『壹』 異構網路的網路選擇演算法的研究
異構網路中無線資源管理的一個重要研究方向就是網路選擇演算法,網路選擇演算法的研究很廣泛,這里給出了幾個典型的無線網路選擇演算法的類別。 預切換可以有效的減少不必要的切換,並為是否需要執行切換做好准備。通常情況下可以通過當前接收信號強度來預測將來接收信號強度的變化趨勢,來判斷是否需要執行切換。
文獻 中利用多項式回歸演算法對接收信號的強度進行預測,這種方法的計算復雜度較大。文獻 中,利用模糊神經網路來對接收信號強度進行預測,模糊神經網路的演算法最大的問題,收斂較慢,而且計算的復雜度高。文獻 中,利用的是最小二乘演算法(LMS)來預測接收的信號強度,通過迭代的方法,能夠達到快收斂,得到較好的預測。還有在文獻 中,直接採用接收信號強度的斜率來預測接收信號強度,用來估計終端在該網路中的生存時間,但是這種方法太簡單,精度不是很高。 在垂直切換的過程中,對於相同的切換場景,通常會出現現在的已出現過的切換條件,對於其垂直切換的結果,可以應用到當前條件下,這樣可以有效避免的重新執行切換決策所帶來的時延。
文獻[33]中,提出利用用戶連接信息(User Connection Profile,UCP)資料庫用來存儲以前的網路選擇事件。在終端需要執行垂直切換時,首先檢查資料庫中是否存在相同的網路選擇記錄,如果存在可以直接接入最合適的網路。在文獻[34]中,提出了將切換到該網路的持續服務時間和距離該網路的最後一次阻塞時間間隔作為歷史信息記錄下來,根據這些信息,選擇是否有必要進行切換。 由於用戶對網路參數的判斷往往是模糊的,而不是確切的概念,所以通常採用模糊邏輯對參數進行定量分析,將其應用到網路選擇中顯得更加合理。模糊系統組成通常有3個部分組成,分別是模糊化、模糊推理和去模糊化。對於去模糊化的方法通常採用中心平均去模糊化,最後得到網路性能的評價值,根據模糊系統所輸出的結果,選擇最適合的網路。
通常情況下,模糊邏輯與神經網路是相互結合起來應用的,通過模糊邏輯系統的推理規則,對神經網路進行訓練,得到訓練好的神經網路。在垂直切換的判決的時候,利用訓練好的神經網路,輸入相應網路的屬性參數,選擇最適合的網路接入。
基於模糊邏輯和神經網路的策略,可以對多種因素(尤其動態因素)進行動態地控制,並做出自適應的決策,可以有效提高網路選擇的合理性,但該策略最大的缺點是,演算法的實現較為復雜,在電池容量和處理能力均受限的移動設備上是不合適的。 在異構網路選擇中,博弈論是一個重要的研究方向。在博弈論的模型中,博弈中的參與者在追求自身利益最大化的同時,保證自身付出的代價盡量小。參與者的這兩種策略可以通過效用函數和代價函數來衡量。因此通過最大化效用函數和最小化代價函數,來追求利益的最大化。
文獻[36]中提出一種基於博弈論的定價策略和網路選擇方案,該方案中服務提供商(Service Providers,SPs)為了提高自己的利潤需要面臨競爭,它是通過用戶間的合作或者非合作博弈來獲得,在實際的異構網路場景下,用戶和服務提供商SPs之間可以利用博弈模型來表示。Dusit Niyato在文獻[37]中,通過競價機制來進行異構網路資源的管理,這里將業務分成兩種類型,一種是基本業務,另一種類似高質量業務,基本業務的價格是固定的,而高質量業務的價格是動態變化的,它是隨著服務提供商的競爭和合作而變化的。因此這里從合作博弈和非合作博弈兩方面來討論定價機制。Dusit Niyato在文獻[38]中基於進化博弈理論,來解決在帶寬受限情況下,用戶如何在重疊區域進行網路選擇。 網路選擇的目標通常是通過合理分配無線資源來最大化系統的吞吐量,或者最小化接入阻塞概率等,這樣就會涉及網路優化問題。
網路選擇演算法往往是一種多目標決策,用戶希望得到好的服務質量、價格便宜的網路、低的電池功率消耗等。對於多目標決策演算法,通常是不可能使得每個目標同時達到最優,通常的有三種做法:其一,把一些目標函數轉化為限制條件,從而減少目標函數數目;其二,將不同的目標函數規范化後,將規范化後的目標函數相加,得到一個目標函數,這樣就可以利用最優化的方法,得到最優問題的解;其三,將兩者結合起來使用。例如文獻[39]中,採用的是讓系統的帶寬受限,最大化網路內的所有用戶的手機使用時間,即將部分目標函數轉化為限制條件。文獻[40]中,採用的是讓用戶的使用的費用受限,最大化用戶的利益和最小化用戶的代價,這里採用的是上面介紹的第三種方法。 基於策略的網路選擇指的是按照預先規定好的策略進行相應的網路操作。在網路選擇中,通常需要考慮網路負荷、終端的移動性和業務特性等因素。如對於車載用戶通常選擇覆蓋范圍大的無線網路,如WCDMA、WiMAX等;對於實時性要求不高的業務,並且非車載用戶通常選擇WLAN接入。這些均是通過策略來進行網路選擇。
文獻[41, 42]提出了基於業務類型的網路選擇演算法,根據用戶的業務類型為用戶選擇合適的網路。文獻[35]提出基於負載均衡的網路選擇演算法,用戶選擇接入或切換到最小負載因子的網路。[43]提出了一種考慮用戶移動性和業務類型的網路選擇演算法。 多屬性判決策略(Multiple Attribute Decision Making,MADM)是目前垂直切換方面研究最多的領域。多屬性判決策略主要分為基於代價函數的方法和其他方法。
基於代價函數的方法
代價函數一般有兩種構造形式,一種是多屬性參數值的線性組合,如(2.1)式所示;另一種是多屬性參數值的權重指數乘積或者是屬性參數值的對數線性組合,如(2.2)式所示。
(2.1)
(2.2)
其中代表規范化的第個網路的第個屬性值,代表第個屬性的權值。對於屬性的規范化,首先對屬性進行分類,分為效益型、成本型等,然後根據不同的類型的,對參數進行歸一化,採用最多的是線性規范化、極差規范化和向量變換法。關於權值的確定可以分為簡單賦權法(Simple Additive Weighting,SAW)、層次分析法(Analytic Hierarchy Process,AHP)、熵權法、基於方差和均值賦權法。
(1) SAW:用戶根據自己的偏好,確定每個屬性的重要性,通常給出每個參數取值的具體參數值。
(2) AHP:首先分析評價系統中各要素之間關系,建立遞階層次結構;其次對同一層次的各要素之間的重要性進行兩兩比較,構造判斷矩陣;接著由每層判斷矩陣計算相對權重;最後計算系統總目標的合成總權重。
(3) 熵權法:通過求解候選網路中的同一屬性的熵值,熵值的大小表明網路同一屬性的參數值的差異,差別越大,說明該屬性對決策影響越大,相應權值的取值就越大。
(4) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
其他方法
(1) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
(2) 逼近理想解排序法(TOPSIS):首先對參數進行歸一化,從網路的每組屬性參數值里選擇最好的參數組成最優的一組屬性參數,同樣也可以得到最差的一組屬性參數。將每個網路與這兩組參數比較,距離最優參數組越近,並且與最差組越遠,該網路為最合適的網路。
(3) 灰度關聯分析法(GRA):首先對參數進行歸一化,再利用GRA方法,求得每個網路的每個屬性的關聯系數,然後求出每個網路總的關聯系數。根據每個網路總的關聯系數,選擇最適合的網路。
(4) 消去和選擇轉換法(ELECTRE):首先對參數進行歸一化,構造加權的規范化矩陣,確定屬性一致集和不一致集。然後計算一致指數矩陣和劣勢矩陣,最後得到一致指數矩陣和不一致指數矩陣。根據這兩個矩陣,確定網路的優劣關系,選擇最適合的網路。
VIKOR:首先對參數進行歸一化,首先確定最優和最差屬性參數組,然後計算得到每個網路屬性的加權和屬性中最大的參數值,然後利用極差規范化對網路的加權和以及最大屬性值進行歸一化,最後利用歸一化的參數進行加權求和,依據這個值,選擇最合適的網路。
『貳』 邁迪電動汽車怎麼充電
電車資源新聞:
新能源汽車是現在人們關注的焦點,也是今年發展的重點。新能源汽車在使用過程中,充電問題是重中之重。下面小編就給大家介紹一下我們的充電樁。你認為你知道多少?
電動充電樁介紹:外觀
充電樁的作用類似於加油站的加油機。可固定在地面或牆上,安裝在公共建築(公共建築、商場、公共停車場等。)和小區停車場或充電站,並可根據不同電壓等級為各類電動汽車充電。充電樁的輸入端直接接入交流電網,輸出端配有充電插頭,為電動車充電。一般充電樁提供常規充電和快速充電兩種充電模式。人們可以在充電樁提供的人機交互界面上刷卡,列印相應的充電模式、充電時間和費用數據。充電樁顯示屏可以顯示充電量、費用、充電時間等數據。
電動充電樁簡介:功能
對於電動汽車來說,電池充電設備是不可或缺的子系統之一。其作用是將電能轉化為電動汽車車載電池的電能。電動汽車充電裝置的分類有不同的方法,一般可分為車載充電裝置和非車載充電裝置。
充電樁是指安裝在電動汽車上,利用地面交流電網和車載電源為電池組充電的裝置,包括車載充電器、車載充電發電機組和運行能量回收充電裝置。將帶插頭的交流電源線直接插入電動汽車的充電插座,給電池充電。車載充電裝置通常採用結構簡單、控制方便的接觸式充電器,也可以是感應式充電器。完全按照車載電池的類型來設計,針對性很強。非車載充電設備,即地面充電設備,主要包括專用充電器、專用充電站、通用充電器、公共場所充電站等。可以滿足各種電池的各種充電方式。通常非車載充電器的功率、體積、重量都比較大,以便適應各種充電方式。
電動充電樁簡介:數據
電動汽車作為一種發展前景廣闊的綠色交通工具,未來將以極快的速度普及,未來的市場前景也非常巨大。在全球能源危機和環境危機的背景下,我國政府積極推動新能源汽車的應用和發展。充換電站作為電動汽車發展的必要配套基礎設施,具有非常重要的社會效益和經濟效益。一項建設電動汽車充換電站的運動已經在全國范圍內展開。
電動充電樁的控制電路主要由嵌入式ARM處理器完成。用戶可以刷卡進行用戶認證、余額查詢、賬單查詢等功能。它們還可以提供語音輸出介面,實現語音交互。用戶可以根據液晶屏的指示選擇四種充電模式,包括按時充電、按電量充電、自動充電、按里程充電等。
充電器的控制器和集中器使用CAN匯流排進行數據交互,集中器和伺服器平台使用有線互聯網或無線GPRS網路進行數據交互。為了安全起見,對電費和金額數據進行了安全加密。
電池管理系統(BMS)的主要功能是監測電池的工作狀態(電池的電壓、電流和溫度),預測動力電池的電池容量(SOC)和相應的剩餘行駛里程,對電池進行管理,避免電池過放、過充、過熱和單個電池間嚴重的電壓不平衡,最大限度地提高電池的存儲容量和循環壽命。
服務管理平台主要有收費管理、收費操作、綜合查詢三大功能。充電管理集中管理系統涉及的基礎數據,如電動車信息、電池信息、用戶卡信息、充電樁信息等;收費主要管理用戶的收費;綜合查詢是指對管理和經營數據的綜合分析和查詢。
百萬購車補貼