Ⅰ 人腦有多大的內存
在《大腦與思維》雜志發表的文章稱,盡管最大的電腦的記憶容量是1,000,000,000,000個位元組(10的12次方),人腦的記憶容量的位元組數則大約到10後面跟8432個零。 人腦中神經元的數量是已知的,大約為1000億個,許多分析家以此為基礎提出了電腦不久將超過人腦的觀點。但是,研究人員並不局限於這個角度,他們運用一系列運演算法則,計算出了人腦的記憶容量,其中包括不同神經網路的龐大功能。 具有諷刺意味的是,這項發現可能會改變電腦設計的思路。今後電腦的改進可能不是增加位元組,而是模仿人腦,更加註重神經網路。
答案補充
人腦 好象是 誰來著 研究的 說人腦開發最好的不過 才開發了%5 %95是你達不到的!`人腦里的電能帶起 20W燈泡吧 人腦子里儲存的各種信息,可相當於美國國會圖書館的50倍,即5億本書的知識 你想想比內存好吧!~ 人腦細胞有140——160億條,被開發利用的僅佔1/10。大人的大腦平均為人體總體重的2%,但它需要使用全身所用氧氣的25%,相比之下腎臟只需12%,心臟只需7%。神經信號在神經或肌肉纖維中的傳遞速度可以高達每小時200英里。 人體內有45英里的神經。 人的大腦細胞數超過全世界人口總數2倍多,每天可處理8600萬條信息,其記憶貯存的信息超過任何一台電子計算機。 把世界上的CPU加起來吧!~ CPU只不過是 被開發出來的了 人腦你才開發了5% 你要全開發了 幽默點說 你自己回家印美圓去吧!~哎!~美圓不值錢 印英鎊算了!~ 一句話 電腦內存也好 CPU處理快也好 是因為被開發出來 人腦還是未知95%啊!~
Ⅱ 神經網路超參數選擇
深度學習模型通常由隨機梯度下降演算法進行訓練。隨機梯度下降演算法有許多變形:例如 Adam、RMSProp、Adagrad 等等。這些演算法都需要你設置學習率。學習率決定了在一個小批量(mini-batch)中權重在梯度方向要移動多遠。
如果學習率很低,訓練會變得更加可靠,但是優化會耗費較長的時間,因為朝向損失函數最小值的每個步長很小。
如果學習率很高,訓練可能根本不會收斂,損失函數一直處於波動中,甚至會發散。權重的改變數可能非常大,使得優化越過最小值,使得損失函數變得更糟。
訓練應當從相對較大的學習率開始。這是因為在開始時,初始的隨機權重遠離最優值。在訓練過程中,學習率應當下降,以允許細粒度的權重更新。
參考: https://www.jiqixin.com/articles/2017-11-17-2
批次大小是每一次訓練神經網路送入模型的樣本數。在 合理的范圍之內 ,越大的 batch size 使下降方向越准確,震盪越小,通常取值為[16,32,64,128]。
Batch_Size=全部數據集 缺點:
1) 隨著數據集的海量增長和內存限制,一次性載入所有的數據進來變得越來越不可行。
2) 以 Rprop 的方式迭代,會由於各個 Batch 之間的采樣差異性,各次梯度修正值相互抵消,無法修正。
Batch_Size = 1 缺點:
使用在線學習,每次修正方向以各自樣本的梯度方向修正,橫沖直撞各自為政,難以達到收斂。
在合理范圍內,增大 Batch_Size 有何好處?
1) 內存利用率提高了,大矩陣乘法的並行化效率提高。
2) 跑完一次 epoch(全數據集)所需的迭代次數減少,對於相同數據量的處理速度進一步加快。
3) 在一定范圍內,一般來說 Batch_Size 越大,其確定的下降方向越准,引起訓練震盪越小。
盲目增大 Batch_Size 有何壞處?
1) 內存利用率提高了,但是內存容量可能撐不住了。
2) 跑完一次 epoch(全數據集)所需的迭代次數減少,要想達到相同的精度,其所花費的時間大大增加了,從而對參數的修正也就顯得更加緩慢。
3) Batch_Size 增大到一定程度,其確定的下降方向已經基本不再變化。
參考: https://blog.csdn.net/juronghui/article/details/78612653
迭代次數是指整個訓練集輸入到神經網路進行訓練的次數,當測試錯誤率和訓練錯誤率相差較小,且測試准確率趨於穩定時(達到最優),可認為當前迭代次數合適;當測試錯誤率先變小後變大時則說明迭代次數過大了,需要減小迭代次數,否則容易出現過擬合。
用激活函數給神經網路加入一些非線性因素,使得網路可以更好地解決較為復雜的問題。參考: https://blog.csdn.net/tyhj_sf/article/details/79932893
它能夠把輸入的連續實值變換為0和1之間的輸出。
缺點:
1) 在深度神經網路中梯度反向傳遞時導致梯度爆炸和梯度消失,其中梯度爆炸發生的概率非常小,而梯度消失發生的概率比較大。
2) Sigmoid 的 output 不是0均值,使得收斂緩慢。batch的輸入能緩解這個問題。
它解決了Sigmoid函數的不是zero-centered輸出問題,然而梯度消失的問題和冪運算的問題仍然存在。
tanh函數具有中心對稱性,適合於有對稱性的二分類
雖然簡單,但卻是近幾年的重要成果,有以下幾大優點:
1) 解決了梯度消散問題 (在正區間)
2)計算速度非常快,只需要判斷輸入是否大於0
3)收斂速度遠快於sigmoid和tanh
ReLU也有幾個需要特別注意的問題:
1)ReLU的輸出不是zero-centered
2)Dead ReLU Problem,指的是某些神經元可能永遠不會被激活,導致相應的參數永遠不能被更新。有兩個主要原因可能導致這種情況產生: (1) 非常不幸的參數初始化,這種情況比較少見 (2) learning rate太高導致在訓練過程中參數更新太大,不幸使網路進入這種狀態。解決方法是可以採用Xavier初始化方法,以及避免將learning rate設置太大或使用adagrad等自動調節learning rate的演算法。
為了解決Dead ReLU Problem,提出了將ReLU的前半段設為 αx 而非 0 ,如 PReLU 。
1)深度學習往往需要大量時間來處理大量數據,模型的收斂速度是尤為重要的。所以,總體上來講,訓練深度學習網路盡量使用zero-centered數據 (可以經過數據預處理實現) 和zero-centered輸出。所以要盡量選擇輸出具有zero-centered特點的激活函數以加快模型的收斂速度。
2)如果使用 ReLU,那麼一定要小心設置 learning rate,而且要注意不要讓網路出現很多 「dead」 神經元,如果這個問題不好解決,那麼可以試試 Leaky ReLU、PReLU 或者 Maxout.
3)最好不要用 sigmoid,你可以試試 tanh,不過可以預期它的效果會比不上 ReLU 和 Maxout.
公式: https://www.cnblogs.com/xiaobingqianrui/p/10756046.html
優化器比較: https://blog.csdn.net/weixin_40170902/article/details/80092628
Ⅲ 有人可以介紹一下什麼是"神經網路"嗎
由於神經網路是多學科交叉的產物,各個相關的學科領域對神經網路
都有各自的看法,因此,關於神經網路的定義,在科學界存在許多不同的
見解。目前使用得最廣泛的是T.Koholen的定義,即"神經網路是由具有適
應性的簡單單元組成的廣泛並行互連的網路,它的組織能夠模擬生物神經
系統對真實世界物體所作出的交互反應。"
如果我們將人腦神經信息活動的特點與現行馮·諾依曼計算機的工作方
式進行比較,就可以看出人腦具有以下鮮明特徵:
1. 巨量並行性。
在馮·諾依曼機中,信息處理的方式是集中、串列的,即所有的程序指
令都必須調到CPU中後再一條一條地執行。而人在識別一幅圖像或作出一項
決策時,存在於腦中的多方面的知識和經驗會同時並發作用以迅速作出解答。
據研究,人腦中約有多達10^(10)~10^(11)數量級的神經元,每一個神經元
具有103數量級的連接,這就提供了巨大的存儲容量,在需要時能以很高的
反應速度作出判斷。
2. 信息處理和存儲單元結合在一起。
在馮·諾依曼機中,存儲內容和存儲地址是分開的,必須先找出存儲器的
地址,然後才能查出所存儲的內容。一旦存儲器發生了硬體故障,存儲器中
存儲的所有信息就都將受到毀壞。而人腦神經元既有信息處理能力又有存儲
功能,所以它在進行回憶時不僅不用先找存儲地址再調出所存內容,而且可
以由一部分內容恢復全部內容。當發生"硬體"故障(例如頭部受傷)時,並
不是所有存儲的信息都失效,而是僅有被損壞得最嚴重的那部分信息丟失。
3. 自組織自學習功能。
馮·諾依曼機沒有主動學習能力和自適應能力,它只能不折不扣地按照
人們已經編制好的程序步驟來進行相應的數值計算或邏輯計算。而人腦能夠
通過內部自組織、自學習的能力,不斷地適應外界環境,從而可以有效地處
理各種模擬的、模糊的或隨機的問題。
神經網路研究的主要發展過程大致可分為四個階段:
1. 第一階段是在五十年代中期之前。
西班牙解剖學家Cajal於十九世紀末創立了神經元學說,該學說認為神經
元的形狀呈兩極,其細胞體和樹突從其他神經元接受沖動,而軸索則將信號
向遠離細胞體的方向傳遞。在他之後發明的各種染色技術和微電極技術不斷
提供了有關神經元的主要特徵及其電學性質。
1943年,美國的心理學家W.S.McCulloch和數學家W.A.Pitts在論文《神經
活動中所蘊含思想的邏輯活動》中,提出了一個非常簡單的神經元模型,即
M-P模型。該模型將神經元當作一個功能邏輯器件來對待,從而開創了神經
網路模型的理論研究。
1949年,心理學家D.O. Hebb寫了一本題為《行為的組織》的書,在這本
書中他提出了神經元之間連接強度變化的規則,即後來所謂的Hebb學習法則。
Hebb寫道:"當神經細胞A的軸突足夠靠近細胞B並能使之興奮時,如果A重
復或持續地激發B,那麼這兩個細胞或其中一個細胞上必然有某種生長或代
謝過程上的變化,這種變化使A激活B的效率有所增加。"簡單地說,就是
如果兩個神經元都處於興奮狀態,那麼它們之間的突觸連接強度將會得到增
強。
五十年代初,生理學家Hodykin和數學家Huxley在研究神經細胞膜等效電
路時,將膜上離子的遷移變化分別等效為可變的Na+電阻和K+電阻,從而建
立了著名的Hodykin-Huxley方程。
這些先驅者的工作激發了許多學者從事這一領域的研究,從而為神經計
算的出現打下了基礎。
2. 第二階段從五十年代中期到六十年代末。
1958年,F.Rosenblatt等人研製出了歷史上第一個具有學習型神經網路
特點的模式識別裝置,即代號為Mark I的感知機(Perceptron),這一重
大事件是神經網路研究進入第二階段的標志。對於最簡單的沒有中間層的
感知機,Rosenblatt證明了一種學習演算法的收斂性,這種學習演算法通過迭代
地改變連接權來使網路執行預期的計算。
稍後於Rosenblatt,B.Widrow等人創造出了一種不同類型的會學習的神經
網路處理單元,即自適應線性元件Adaline,並且還為Adaline找出了一種有
力的學習規則,這個規則至今仍被廣泛應用。Widrow還建立了第一家神經計
算機硬體公司,並在六十年代中期實際生產商用神經計算機和神經計算機軟
件。
除Rosenblatt和Widrow外,在這個階段還有許多人在神經計算的結構和
實現思想方面作出了很大的貢獻。例如,K.Steinbuch研究了稱為學習矩陣
的一種二進制聯想網路結構及其硬體實現。N.Nilsson於1965年出版的
《機器學習》一書對這一時期的活動作了總結。
3. 第三階段從六十年代末到八十年代初。
第三階段開始的標志是1969年M.Minsky和S.Papert所著的《感知機》一書
的出版。該書對單層神經網路進行了深入分析,並且從數學上證明了這種網
絡功能有限,甚至不能解決象"異或"這樣的簡單邏輯運算問題。同時,他們
還發現有許多模式是不能用單層網路訓練的,而多層網路是否可行還很值得
懷疑。
由於M.Minsky在人工智慧領域中的巨大威望,他在論著中作出的悲觀結論
給當時神經網路沿感知機方向的研究潑了一盆冷水。在《感知機》一書出版
後,美國聯邦基金有15年之久沒有資助神經網路方面的研究工作,前蘇聯也
取消了幾項有前途的研究計劃。
但是,即使在這個低潮期里,仍有一些研究者繼續從事神經網路的研究工
作,如美國波士頓大學的S.Grossberg、芬蘭赫爾辛基技術大學的T.Kohonen
以及日本東京大學的甘利俊一等人。他們堅持不懈的工作為神經網路研究的
復興開辟了道路。
4. 第四階段從八十年代初至今。
1982年,美國加州理工學院的生物物理學家J.J.Hopfield採用全互連型
神經網路模型,利用所定義的計算能量函數,成功地求解了計算復雜度為
NP完全型的旅行商問題(Travelling Salesman Problem,簡稱TSP)。這
項突破性進展標志著神經網路方面的研究進入了第四階段,也是蓬勃發展
的階段。
Hopfield模型提出後,許多研究者力圖擴展該模型,使之更接近人腦的
功能特性。1983年,T.Sejnowski和G.Hinton提出了"隱單元"的概念,並且
研製出了Boltzmann機。日本的福島邦房在Rosenblatt的感知機的基礎上,
增加隱層單元,構造出了可以實現聯想學習的"認知機"。Kohonen應用3000
個閾器件構造神經網路實現了二維網路的聯想式學習功能。1986年,
D.Rumelhart和J.McClelland出版了具有轟動性的著作《並行分布處理-認知
微結構的探索》,該書的問世宣告神經網路的研究進入了高潮。
1987年,首屆國際神經網路大會在聖地亞哥召開,國際神經網路聯合會
(INNS)成立。隨後INNS創辦了刊物《Journal Neural Networks》,其他
專業雜志如《Neural Computation》,《IEEE Transactions on Neural
Networks》,《International Journal of Neural Systems》等也紛紛
問世。世界上許多著名大學相繼宣布成立神經計算研究所並制訂有關教育
計劃,許多國家也陸續成立了神經網路學會,並召開了多種地區性、國際性
會議,優秀論著、重大成果不斷涌現。
今天,在經過多年的准備與探索之後,神經網路的研究工作已進入了決
定性的階段。日本、美國及西歐各國均制訂了有關的研究規劃。
日本制訂了一個"人類前沿科學計劃"。這項計劃為期15-20年,僅
初期投資就超過了1萬億日元。在該計劃中,神經網路和腦功能的研究佔有
重要地位,因為所謂"人類前沿科學"首先指的就是有關人類大腦以及通過
借鑒人腦而研製新一代計算機的科學領域。
在美國,神經網路的研究得到了軍方的強有力的支持。美國國防部投資
4億美元,由國防部高級研究計劃局(DAPRA)制訂了一個8年研究計劃,
並成立了相應的組織和指導委員會。同時,海軍研究辦公室(ONR)、空軍
科研辦公室(AFOSR)等也紛紛投入巨額資金進行神經網路的研究。DARPA認
為神經網路"看來是解決機器智能的唯一希望",並認為"這是一項比原子彈
工程更重要的技術"。美國國家科學基金會(NSF)、國家航空航天局(NASA)
等政府機構對神經網路的發展也都非常重視,它們以不同的形式支持了眾多
的研究課題。
歐共體也制訂了相應的研究計劃。在其ESPRIT計劃中,就有一個項目是
"神經網路在歐洲工業中的應用",除了英、德兩國的原子能機構外,還有多
個歐洲大公司卷進這個研究項目,如英國航天航空公司、德國西門子公司等。
此外,西歐一些國家還有自己的研究計劃,如德國從1988年就開始進行一個
叫作"神經資訊理論"的研究計劃。
我國從1986年開始,先後召開了多次非正式的神經網路研討會。1990年
12月,由中國計算機學會、電子學會、人工智慧學會、自動化學會、通信學
會、物理學會、生物物理學會和心理學會等八個學會聯合在北京召開了"中
國神經網路首屆學術會議",從而開創了我國神經網路研究的新紀元。