導航:首頁 > 網路設置 > bp神經網路多少層合適

bp神經網路多少層合適

發布時間:2023-08-12 05:41:43

Ⅰ 神經網路BP模型

一、BP模型概述

誤差逆傳播(Error Back-Propagation)神經網路模型簡稱為BP(Back-Propagation)網路模型。

Pall Werbas博士於1974年在他的博士論文中提出了誤差逆傳播學習演算法。完整提出並被廣泛接受誤差逆傳播學習演算法的是以Rumelhart和McCelland為首的科學家小組。他們在1986年出版「Parallel Distributed Processing,Explorations in the Microstructure of Cognition」(《並行分布信息處理》)一書中,對誤差逆傳播學習演算法進行了詳盡的分析與介紹,並對這一演算法的潛在能力進行了深入探討。

BP網路是一種具有3層或3層以上的階層型神經網路。上、下層之間各神經元實現全連接,即下層的每一個神經元與上層的每一個神經元都實現權連接,而每一層各神經元之間無連接。網路按有教師示教的方式進行學習,當一對學習模式提供給網路後,神經元的激活值從輸入層經各隱含層向輸出層傳播,在輸出層的各神經元獲得網路的輸入響應。在這之後,按減小期望輸出與實際輸出的誤差的方向,從輸入層經各隱含層逐層修正各連接權,最後回到輸入層,故得名「誤差逆傳播學習演算法」。隨著這種誤差逆傳播修正的不斷進行,網路對輸入模式響應的正確率也不斷提高。

BP網路主要應用於以下幾個方面:

1)函數逼近:用輸入模式與相應的期望輸出模式學習一個網路逼近一個函數;

2)模式識別:用一個特定的期望輸出模式將它與輸入模式聯系起來;

3)分類:把輸入模式以所定義的合適方式進行分類;

4)數據壓縮:減少輸出矢量的維數以便於傳輸或存儲。

在人工神經網路的實際應用中,80%~90%的人工神經網路模型採用BP網路或它的變化形式,它也是前向網路的核心部分,體現了人工神經網路最精華的部分。

二、BP模型原理

下面以三層BP網路為例,說明學習和應用的原理。

1.數據定義

P對學習模式(xp,dp),p=1,2,…,P;

輸入模式矩陣X[N][P]=(x1,x2,…,xP);

目標模式矩陣d[M][P]=(d1,d2,…,dP)。

三層BP網路結構

輸入層神經元節點數S0=N,i=1,2,…,S0;

隱含層神經元節點數S1,j=1,2,…,S1;

神經元激活函數f1[S1];

權值矩陣W1[S1][S0];

偏差向量b1[S1]。

輸出層神經元節點數S2=M,k=1,2,…,S2;

神經元激活函數f2[S2];

權值矩陣W2[S2][S1];

偏差向量b2[S2]。

學習參數

目標誤差ϵ;

初始權更新值Δ0

最大權更新值Δmax

權更新值增大倍數η+

權更新值減小倍數η-

2.誤差函數定義

對第p個輸入模式的誤差的計算公式為

中國礦產資源評價新技術與評價新模型

y2kp為BP網的計算輸出。

3.BP網路學習公式推導

BP網路學習公式推導的指導思想是,對網路的權值W、偏差b修正,使誤差函數沿負梯度方向下降,直到網路輸出誤差精度達到目標精度要求,學習結束。

各層輸出計算公式

輸入層

y0i=xi,i=1,2,…,S0;

隱含層

中國礦產資源評價新技術與評價新模型

y1j=f1(z1j),

j=1,2,…,S1;

輸出層

中國礦產資源評價新技術與評價新模型

y2k=f2(z2k),

k=1,2,…,S2。

輸出節點的誤差公式

中國礦產資源評價新技術與評價新模型

對輸出層節點的梯度公式推導

中國礦產資源評價新技術與評價新模型

E是多個y2m的函數,但只有一個y2k與wkj有關,各y2m間相互獨立。

其中

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

設輸出層節點誤差為

δ2k=(dk-y2k)·f2′(z2k),

中國礦產資源評價新技術與評價新模型

同理可得

中國礦產資源評價新技術與評價新模型

對隱含層節點的梯度公式推導

中國礦產資源評價新技術與評價新模型

E是多個y2k的函數,針對某一個w1ji,對應一個y1j,它與所有的y2k有關。因此,上式只存在對k的求和,其中

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

設隱含層節點誤差為

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

同理可得

中國礦產資源評價新技術與評價新模型

4.採用彈性BP演算法(RPROP)計算權值W、偏差b的修正值ΔW,Δb

1993年德國 Martin Riedmiller和Heinrich Braun 在他們的論文「A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm」中,提出Resilient Backpropagation演算法——彈性BP演算法(RPROP)。這種方法試圖消除梯度的大小對權步的有害影響,因此,只有梯度的符號被認為表示權更新的方向。

權改變的大小僅僅由權專門的「更新值」

確定

中國礦產資源評價新技術與評價新模型

其中

表示在模式集的所有模式(批學習)上求和的梯度信息,(t)表示t時刻或第t次學習。

權更新遵循規則:如果導數是正(增加誤差),這個權由它的更新值減少。如果導數是負,更新值增加。

中國礦產資源評價新技術與評價新模型

RPROP演算法是根據局部梯度信息實現權步的直接修改。對於每個權,我們引入它的

各自的更新值

,它獨自確定權更新值的大小。這是基於符號相關的自適應過程,它基

於在誤差函數E上的局部梯度信息,按照以下的學習規則更新

中國礦產資源評價新技術與評價新模型

其中0<η-<1<η+

在每個時刻,如果目標函數的梯度改變它的符號,它表示最後的更新太大,更新值

應由權更新值減小倍數因子η-得到減少;如果目標函數的梯度保持它的符號,更新值應由權更新值增大倍數因子η+得到增大。

為了減少自由地可調參數的數目,增大倍數因子η+和減小倍數因子η被設置到固定值

η+=1.2,

η-=0.5,

這兩個值在大量的實踐中得到了很好的效果。

RPROP演算法採用了兩個參數:初始權更新值Δ0和最大權更新值Δmax

當學習開始時,所有的更新值被設置為初始值Δ0,因為它直接確定了前面權步的大小,它應該按照權自身的初值進行選擇,例如,Δ0=0.1(默認設置)。

為了使權不至於變得太大,設置最大權更新值限制Δmax,默認上界設置為

Δmax=50.0。

在很多實驗中,發現通過設置最大權更新值Δmax到相當小的值,例如

Δmax=1.0。

我們可能達到誤差減小的平滑性能。

5.計算修正權值W、偏差b

第t次學習,權值W、偏差b的的修正公式

W(t)=W(t-1)+ΔW(t)

b(t)=b(t-1)+Δb(t)

其中,t為學習次數。

6.BP網路學習成功結束條件每次學習累積誤差平方和

中國礦產資源評價新技術與評價新模型

每次學習平均誤差

中國礦產資源評價新技術與評價新模型

當平均誤差MSE<ε,BP網路學習成功結束。

7.BP網路應用預測

在應用BP網路時,提供網路輸入給輸入層,應用給定的BP網路及BP網路學習得到的權值W、偏差b,網路輸入經過從輸入層經各隱含層向輸出層的「順傳播」過程,計算出BP網的預測輸出。

8.神經元激活函數f

線性函數

f(x)=x,

f′(x)=1,

f(x)的輸入范圍(-∞,+∞),輸出范圍(-∞,+∞)。

一般用於輸出層,可使網路輸出任何值。

S型函數S(x)

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍(0,1)。

f′(x)=f(x)[1-f(x)],

f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,

]。

一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(0,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。

在用於模式識別時,可用於輸出層,產生逼近於0或1的二值輸出。

雙曲正切S型函數

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍(-1,1)。

f′(x)=1-f(x)·f(x),

f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,1]。

一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(-1,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。

階梯函數

類型1

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

f′(x)=0。

類型2

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍{-1,1}。

f′(x)=0。

斜坡函數

類型1

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍[0,1]。

中國礦產資源評價新技術與評價新模型

f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

類型2

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍[-1,1]。

中國礦產資源評價新技術與評價新模型

f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

三、總體演算法

1.三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b初始化總體演算法

(1)輸入參數X[N][P],S0,S1,f1[S1],S2,f2[S2];

(2)計算輸入模式X[N][P]各個變數的最大值,最小值矩陣 Xmax[N],Xmin[N];

(3)隱含層的權值W1,偏差b1初始化。

情形1:隱含層激活函數f( )都是雙曲正切S型函數

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9))輸出W1[S1][S0],b1[S1]。

情形2:隱含層激活函數f( )都是S型函數

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag;

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9)輸出W1[S1][S0],b1[S1]。

情形3:隱含層激活函數f( )為其他函數的情形

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9)輸出W1[S1][S0],b1[S1]。

(4)輸出層的權值W2,偏差b2初始化

1)產生[-1,1]之間均勻分布的S2×S1維隨機數矩陣W2[S2][S1];

2)產生[-1,1]之間均勻分布的S2×1維隨機數矩陣b2[S2];

3)輸出W2[S2][S1],b2[S2]。

2.應用彈性BP演算法(RPROP)學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b總體演算法

函數:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)

(1)輸入參數

P對模式(xp,dp),p=1,2,…,P;

三層BP網路結構;

學習參數。

(2)學習初始化

1)

2)各層W,b的梯度值

初始化為零矩陣。

(3)由輸入模式X求第一次學習各層輸出y0,y1,y2及第一次學習平均誤差MSE

(4)進入學習循環

epoch=1

(5)判斷每次學習誤差是否達到目標誤差要求

如果MSE<ϵ,

則,跳出epoch循環,

轉到(12)。

(6)保存第epoch-1次學習產生的各層W,b的梯度值

(7)求第epoch次學習各層W,b的梯度值

1)求各層誤差反向傳播值δ;

2)求第p次各層W,b的梯度值

3)求p=1,2,…,P次模式產生的W,b的梯度值

的累加。

(8)如果epoch=1,則將第epoch-1次學習的各層W,b的梯度值

設為第epoch次學習產生的各層W,b的梯度值

(9)求各層W,b的更新

1)求權更新值Δij更新;

2)求W,b的權更新值

3)求第epoch次學習修正後的各層W,b。

(10)用修正後各層W、b,由X求第epoch次學習各層輸出y0,y1,y2及第epoch次學習誤差MSE

(11)epoch=epoch+1,

如果epoch≤MAX_EPOCH,轉到(5);

否則,轉到(12)。

(12)輸出處理

1)如果MSE<ε,

則學習達到目標誤差要求,輸出W1,b1,W2,b2

2)如果MSE≥ε,

則學習沒有達到目標誤差要求,再次學習。

(13)結束

3.三層BP網路(含輸入層,隱含層,輸出層)預測總體演算法

首先應用Train3lBP_RPROP( )學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b,然後應用三層BP網路(含輸入層,隱含層,輸出層)預測。

函數:Simu3lBP( )。

1)輸入參數:

P個需預測的輸入數據向量xp,p=1,2,…,P;

三層BP網路結構;

學習得到的各層權值W、偏差b。

2)計算P個需預測的輸入數據向量xp(p=1,2,…,P)的網路輸出 y2[S2][P],輸出預測結果y2[S2][P]。

四、總體演算法流程圖

BP網路總體演算法流程圖見附圖2。

五、數據流圖

BP網數據流圖見附圖1。

六、實例

實例一 全國銅礦化探異常數據BP 模型分類

1.全國銅礦化探異常數據准備

在全國銅礦化探數據上用穩健統計學方法選取銅異常下限值33.1,生成全國銅礦化探異常數據。

2.模型數據准備

根據全國銅礦化探異常數據,選取7類33個礦點的化探數據作為模型數據。這7類分別是岩漿岩型銅礦、斑岩型銅礦、矽卡岩型、海相火山型銅礦、陸相火山型銅礦、受變質型銅礦、海相沉積型銅礦,另添加了一類沒有銅異常的模型(表8-1)。

3.測試數據准備

全國化探數據作為測試數據集。

4.BP網路結構

隱層數2,輸入層到輸出層向量維數分別為14,9、5、1。學習率設置為0.9,系統誤差1e-5。沒有動量項。

表8-1 模型數據表

續表

5.計算結果圖

如圖8-2、圖8-3。

圖8-2

圖8-3 全國銅礦礦床類型BP模型分類示意圖

實例二 全國金礦礦石量品位數據BP 模型分類

1.模型數據准備

根據全國金礦儲量品位數據,選取4類34個礦床數據作為模型數據,這4類分別是綠岩型金礦、與中酸性浸入岩有關的熱液型金礦、微細浸染型型金礦、火山熱液型金礦(表8-2)。

2.測試數據准備

模型樣本點和部分金礦點金屬量、礦石量、品位數據作為測試數據集。

3.BP網路結構

輸入層為三維,隱層1層,隱層為三維,輸出層為四維,學習率設置為0.8,系統誤差1e-4,迭代次數5000。

表8-2 模型數據

4.計算結果

結果見表8-3、8-4。

表8-3 訓練學習結果

表8-4 預測結果(部分)

續表

Ⅱ BP神經網路中隱藏層節點個數怎麼確定最佳

神經網路演算法隱含層的選取:構造法,刪除法,黃金分割法。

首先在[a,b]內尋找理想的隱含層節點數,這樣就充分保證了網路的逼近能力和泛化能力,為滿足高精度逼近的要求,再按照黃金分割原理拓展搜索區間;

即得到區間[b,c](其中b=0.619*(c-a)+a),在區間[b,c]中搜索最優,則得到逼近能力更強的隱含層節點數,在實際應用根據要求,從中選取其一即可。

計算過程

BP神經網路的計算過程由正向計算過程和反向計算過程組成。正向傳播過程,輸入模式從輸入層經隱單元層逐層處理,並轉向輸出層,每一層神經元的狀態隻影響下一層神經元的狀態。如果在輸出層不能得到期望的輸出,則轉入反向傳播,將誤差信號沿原來的連接通路返回,通過修改各神經元的權值,使得誤差信號最小。

以上內容參考:網路-BP神經網路

Ⅲ BP神經網路

神經網路能很好地解決不同的機器學習問題。神經網路模型是許多邏輯單元按照不同層級組織起來的網路,每一層的輸出變數都是下一層的輸入變數。

上圖顯示了人工神經網路是一個分層模型,邏輯上可以分為三層:

輸入層 :輸入層接收特徵向量 x

輸出層 :輸出層產出最終的預測 h

隱含層 :隱含層介於輸入層與輸出層之間,之所以稱之為隱含層,是因為當中產生的值並不像輸入層使用的樣本矩陣 X或者輸出層用到的標簽矩陣 y 那樣直接可見。

下面引入一些標記法來幫助描述模型:

!$ a^{(j)}_{i} $ 代表第j層的第i個激活單元。 !$ heta^{(j)} $ 代表從第 j 層映射到第 j+1 層時的權重的矩陣,例如 !$ heta^{(1)} $ 代表從第一層映射到第二層的權重的矩陣。其尺寸為:以第 j+1層的激活單元數量為行數,以第 j 層的激活單元數加一為列數的矩陣。例如:上圖所示的神經網路中 !$ heta^{(1)} $ 的尺寸為 3*4。

對於上圖所示的模型,激活單元和輸出分別表達為:

!$ a^{(2)}_{1} = g( heta^{(1)}_{10}x_0 + heta^{(1)}_{11}x_1 + heta^{(1)}_{12}x_2 + heta^{(1)}_{13}x_3 ) $

!$a^{(2)}_{2} = g( heta^{(1)}_{20}x_0 + heta^{(1)}_{21}x_1 + heta^{(1)}_{22}x_2 + heta^{(1)}_{23}x_3 ) $

!$a^{(2)}_{3} = g( heta^{(1)}_{30}x_0 + heta^{(1)}_{31}x_1 + heta^{(1)}_{32}x_2 + heta^{(1)}_{33}x_3 ) $

!$h_{ heta}{(x)} = g( heta^{(2)}_{10}a^{2}_{0} + heta^{(2)}_{11}a^{2}_{1} + heta^{(2)}_{12}a^{2}_{2} + heta^{(2)}_{13}a^{2}_{3} ) $

下面用向量化的方法以上面的神經網路為例,試著計算第二層的值:

對於多類分類問題來說:

我們可將神經網路的分類定義為兩種情況:二類分類和多類分類。

二類分類: !$ S_{L} = 0,y = 0,y = 1$

多類分類: !$ S_{L} = k, y_{i} = 1表示分到第i類;(k>2)$

在神經網路中,我們可以有很多輸出變數,我們的 !$h_{ heta}{(x)} $ 是一個維度為K的向量,並且我們訓練集中的因變數也是同樣維度的一個向量,因此我們的代價函數會比邏輯回歸更加復雜一些,為: !$ h_{ heta}{(x)} in R^{K}(h_{ heta}{(x)})_{i} = i^{th} output$

我們希望通過代價函數來觀察演算法預測的結果與真實情況的誤差有多大,唯一不同的是,對於每一行特徵,我們都會給出K個預測,基本上我們可以利用循環,對每一行特徵都預測K個不同結果,然後在利用循環在K個預測中選擇可能性最高的一個,將其與y中的實際數據進行比較。

正則化的那一項只是排除了每一層 !$ heta_0$ 後,每一層的 矩陣的和。最里層的循環j循環所有的行(由 +1 層的激活單元數決定),循環i則循環所有的列,由該層( !$ s_l$ 層)的激活單元數所決定。即: !$h_{ heta}{(x)}$ 與真實值之間的距離為每個樣本-每個類輸出的加和,對參數進行 regularization bias 項處理所有參數的平方和。

由於神經網路允許多個隱含層,即各層的神經元都會產出預測,因此,就不能直接利用傳統回歸問題的梯度下降法來最小化 !$J( heta)$ ,而需要逐層考慮預測誤差,並且逐層優化。為此,在多層神經網路中,使用反向傳播演算法(Backpropagation Algorithm)來優化預測,首先定義各層的預測誤差為向量 !$ δ^{(l)} $

訓練過程:

當我們對一個較為復雜的模型(例如神經網路)使用梯度下降演算法時,可能會存在一些不容易察覺的錯誤,意味著,雖然代價看上去在不斷減小,但最終的結果可能並不是最優解。

為了避免這樣的問題,我們採取一種叫做梯度的數值檢驗( Numerical Gradient Checking )方法。這種方法的思想是通過估計梯度值來檢驗我們計算的導數值是否真的是我們要求的。

對梯度的估計採用的方法是在代價函數上沿著切線的方向選擇離兩個非常近的點然後計算兩個點的平均值用以估計梯度。即對於某個特定的 ,我們計算出在 !$ heta - epsilon$ 處和 !$ heta + epsilon$ 的代價值(是一個非常小的值,通常選取 0.001),然後求兩個代價的平均,用以估計在 !$ heta$ 處的代價值。

當 !$ heta$ 是一個向量時,我們則需要對偏導數進行檢驗。因為代價函數的偏導數檢驗只針對一個參數的改變進行檢驗,下面是一個只針對 !$ heta_1$ 進行檢驗的示例:

如果上式成立,則證明網路中BP演算法有效,此時關閉梯度校驗演算法(因為梯度的近似計算效率很慢),繼續網路的訓練過程。

Ⅳ Matlab BP神經網路隱層選擇幾層合適隱層中的神經節點選擇幾個合適

我是一個一個挨著順序試的,把神經元的節點一個個的增加,記錄下每次的誤差。一般來說,當神經元個數增加到某一個數後,誤差就穩定了或者出現誤差增大的情況。把誤差最小的那個點作為較優點。

Ⅳ BP神經網路隱藏層層數越多越多好嗎

並不是越多越好,要看實際問題。最合適的才是最好的。層數越多計算量就越大。普通筆記本算都算不出來。

Ⅵ 神經網路中層次多少對神經網路有什麼影響

理論情況下,三層的神經網路能完成任意的n維到m維的映射。
輸入層神經單元數確定方法:根據需要求解的問題和數據表示方式確定。
隱層的神經單元數確定方法:最佳的隱層單元數一定存在,但需要根據經驗和多次試驗確定。
經驗公式如n2=2*n1+1等。
輸出層神經單元數確定方法:有使用者要求來定,如bp網路用為分類器,一般有兩種方式:
1,m; 2,log2(m).
層次太多增加了復雜度,並不一定能更好的識別。

Ⅶ bp神經網路,把它分為很多層,可以算深度學習嘛

不能算深度,而且多層單純的bp神經網路會出現梯度擴散問題,深度網路不光是指層數增加,還添加了卷積層,降緯層等不同於一般隱藏層的神經元。

閱讀全文

與bp神經網路多少層合適相關的資料

熱點內容
天貓網路銷售能賺多少錢 瀏覽:517
現場的wifi網路 瀏覽:173
手機上的網路信號差 瀏覽:713
蘋果提示助手沒網路 瀏覽:962
家裡的網路不好路由器可以增強嗎 瀏覽:281
酒店網路傭金如何記賬 瀏覽:423
無線網網路受限怎麼辦 瀏覽:544
怎麼設置呼叫轉移網路異常 瀏覽:968
編制雙代號網路哪個軟體好 瀏覽:559
迅雷網路的無線橋接怎麼用 瀏覽:860
網路盒一天用多少電源 瀏覽:288
怎麼知道網路設置 瀏覽:893
動車移動網路卡 瀏覽:962
手機網路顯示啥表示真5g 瀏覽:890
考研計算機網路各部分佔比 瀏覽:907
三星無法連接4g網路 瀏覽:169
歐拉好貓無線網路 瀏覽:25
網路安全需求量大嗎 瀏覽:207
校園網路信號滿了 瀏覽:840
網路誕生的原因有哪些 瀏覽:952

友情鏈接