導航:首頁 > 網路設置 > 訓練過程中網路深度設置

訓練過程中網路深度設置

發布時間:2023-07-04 05:56:37

1. 如何使用SparkNet進行分布式深度神經網路訓練

這兩個概念實際上是互相交叉的,例如,卷積神經網路(Convolutional neural networks,簡稱CNNs)就是一種深度的監督學習下的機器學習模型,而深度置信網(Deep Belief Nets,簡稱DBNs)就是一種無監督學習下的機器學習模型。
深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。
深度學習的概念由Hinton等人於2006年提出。基於深信度網(DBN)提出非監督貪心逐層訓練演算法,為解決深層結構相關的優化難題帶來希望,隨後提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網路是第一個真正多層結構學習演算法,它利用空間相對關系減少參數數目以提高訓練性能。

2. 深度神經網路是如何訓練的

Coursera的Ng機器學習,UFLDL都看過。沒記錯的話Ng的機器學習里是直接給出公式了,雖然你可能知道如何求解,但是即使不知道完成作業也不是問題,只要照著公式寫就行。反正我當時看的時候心裡並沒能比較清楚的明白。我覺得想了解深度學習UFLDL教程 - Ufldl是不錯的。有習題,做完的話確實會對深度學習有更加深刻的理解,但是總還不是很清晰。後來看了Li FeiFei的Stanford University CS231n: Convolutional Neural Networks for Visual Recognition,我的感覺是對CNN的理解有了很大的提升。沉下心來推推公式,多思考,明白了反向傳播本質上是鏈式法則(雖然之前也知道,但是當時還是理解的迷迷糊糊的)。所有的梯度其實都是對最終的loss進行求導得到的,也就是標量對矩陣or向量的求導。當然同時也學到了許多其他的關於cnn的。並且建議你不僅要完成練習,最好能自己也寫一個cnn,這個過程可能會讓你學習到許多更加細節和可能忽略的東西。這樣的網路可以使用中間層構建出多層的抽象,正如我們在布爾線路中做的那樣。例如,如果我們在進行視覺模式識別,那麼在第一層的神經元可能學會識別邊,在第二層的神經元可以在邊的基礎上學會識別出更加復雜的形狀,例如三角形或者矩形。第三層將能夠識別更加復雜的形狀。依此類推。這些多層的抽象看起來能夠賦予深度網路一種學習解決復雜模式識別問題的能力。然後,正如線路的示例中看到的那樣,存在著理論上的研究結果告訴我們深度網路在本質上比淺層網路更加強大。

3. 深度前饋網路

看過西瓜書和李航的《統計學習方法》,對機器學習的基本演算法算是有了初步的理解。機器學習的演算法和思想固然重要,在實際中也有很多應用場景,但在超大數據集的表現上,深度學習才是當下效果最好的工具。可惜的是,花書這樣一本經典著作的中文版翻譯和機翻差不多水平,因此看的時候只能放慢速度。閑言少敘,下面是第六章的學習記錄。

深度前饋網路(deep feedforward network) ,也叫作前饋神經網路(feedforward neural network)或者多層感知機(multilayer perceptron, MLP),是典型的深度學習模型。 前饋網路的目標是近似某個函數 。例如,對於分類器, 將輸入 映射到一個類別 。前饋網路定義了一個映射 ,並且學習參數 的值使它能夠得到最佳的函數近似。

下面我們把「深度前饋網路」這個詞拆開來看:

那麼深度前饋網路的各層之間有什麼區別呢?從功能來講,訓練樣本直接指明了 輸出層 在每一點x上必須做什麼,它必須產生一個接近 y 的值。但訓練數據並沒有給出其它層中的所需的輸出,所以這些層被稱為 隱藏層(hidden layer)

一種理解前饋網路的方式是從線性模型開始,並考慮如何克服它的局限性。如果各層的函數 都是線性函數,那麼復合後的函數依然是線性的,此時我們的網路模型等價於線性模型。為了提高模型的表示能力,我們需要將各層的 設置為非線性的,從而得到一個非線性映射 。我們可以認為 提供了一組描述 的特徵,或者認為它提供了 的一個新的表示。

設計和訓練神經網路與使用梯度下降訓練其他任何機器學習模型並沒有太大不同。神經網路和線性模型等演算法的最大區別,在於神經網路的非線性導致大多數我們感興趣的代價函數都變得 非凸 。這意味著神經網路的訓練通常使用迭代的、基於梯度的優化, 僅僅使得代價函數達到一個非常小的值 ;而不是像用於訓練線性回歸模型的線性方程求解器或者用於訓練邏輯回歸或 SVM 的凸優化演算法那樣保證全局收斂。

用於非凸損失函數的隨機梯度下降沒有這種收斂性保證,並且 對參數的初始值很敏感。對於前饋神經網路,將所有的權重值初始化為小隨機數是很重要的。偏置可以初始化為零或者小的正值。

大多數現代的神經網路使用最大似然來訓練。這意味著代價函數就是負的對數似然,它與訓練數據和模型分布間的 交叉熵 等價。這個代價函數表示為

使用最大似然來導出代價函數的方法的一個優勢是,它減輕了為每個模型設計代價函數的負擔。明確一個模型 則自動地確定了一個代價函數 。

用於實現最大似然估計的交叉熵代價函數有一個不同尋常的特性,那就是當它被應用於實踐中經常遇到的模型時,它 通常沒有最小值。 如果模型可以控制輸出分布的密度(例如,通過學習高斯輸出分布的方差參數),那麼它可能對正確的訓練集輸出賦予極其高的密度,這將導致交叉熵趨向負無窮。 正則化技術提供了一些不同的方法來修正學習問題,使得模型不會通過這種方式來獲得無限制的收益。

一種簡單的輸出單元是基於仿射變換的輸出單元,仿射變換不具有非線性。這些單元往往被直接稱為 線性單元 。給定特徵 ,線性輸出層產生一個向量 ,線性輸出層經常被用來 產生條件高斯分布的均值

最大化其對數似然此時等價於最小化均方誤差。

許多任務需要預測二值型變數 的值。具有兩個類的分類問題可以歸結為這種形式。此時最大似然的方法是定義 在 條件下的 Bernoulli 分布。為保證模型給出了錯誤答案時,總能有一個較大的梯度。可以使用 sigmoid輸出單元 結合最大似然來實現。sigmoid 輸出單元定義為:

這種在對數空間里預測概率的方法可以很自然地使用最大似然學習。因為用於最大似然的代價函數是 ,代價函數中的 抵消了 中的 。如果沒有這個效果,sigmoid 的飽和性會阻止基於梯度的學習做出好的改進。因此, 最大似然幾乎總是訓練 輸出單元的優選方法。

當我們想要表示一個具有 n 個可能取值的離散型隨機變數的分布時,我們可以使用 函數。它可以看作是 函數的擴展。

函數最常用作分類器的輸出,來表示 個不同類上的概率分布。比較少見的是, 函數可以在模型內部使用,例如如果我們想要在某個內部變數的 個不同選項中進行選擇。 函數的形式為:

和 一樣,當使用最大化對數似然訓練 來輸出目標值 時,使用指數函數工作地非常好。

隱藏單元的設計是一個非常活躍的研究領域,並且還沒有許多明確的指導性理論原則。

整流線性單元(Rectified Linear Unit, ReLU)是隱藏單元極好的默認選擇。許多其他類型的隱藏單元也是可用的。決定何時使用哪種類型的隱藏單元是困難的事(盡管整流線性單元通常是一個可接受的選擇)。我們這里描述對於每種隱藏單元的一些基本直覺。這些直覺可以用來建議我們何時來嘗試一些單元。 通常不可能預先預測出哪種隱藏單元工作得最好。設計過程充滿了試驗和錯誤,先直覺認為某種隱藏單元可能表現良好,然後用它組成神經網路進行訓練,最後用驗證集來評估它的性能。

大多數的隱藏單元都接受輸入向量 x,計算仿射變換 ,然後使用一個逐元素的非線性函數 。大多數隱藏單元的區別僅僅在於激活函數 的形式。

整流線性單元使用激活函數:

整流線性單元通常作用於仿射變換之上:

當初始化仿射變換的參數時,可以將 b 的所有元素設置成一個小的正值,例如 0.1。這使得整流線性單元很可能初始時就對訓練集中的大多數輸入呈現激活狀態,並且允許導數通過。

整流線性單元的一個缺陷是它們不能通過基於梯度的方法學習那些使它們激活為零的樣本。整流線性單元的各種擴展保證了它們能在各個位置都接收到梯度。

整流線性單元的三個擴展基於當 時使用一個非零的斜率 :

絕對值整流(absolute value rectification) 固定 來得到: ,它用於圖像中的對象識別 (Jarrett et al., 2009a); 滲漏整流線性單元(Leaky ReLU) (Maas et al., 2013) 將 固定成一個類似 0.01 的小值; 參數化整流線性單元(parametric ReLU) 將 作為學習的參數 (He et al., 2015)。

maxout 單元(maxout unit) (Goodfellow et al., 2013a) 進一步擴展了整流線性單元。maxout單元將 劃分為每組有 個值的組,而不是使用作用於每個元素的函數 。每個maxout單元則輸出每組中的最大元素:

這里 是組 的輸入索引集 。因為激活函數中有了max操作,所以整個maxout網路也是一種非線性的變換。

maxout的擬合能力是非常強的,它可以擬合任意的的凸函數。最直觀的解釋就是任意的凸函數都可以由分段線性函數以任意精度擬合,而maxout又是取k個隱隱含層節點的最大值,這些」隱隱含層"節點也是線性的,所以在不同的取值范圍下,最大值也可以看做是分段線性的(分段的個數與k值有關)。

整流線性單元和它們的這些擴展都是基於一個原則,那就是如果它們的行為更接近線性,那麼模型更容易優化。

在引入整流線性單元之前,大多數神經網路使用 logistic sigmoid 激活函數:

或者是雙曲正切激活函數:

這些激活函數緊密相關,因為:

我們已經看過 sigmoid 單元作為輸出單元用來預測二值型變數取值為 1 的概率。與分段線性單元不同,sigmoid 單元在其大部分定義域內都飽和——當 z 取絕對值很大的正值時,它們飽和到一個高值,當 z 取絕對值很大的負值時,它們飽和到一個低值,並且僅僅當 z 接近 0 時它們才對輸入強烈敏感。sigmoid 單元的廣泛飽和性會使得基於梯度的學習變得非常困難。因為這個原因,現在不鼓勵將它們用作前饋網路中的隱藏單元。當使用一個合適的代價函數來抵消 sigmoid 的飽和性時,它們作為輸出單元可以與基於梯度的學習相兼容。

當必須要使用 sigmoid 激活函數時,雙曲正切激活函數通常要比 logistic sigmoid 函數表現更好。在 而 的意義上,它更像是單位函數。因為 tanh 在 0 附近與單位函數類似。

架構(architecture) 一詞是指網路的整體結構: 它應該具有多少單元,以及這些單元應該如何連接。

在鏈式架構中,主要的架構考慮是選擇網路的深度和每一層的寬度。我將會看到,即使只有一個隱藏層的網路也足夠適應訓練集。 更深層的網路通常能夠對每一層使用更少的單元數和更少的參數,並且經常容易泛化到測試集,但是通常也更難以優化。 對於一個具體的任務,理想的網路架構必須通過實驗,觀測在驗證集上的誤差來找到。

萬能近似定理(universal approximation theorem)

一個前饋神經網路如果具有線性輸出層和至少一層具有任何一種 『『擠壓』』 性質的激活函數(例如logistic sigmoid激活函數)的隱藏層,只要給予網路足夠數量的隱藏單元,它可以 以任意的精度來近似任何從一個有限維空間到另一個有限維空間的 Borel 可測函數 。前饋網路的導數也可以任意好地來近似函數的導數 (Hornik et al., 1990)。

萬能近似定理意味著無論我們試圖學習什麼函數,我們知道一個大的MLP一定能夠表示這個函數。

然而,我們不能保證訓練演算法能夠學得這個函數。即使 MLP能夠表示該函數,學習也可能因兩個不同的原因而失敗。 首先,用於訓練的優化演算法可能找不到用於期望函數的參數值。其次,訓練演算法可能由於過擬合而選擇了錯誤的函數。

總之,具有單層的前饋網路足以表示任何函數,但是網路層可能大得不可實現,並且可能無法正確地學習和泛化。在很多情況下,使用更深的模型能夠減少表示期望函數所需的單元的數量,並且可以減少泛化誤差。

存在一些函數族能夠在網路的深度大於某個值d時被高效地近似,而當深度被限制到小於或等於d時需要一個遠遠大於之前的模型。在很多情況下,淺層模型所需的隱藏單元的數量是n的指數級。

Montufar et al. (2014) 的主要定理指出, 具有 個輸入深度為 每個隱藏層具有 個單元的深度整流網路可以描述的線性區域的數量是

根據經驗,更深的模型似乎確實在廣泛的任務中泛化得更好。

目前為止,我們都將神經網路描述成層的簡單鏈式結構,主要的考慮因素是網路的深度和每層的寬度。在實踐中,神經網路顯示出相當的多樣性。

一般的,層不需要連接在鏈中,盡管這是最常見的做法。許多架構構建了一個主鏈,但隨後又添加了額外的架構特性,例如從層 i 到層 i + 2 或者更高層的 跳躍連接 。這些跳躍連接使得梯度更容易從輸出層流向更接近輸入的層。

架構設計考慮的另外一個關鍵點是如何將層與層之間連接起來。默認的神經網路層採用矩陣 W 描述的線性變換,每個輸入單元連接到每個輸出單元。許多專用網路具有較少的連接,使得輸入層中的每個單元僅連接到輸出層單元的一個小子集。這些用於 減少連接數量 的策略減少了參數的數量以及用於評估網路的計算量,但通常高度依賴於問題。

當我們使用前饋神經網路接收輸入 並產生輸出 時,信息通過網路向前流動。輸入 提供初始信息,然後傳播到每一層的隱藏單元,最終產生輸出 。這稱之為 前向傳播(forward propagation) 。在訓練過程中,前向傳播可以持續向前直到它產生一個標量代價函數 。 反向傳播(back propagation) 演算法 (Rumelhart et al., 1986c),經常簡稱為backprop,允許來自代價函數的信息通過網路向後流動,以便計算梯度。

將計算形式化為圖形的方法有很多。這里,我們使用圖中的每一個節點來表示一個變數。變數可以是標量、向量、矩陣、張量、或者甚至是另一類型的變數。為了形式化我們的圖形,我們還需引入操作(operation)這一概念。操作是指一個或多個變數的簡單函數。我們的圖形語言伴隨著一組被允許的操作。我們可以通過將多個操作復合在一起來描述更為復雜的函數。

如果變數 y 是變數 x 通過一個操作計算得到的,那麼我們畫一條從 x 到 y 的有向邊。我們有時用操作的名稱來注釋輸出的節點,當上下文很明確時,有時也會省略這個標注。計算圖的實例如下:

使用符號到符號的方法計算導數的示例如下。在這種方法中,反向傳播演算法不需要訪問任何實際的特定數值。相反,它將節點添加到計算圖中來描述如何計算這些導數。通用圖形求值引擎可以在隨後計算任何特定數值的導數。 本例從表示 的圖開始,運行反向傳播演算法,指導它構造表達式 對應的圖。

這部分花書上講了很多內容……我看得有些失去耐心……可能是講得太細致了吧……我對反向傳播演算法的認識很簡單,就是一個鏈式法則,一層一層計算梯度然後向後傳播。這里根據之前上課時候的課件內容做下簡單回顧:

總之反向傳播演算法的要點就是 以恰當的順序計算梯度,從而充分利用鏈式法則來提高計算效率 。我個人認為理解BP的最佳方式就是自己畫個圖手推一遍。

4. AI面試題第二彈(神經網路基礎)

提取主要特徵,減小網路參數量,減小計算量

層層傳遞的梯度>1 梯度爆炸

層層傳遞的梯度<1 梯度消失

與權重有很大關系,激活函數的影響較小。

每次訓練一層隱節點,訓練時將上一層隱節點的輸出作為輸入,而本層隱節點的輸出作為下一層隱節點的輸入,此過程就是逐層「預訓練」(pre-training);在預訓練完成後,再對整個網路進行「微調」(fine-tunning)。Hinton在訓練深度信念網路(Deep Belief Networks中,使用了這個方法,在各層預訓練完成後,再利用BP演算法對整個網路進行訓練。

這個方案主要是針對梯度爆炸提出的,其思想是設置一個梯度剪切閾值,然後更新梯度的時候,如果梯度超過這個閾值,那麼就將其強制限制在這個范圍之內。這可以防止梯度爆炸。

比較常見的是l1l1l1正則,和l2l2l2正則,在各個深度框架中都有相應的API可以使用正則化

反向傳播中,經過每一層的梯度會乘以該層的權重。

舉個簡單例子:

為了得到一致假設而使假設變得過度復雜稱為過擬合(overfitting), 過擬合表現在訓練好的模型在訓練集上效果很好,但是在測試集上效果差 。也就是說模型的泛化能力弱。

過擬合主要由兩個原因造成,數據集太小或模型太復雜

(1). 數據集擴增(Data Augmentation)

(2). 改進模型

·Early Stopping。在模型效果比較好的時候便提前停止訓練

 ·正則化(regularization)

L1:稀疏參數

L2:更小參數

·Dropout

·多任務學習

深度學習中兩種多任務學習模式:隱層參數的硬共享和軟共享

硬共享機制是指在所有任務中共享隱藏層,同時保留幾個特定任務的輸出層來實現。硬共享機制降低了過擬合的風險。多個任務同時學習,模型就越能捕捉到多個任務的同一表示,從而導致模型在原始任務上的過擬合風險越小。

軟共享機制是指每個任務有自己的模型,自己的參數。模型參數之間的距離是正則化的,以便保障參數相似性。

見後文

leaky relu

輸入是x輸出是y,正常的流程是:我們首先把x通過網路前向傳播,然後把誤差反向傳播以決定如何更新參數讓網路進行學習。使用Dropout之後,過程變成如下:

(1)首先隨機(臨時)刪掉網路中一半的隱藏神經元,輸入輸出神經元保持不變(圖中虛線為部分臨時被刪除的神經元)

(2) 然後把輸入x通過修改後的網路前向傳播,然後把得到的損失結果通過修改的網路反向傳播。一小批訓練樣本執行完這個過程後,在沒有被刪除的神經元上按照隨機梯度下降法更新對應的參數(w,b)。

(3)然後繼續重復這一過程:

恢復被刪掉的神經元(此時被刪除的神經元保持原樣,而沒有被刪除的神經元已經有所更新)

從隱藏層神經元中隨機選擇一個一半大小的子集臨時刪除掉(備份被刪除神經元的參數)。

對一小批訓練樣本,先前向傳播然後反向傳播損失並根據隨機梯度下降法更新參數(w,b) (沒有被刪除的那一部分參數得到更新,刪除的神經元參數保持被刪除前的結果)。

不斷重復這一過程。

沒有對數據進行歸一化

忘記檢查輸入和輸出

沒有對數據進行預處理

沒有對數據正則化

使用過大的樣本

使用不正確的學習率

在輸出層使用錯誤的激活函數

網路中包含壞梯度

初始化權重錯誤

過深的網路

隱藏單元數量錯誤

網路設計不合理(任務-網路不匹配)

機器學習有個很重要的假設:就是假設訓練數據和測試數據是滿足獨立同分布的,這保障了通過訓練數據獲得的優秀模型也能夠在測試集獲得好的效果。但是在機器學習訓練中輸入層的每個批量(X,Y)中X的分布是不一致的,並且神經網路的隱藏層的輸入分布在每次訓練迭代中發生變化。 BatchNorm就是在深度神經網路訓練過程中使得每一層神經網路的輸入保持相同分布的。

BN的基本思想其實相當直觀:因為深層神經網路在做非線性變換前(激活前)的 輸入值 (就是那個x=WU+B,U是輸入) 隨著網路深度加深或者在訓練過程中,其分布逐漸發生偏移或者變動,之所以訓練收斂慢,一般是整體分布逐漸往非線性函數的取值區間的上下限兩端靠近 (對於Sigmoid函數來說,意味著激活輸入值WU+B是大的負值或正值),所以這 導致反向傳播時低層神經網路的梯度消失 ,這是訓練深層神經網路收斂越來越慢的 本質原因 , 而BN就是通過一定的規范化手段,把每層神經網路任意神經元這個輸入值的分布強行拉回到均值為0方差為1的標准正態分布 ,其實就是把越來越偏的分布強制拉回比較標準的分布,這樣使得激活輸入值落在非線性函數對輸入比較敏感的區域,這樣輸入的小變化就會導致損失函數較大的變化,意思是 這樣讓梯度變大,避免梯度消失問題產生,而且梯度變大意味著學習收斂速度快,能大大加快訓練速度。

但是接下來的問題是:如果都通過BN,那麼不就跟把非線性函數替換成線性函數效果相同了,意味著網路的非線性表達能力下降了, 所以BN為了保證非線性的獲得,對變換後的滿足均值為0方差為1的x又進行了scale加上shift操作(y=scale*x+shift), 每個神經元增加了兩個參數scale和shift參數,這兩個參數是通過訓練學習到的,意思是通過scale和shift把這個值從標准正態分布左移或者右移一點並長胖一點或者變瘦一點,每個實例挪動的程度不一樣,這樣等價於激活前的值經過標准正太分布歸一化後再從正中心周圍的線性區往非線性區動了動。核心思想應該是想找到一個線性和非線性的較好平衡點,既能享受非線性的較強表達能力的好處,又避免太靠非線性區兩頭使得網路收斂速度太慢

Batch Normalization 好處:(1)提高了訓練速度,收斂速度也大大加快(2)另外調參過程也簡單多了,對於初始化要求沒那麼高,而且可以使用大的學習率等 (3)可以防止梯度消失(4)BN類似於Dropout的一種防止過擬合的正則化表達方式,可以有效防止過擬合,不用太依賴dropou和正則化

以下情況最好不要使用BN:(1)數據不平衡(2)batch_size太小

batch_size是機器學習中的一個重要參數,決定了梯度下降的方向,如果數據集比較小,完全可以採用全數據集的形式計算梯度,由全數據集確定的梯度方向能夠更好地代表樣本總體,從而更准確地朝向極值所在的方向。對於大型數據集則需要使用mini-batch_size,因為隨著數據集的海量增長和內存限制,一次性載入所有的數據進來變得越來越不可行。

當batch_size=1,即在線學習,模型難以達到收斂 。

合理增加batch_size好處 :

(1)內存利用率提高了,大矩陣乘法的並行化效率提高

(2)跑完一次 epoch(全數據集)所需的迭代次數減少,對於相同數據量的處理速度進一步加快。

(3)在一定范圍內,一般來說 Batch_Size 越大,其確定的下降方向越准,引起訓練震盪越小

盲目增大 Batch_Size 壞處 :

(1)內存利用率提高了,但是內存容量可能撐不住了

(2)跑完一次 epoch(全數據集)所需的迭代次數減少,要想達到相同精度所需要的 epoch 數量越來越多,花費的時間越長

(3)大的batchsize收斂到sharp minimum,而小的batchsize收斂到flat minimum,後者具有更好的泛化能力。

總之batchsize在變得很大(超過一個臨界點)時,會降低模型的泛化能力。在這個臨界點之下,模型的性能變換隨batch size通常沒有學習率敏感

    目標所在的真實框(ground truth) 與演算法預測的目標所在的框(bounding box)的交集與並集的比值,我們會用IOU閾值來判定預測的bounding box是否有效。一般閾值會設定在0.5,當IOU的值大於等於0.5時,我們會把這個預測的bounding box 歸為正類,而小於0.5的歸為負類。

牛頓法使用的是目標函數的二階導數,在高維情況下這個Hessian(n*n維度)矩陣非常大,計算復雜度是n*n,計算和存儲都是問題

(1) 通過控制卷積核個數實現升維或者降維,從而減少模型參數和計算量

(2) 用於不同channel上特徵的融合

(3)1x1的卷積相當於全連接層的計算過程,並且加入了非線性激活函數,從而增加了網路的非線性,使得網路可以表達更加復雜的特徵。

它能夠把輸入的連續實值變換為0和1之間的輸出,如果是非常大的負數,那麼輸出就是0;如果是非常大的正數,輸出就是1

缺點:

(1)函數的飽和區,導致梯度幾乎為0,造成梯度消失問題

(2)Sigmoid 的 output 不是0均值,具體解釋見 https://blog.csdn.net/tyhj_sf/article/details/79932893

(3)其解析式中含有冪運算,計算機求解時相對來講比較耗時。對於規模比較大的深度網路,這會較大地增加訓練時間。

它解決了Sigmoid函數的不是零均值輸出問題,然而,梯度消失(gradient vanishing)的問題和冪運算的問題仍然存在。

(1)在正區間解決了梯度消失的問題

(2)函數簡單,計算速度快,收斂速度遠快於sigmoid和tanh

缺點:

(1)Relu函數輸出不是0均值

(2)神經元壞死問題:指的是某些神經元可能永遠不會被激活,導致相應的參數永遠不能被更新,有兩個主要原因導致這種狀況發生

        (1) 非常不幸的參數初始化,這種情況比較少見 

        (2) learning rate太高導致在訓練過程中參數更新太大,不幸使網路進入這種狀態。解決方法是可以採用Xavier初始化方法,以及避免將learning rate設置太大或使用adagrad等自動調節learning rate的演算法

為了解決ReLU函數帶來的神經元壞死問題 , 提出了將ReLU的前半段設為αx,α通常設為0.01,,另外一種直觀的想法是基於參數的方法PReLU函數, α可由方向傳播演算法學習出來。

ELU也是為解決ReLU存在的問題而提出,顯然,ELU有ReLU的基本所有優點,以及:(1)不會有神經元壞死現象(2)函數輸出均值接近於0

但是ELU的小問題就是計算量稍微有點大。

1、使用不同的激活函數,比如Relu,Leak-Relu,PRelu,elu等激活函數代替sigmoid函數

2、使用Batch Normalizaion(批量歸一化)

3、使用殘差網路

4、預訓練加微調

1、梯度裁剪

2、權重正則化

兩個3x3的卷積核的感受野比5x5的卷積核的感受野大,在保持相同感受野的同時,用3x3的卷積核可以提升網路的深度,可以很明顯的減少計算量。

1、局部連接

2、權值共享:減小參數量

3、池化操作:增大感受野

4、多層次結構:可以提取low-level以及high-level的信息

1、數據集太小,數據樣本不足時,深度學習相對其它機器學習演算法,沒有明顯優勢。

2、數據集沒有局部相關特性,目前深度學習表現比較好的領域主要是圖像/語音/自然語言處理等領域,這些領域的一個共性是局部相關性。圖像中像素組成物體,語音信號中音位組合成單詞,文本數據中單片語合成句子,這些特徵元素的組合一旦被打亂,表示的含義同時也被改變。對於沒有這樣的局部相關性的數據集,不適於使用深度學習演算法進行處理。舉個例子:預測一個人的健康狀況,相關的參數會有年齡、職業、收入、家庭狀況等各種元素,將這些元素打亂,並不會影響相關的結果。

作用 :對輸入的特徵圖進行壓縮,

一方面使特徵圖變小,簡化網路計算復雜度;

一方面進行特徵壓縮,提取主要特徵。

通常來講,max-pooling的效果更好,雖然max-pooling和average-pooling都對數據做了下采樣,但是 max-pooling感覺更像是做了特徵選擇,選出了分類辨識度更好的特徵,提供了非線性 。 pooling的主要作用一方面是去掉冗餘信息,一方面要保留feature map的特徵信息,在分類問題中,我們需要知道的是這張圖像有什麼object,而不大關心這個object位置在哪,在這種情況下顯然max pooling比average pooling更合適。在 網路比較深的地方,特徵已經稀疏了,從一塊區域里選出最大的,比起這片區域的平均值來,更能把稀疏的特徵傳遞下去 。

average-pooling更強調對整體特徵信息進行一層下采樣,在減少參數維度的貢獻上更大一點,更多的體現在 信息的完整傳遞這個維度 上,在一個很大很有代表性的模型中,比如說DenseNet中的模塊之間的連接大多採用average-pooling,在減少維度的同時,更有利信息傳遞到下一個模塊進行特徵提取。

average-pooling在 全局平均池化操作 中應用也比較廣,在ResNet和Inception結構中最後一層都使用了平均池化。有的時候在模型接近 分類器的末端使用全局平均池化還可以代替Flatten操作 ,使輸入數據變成一位向量。

CNN網路中另外一個不可導的環節就是Pooling池化操作,因為Pooling操作使得feature map的尺寸變化,假如做2×2的池化(步長也為2),假設那麼第l+1層的feature map有16個梯度,那麼第l層就會有64個梯度,這使得梯度無法對位的進行傳播下去。其實解決這個問題的思想也很簡單,就是把1個像素的梯度傳遞給4個像素,但是需要保證傳遞的loss(或者梯度)總和不變。根據這條原則,mean pooling和max pooling的反向傳播也是不同的

mean pooling的前向傳播就是把一個patch中的值求取平均來做pooling,那麼反向傳播的過程也就是把 某個元素的梯度等分為n份分配給前一層,這樣就保證池化前後的梯度(殘差)之和保持不變 ,圖示如下 :

(2) max pooling

max pooling也要滿足梯度之和不變的原則 ,max pooling的前向傳播是把patch中最大的值傳遞給後一層,而其他像素的值直接被舍棄掉。那麼 反向傳播也就是把梯度直接傳給前一層某一個像素,而其他像素不接受梯度,也就是為0。 所以max pooling操作和mean pooling操作不同點在於需要記錄下池化操作時到底哪個像素的值是最大,也就是max id,這個變數就是記錄最大值所在位置的,因為在反向傳播中要用到,那麼假設前向傳播和反向傳播的過程就如下圖所示 :

28、細粒度分類

29、LSTM&RNN

30、解釋LSTM結構(相對於RNN)的好處

31、RNN的梯度消失原因和解決辦法

32、Object Detection

33、Unet的介紹

34、FCN和Unet的區別

35、RCNN系列的演算法流程和區別

36、Fast RCNN中 bbox 回歸的損失函數什麼

37、解釋 ROI Pooling 和 ROI Align

38、Mask RCNN中 mask branch 如何接入 Faster RCNN中

39、解釋 FPN

40、解釋 ROI Align

41、簡述 YOLO 和 SSD

42、簡述 Hough 直線檢測、Sobel 邊緣檢測演算法流程

43、Mask RCNN中的anchors如何判定為正負樣本

44、簡述 NMS 演算法流程

45、attention起源是用在哪裡?pixel還是frame,是soft還是hard

46、anchor的正負樣本比是多少

47、演算法和激活函數等

48、BN的原理和作用

49、BN層反向傳播,怎麼求導

50、BN 的作用和缺陷,以及針對batch_size小的情況的改進(GN)

51、BN層,先加BN還是激活,有什麼區別

52、手推BP

53、優化演算法舉例和他們的區別(SGD、SGDM、RMSprop、Adam)

54、隨機梯度下降和梯度下降

55、訓練不收斂的原因有哪些

56、簡述 SVM 流程、核函數尋參及常見的核函數舉例

57、batch_size 和 learning rate 的關系(怎麼平衡和調整二者)

58、解釋過擬合和欠擬合,以及解決方法

59、激活函數有哪些,各自區別

60、損失函數有哪些

61、Sigmoid 和 ReLu 對比(各自優缺點)

62、為什麼不用sigmoid而用relu?做出了哪些改進?

63、梯度消失和梯度爆炸的原因和解決方法

64、Precision 和 Recall 的定義

65、精確率高、召回率低是為什麼

66、SVM,線性回歸和邏輯回歸的原理及區別

67、PCA原理,PCA和SVD的區別和聯系

68、正則化怎麼選擇,有哪些方式

69、L1、L2范數,區別

70、boost、Adaboost

71、dropout和batch normalization

72、講一下決策樹和隨機森林

73、講一下GBDT的細節,寫出GBDT的目標函數。 GBDT和Adaboost的區別與聯系

74、偏差、方差

75、距離度量公式哪些,區別

76、多標簽識別怎麼做

77、data argumentation怎麼處理的

78、數據不均衡怎麼處理、只有少量帶標簽怎麼處理

79、權重初始化方法都有哪些

80、權值衰減這個參數怎麼設置

81、分類問題有哪些評價指標?每種的適用場景。

82、無監督學習了解哪些

83、圖像處理Opencv

84、邊緣檢測運算元有哪些

85、霍夫變換

86、直方圖是什麼

87、canny運算元是怎麼做的

88、圖像的特徵提取有哪些演算法,適用范圍、優缺點

參考:

https://blog.csdn.net/bluesliuf/article/details/89389117

https://zhuanlan.hu.com/p/107279000

https://zhuanlan.hu.com/p/56475281

閱讀全文

與訓練過程中網路深度設置相關的資料

熱點內容
計算機網路技術學制二年 瀏覽:400
怎麼修改吉利汽車連接的wifi網路 瀏覽:615
微信用移動網路顯示不可用咋回事 瀏覽:464
打電話網路斷了怎麼設置 瀏覽:597
怎樣讓wifi網路快一些 瀏覽:39
哪個網路app可以回看 瀏覽:430
市場監管局網路安全責任制檢查考核制度 瀏覽:239
哪個網路醫生平台掙得多 瀏覽:775
網路如何讓信號變強 瀏覽:923
使用zalo網路設置 瀏覽:738
網路音樂版權哪個好 瀏覽:438
手機監視器遠程無線網路 瀏覽:667
如何讓寬頻網路飛起來 瀏覽:153
電腦一直網路連接或斷開 瀏覽:390
如何設閑置無線網路wifi 瀏覽:368
網路正常wifi正常電視放不了 瀏覽:95
車機網路電信設置 瀏覽:597
聯通手機有信號沒網路 瀏覽:572
各種無線網路接入的相同點 瀏覽:864
無線網路適配器設置 瀏覽:733

友情鏈接