導航:首頁 > 網路設置 > 卷積神經網路有多少卷積層

卷積神經網路有多少卷積層

發布時間:2022-04-17 06:04:42

㈠ 卷積神經網路的卷積層如何提取特徵

提取特徵不一定是分三層,覺得特徵值不夠好,可以增加卷積層。用於圖片識別只是一種,其根本理念是通過卷積神經網路提取特徵,圖片只是數據的一種,人臉識別根本也是一種圖片的比對,基本理念是對數據提取特徵進行學習。數據可以是圖片,聲音,視屏等等

㈡ 卷積神經網路每層提取的特徵是什麼樣的

卷積神經網路是一個多層的神經網路,每層由多個二維平面組成,而每個平面由多個獨立神經元組成。

圖:卷積神經網路的概念示範:輸入圖像通過和三個可訓練的濾波器和可加偏置進行卷積,濾波過程如圖一,卷積後在C1層產生三個特徵映射圖,然後特徵映射圖中每組的四個像素再進行求和,加權值,加偏置,通過一個Sigmoid函數得到三個S2層的特徵映射圖。這些映射圖再進過濾波得到C3層。這個層級結構再和S2一樣產生S4。最終,這些像素值被光柵化,並連接成一個向量輸入到傳統的神經網路,得到輸出。


一般地,C層為特徵提取層,每個神經元的輸入與前一層的局部感受野相連,並提取該局部的特徵,一旦該局部特徵被提取後,它與其他特徵間的位置關系也隨之確定下來;S層是特徵映射層,網路的每個計算層由多個特徵映射組成,每個特徵映射為一個平面,平面上所有神經元的權值相等。特徵映射結構採用影響函數核小的sigmoid函數作為卷積網路的激活函數,使得特徵映射具有位移不變性。


此外,由於一個映射面上的神經元共享權值,因而減少了網路自由參數的個數,降低了網路參數選擇的復雜度。卷積神經網路中的每一個特徵提取層(C-層)都緊跟著一個用來求局部平均與二次提取的計算層(S-層),這種特有的兩次特徵提取結構使網路在識別時對輸入樣本有較高的畸變容忍能力。

㈢ 卷積神經網路pooling層有什麼用

pooling
理論在於,圖像中相鄰位置的像素是相關的。對一幅圖像每隔一行采樣,得到的結果依然能看。
經過一層卷積以後,輸入的圖像尺寸變化不大,只是縮小了卷積核-1。根據相鄰數據的相關性,在每個nxn區域內,一般2x2,用一個數代表原來的4個數,這樣能把數據縮小4倍,同時又不會損失太多信息。
一副24*24的圖像。用5*5卷積核卷積,結果是20*20(四周各-2),經過2*2池化,變成10*10.

通過池化,數據規模進一步縮小,訓練所需時間從而降低。

㈣ yolov4卷積神經網路有多少卷積層

目前來說輕量化的神經網路的層數一般在幾十層左右,而較大的神經網路也很少有超過200層的。

㈤ 卷積神經網路結構基本單元層有哪些

輸入層:輸出特徵矩陣
卷積層:進行卷積運算
池化層:進行pooling縮小維度
中間激活層:可有可無,一般為ReLU類的計算簡單的激活函數對特徵值修正
這里卷積層、池化層、中間激活層可以重復
全連接層:將特徵矩陣集合向量化
最後激活層:將向量化特徵轉換成標簽

㈥ 深度學習演算法有哪些卷積神經網路

這個太多了,卷積是一種結構,凡是包含這種結構的深度網路都是卷積神經網路。比較知名的有:VGG、GoogleNet、Resnet等

㈦ 卷積神經網路為什麼最後接一個全連接層

在常見的卷積神經網路的最後往往會出現一兩層全連接層,全連接一般會把卷積輸出的二維特徵圖(feature map)轉化成(N*1)一維的一個向量
全連接的目的是什麼呢?因為傳統的端到到的卷積神經網路的輸出都是分類(一般都是一個概率值),也就是幾個類別的概率甚至就是一個數--類別號,那麼全連接層就是高度提純的特徵了,方便交給最後的分類器或者回歸。

但是全連接的參數實在是太多了,你想這張圖里就有20*12*12*100個參數,前面隨便一層卷積,假設卷積核是7*7的,厚度是64,那也才7*7*64,所以現在的趨勢是盡量避免全連接,目前主流的一個方法是全局平均值。也就是最後那一層的feature map(最後一層卷積的輸出結果),直接求平均值。有多少種分類就訓練多少層,這十個數字就是對應的概率或者叫置信度。

㈧ 關於卷積神經網路的卷積核個數問題

在從14變成16的時候,不是一一對應的關系。16個feature map中的每一個都是由前一層的14個和新的kernel卷積,然後把得到的14個結果變成1個feature map。下面的圖或許可以幫你理解。(圖片來源:網頁鏈接)

㈨ 神經網路包括卷積層,還包括哪些層

卷積神經網路(Convolutional Neural Network,CNN)是一種前饋神經網路,它的人工神經元可以響應一部分覆蓋范圍內的周圍單元,對於大型圖像處理有出色表現。[1] 它包括卷積層(alternating convolutional layer)和池層(pooling layer)。
卷積神經網路是近年發展起來,並引起廣泛重視的一種高效識別方法。20世紀60年代,Hubel和Wiesel在研究貓腦皮層中用於局部敏感和方向選擇的神經元時發現其獨特的網路結構可以有效地降低反饋神經網路的復雜性,繼而提出了卷積神經網路(Convolutional Neural Networks-簡稱CNN)。現在,CNN已經成為眾多科學領域的研究熱點之一,特別是在模式分類領域,由於該網路避免了對圖像的復雜前期預處理,可以直接輸入原始圖像,因而得到了更為廣泛的應用。 K.Fukushima在1980年提出的新識別機是卷積神經網路的第一個實現網路。隨後,更多的科研工作者對該網路進行了改進。其中,具有代表性的研究成果是Alexander和Taylor提出的「改進認知機」,該方法綜合了各種改進方法的優點並避免了耗時的誤差反向傳播。

閱讀全文

與卷積神經網路有多少卷積層相關的資料

熱點內容
網路考試監考軟體 瀏覽:340
360路由器p2網路不好 瀏覽:443
廈門無線網路ip地址 瀏覽:299
電腦網路出現感嘆號但是dns正常 瀏覽:983
尋唄網路是干什麼的 瀏覽:303
廣東廣電網路是家什麼公司 瀏覽:492
路由器網路插頭不夠用 瀏覽:609
計算機網路營銷是什麼 瀏覽:420
廣東網路電商創業平台哪些靠譜 瀏覽:100
財務軟體網路教育 瀏覽:135
otn光網路設備有哪些 瀏覽:650
網路安全公益廣告兒童 瀏覽:548
路由器中繼怎麼擴大網路 瀏覽:54
網路課程資源哪個好 瀏覽:466
網路投稿用什麼格式好 瀏覽:973
ip訪問需要網路密碼 瀏覽:686
基礎網路安全管理 瀏覽:312
京東軟體顯示網路連不上 瀏覽:718
網路熱點距離多少收到信號 瀏覽:319
蘋果ios網路 瀏覽:899

友情鏈接