年代開始用於描述智能行為。計算機出現後,又再計算機上實現了邏輯演繹系統。其有代表性的成果為啟發式程序LT邏輯理論家,證明了38條數學定理,表了可以應用計算機研究人的思維多成,模擬人類智能活動。正是這些符號主義者,早在1956年首先採用「人工智慧」這個術語。後來又發展了啟發式演算法->專家系統->知識工程理論與技術,並在20世紀80年代取得很大發展。符號主義曾長期一枝獨秀,為人工智慧的發展作出重要貢獻,尤其是專家系統的成功開發與應用,為人工智慧走向工程應用和實現理論聯系實際具有特別重要的意義。在人工智慧的其他學派出現之後,符號主義仍然是人工智慧的主流派別。這個學派的代表任務有紐厄爾(Newell)、西蒙(Simon)和尼爾遜(Nilsson)等。
2、連接主義認為人工智慧源於仿生學,特別是對人腦模型的研究。它的代表性成果是1943年由生理學家麥卡洛克(McCulloch)和數理邏輯學家皮茨(Pitts)創立的腦模型,即MP模型,開創了用電子裝置模仿人腦結構和功能的新途徑。它從神經元開始進而研究神經網路模型和腦模型,開辟了人工智慧的又一發展道路。20世紀60~70年代,連接主義,尤其是對以感知機(perceptron)為代表的腦模型的研究出現過熱潮,由於受到當時的理論模型、生物原型和技術條件的限制,腦模型研究在20世紀70年代後期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年發表兩篇重要論文,提出用硬體模擬神經網路以後,連接主義才又重新抬頭。1986年,魯梅爾哈特(Rumelhart)等人提出多層網路中的反向傳播演算法(BP)演算法。此後,連接主義勢頭大振,從模型到演算法,從理論分析到工程實現,偉神經網路計算機走向市場打下基礎。現在,對人工神經網路(ANN)的研究熱情仍然較高,但研究成果沒有像預想的那樣好。
3、行為主義認為人工智慧源於控制論。控制論思想早在20世紀40~50年代就成為時代思潮的重要部分,影響了早期的人工智慧工作者。維納(Wiener)和麥克洛克(McCulloch)等人提出的控制論和自組織系統以及錢學森等人提出的工程式控制制論和生物控制論,影響了許多領域。控制論把神經系統的工作原理與信息理論、控制理論、邏輯以及計算機聯系起來。早期的研究工作重點是模擬人在控制過程中的智能行為和作用,如對自尋優、自適應、自鎮定、自組織和自學習等控制論系統的研究,並進行「控制論動物」的研製。到20世紀60~70年代,上述這些控制論系統的研究取得一定進展,播下智能控制和智能機器人的種子,並在20世紀80年代誕生了智能控制和智能機器人系統。行為主義是20世紀末才以人工智慧新學派的面孔出現的,引起許多人的興趣。這一學派的代表作者首推布魯克斯(Brooks)的六足行走機器人,它被看作是新一代的「控制論動物」,是一個基於感知-動作模式模擬昆蟲行為的控制系統
Ⅹ 人工智慧有五種學派,知道有哪些嗎
如下:
智能模擬
機器視、聽、觸、感覺及思維方式的模擬:指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統,智能搜索,定理證明,邏輯推理,博弈,信息感應與辨證處理。
學科範疇
人工智慧是一門邊沿學科,屬於自然科學、社會科學、技術科學三向交叉學科。
涉及學科
哲學和認知科學,數學,神經生理學,心理學,計算機科學,資訊理論,控制論,不定性論,仿生學,社會結構學與科學發展觀。
研究范疇
語言的學習與處理,知識表現,智能搜索,推理,規劃,機器學習,知識獲取,組合調度問題,感知問題,模式識別,邏輯程序設計,軟計算,不精確和不確定的管理,人工生命,神經網路,復雜系統,遺傳演算法人類思維方式,最關鍵的難題還是機器的自主創造性思維能力的塑造與提升。
應用領域
機器翻譯,智能控制,專家系統,機器人學,語言和圖像理解,遺傳編程機器人工廠,自動程序設計,航天應用,龐大的信息處理,儲存與管理,執行化合生命體無法執行的或復雜或規模龐大的任務等等。
值得一提的是,機器翻譯是人工智慧的重要分支和最先應用領域。不過就已有的機譯成就來看,機譯系統的譯文質量離終極目標仍相差甚遠;而機譯質量是機譯系統成敗的關鍵。中國數學家、語言學家周海中教授曾在論文《機器翻譯五十年》中指出:要提高機譯的質量,首先要解決的是語言本身問題而不是程序設計問題;單靠若干程序來做機譯系統,肯定是無法提高機譯質量的;另外在人類尚未明了大腦是如何進行語言的模糊識別和邏輯判斷的情況下,機譯要想達到「信、達、雅」的程度是不可能的。