導航:首頁 > 網路設置 > 神經網路隱藏層一般設多少個

神經網路隱藏層一般設多少個

發布時間:2023-06-17 00:15:43

A. 神經網路的隱含層節點數怎麼設置啊比如要設置18層隱含節點數!跪求,工作急用!

隱層一般是一層或兩層,很少會採用三層以上,至少隱層的節點數確定,一般有以下幾種方法:1、有經驗的人員根據以往的經驗湊試出節點個數。2、某些學術研究出固定的求節點方法,如2m+1個隱層節點,m為輸入個數。3、修剪法。剛開始建立足夠多的節點數,在訓練過程中,根據節點數的相關程度,刪除重復的節點。

B. 小波神經網路的建模怎麼確定隱含層的神經元個數

確定隱層節點數的方法為「試湊法」。

隱含神經元的數目是非常重要的,它的選取結果直接影響到網路的性能好壞。如果隱含層的神經元數量太少,網路就不能夠很好的學習,即便可以學習,需要訓練的次數也非常多,訓練的精度也不高。當隱含層神經元的數目在一個合理的范圍內時,增加神經元的個數可以提高網路訓練的精度,還可能會降低訓練的次數。但是,當超過這一范圍後,如果繼續增加神經元的數量,網路訓練的時間又會增加,甚至還有可能引起其它的問題。那麼,究竟要選擇多少個隱含層神經元才合適呢?
遺憾的是,至今為止還沒有理論規定該如何來確定網路隱含層的數目。所以,只能用嘗試的方法來尋找最適宜的隱含層神經元數目。本文採取的做法是:構建多個BP網路,它們除了隱含層神經元個數不同外,其它一切條件都相同,通過比較它們訓練的循環次數和網路精度,找到最佳的神經元個數。

小波神經網路的隱層設計原則也遵循這個方法。也有一些經驗公式,可以作為參考。

C. 神經網路的隱層數,節點數設置。

我自己總結的:
1、神經網路演算法隱含層的選取
1.1 構造法
首先運用三種確定隱含層層數的方法得到三個隱含層層數,找到最小值和最大值,然後從最小值開始逐個驗證模型預測誤差,直到達到最大值。最後選取模型誤差最小的那個隱含層層數。該方法適用於雙隱含層網路。
1.2 刪除法
單隱含層網路非線性映射能力較弱,相同問題,為達到預定映射關系,隱層節點要多一些,以增加網路的可調參數,故適合運用刪除法。
1.3黃金分割法
演算法的主要思想:首先在[a,b]內尋找理想的隱含層節點數,這樣就充分保證了網路的逼近能力和泛化能力。為滿足高精度逼近的要求,再按照黃金分割原理拓展搜索區間,即得到區間[b,c](其中b=0.619*(c-a)+a),在區間[b,c]中搜索最優,則得到逼近能力更強的隱含層節點數,在實際應用根據要求,從中選取其一即可。

D. 神經網路:卷積神經網路(CNN)

神經網路 最早是由心理學家和神經學家提出的,旨在尋求開發和測試神經的計算模擬。

粗略地說, 神經網路 是一組連接的 輸入/輸出單元 ,其中每個連接都與一個 權 相關聯。在學習階段,通過調整權值,使得神經網路的預測准確性逐步提高。由於單元之間的連接,神經網路學習又稱 連接者學習。

神經網路是以模擬人腦神經元的數學模型為基礎而建立的,它由一系列神經元組成,單元之間彼此連接。從信息處理角度看,神經元可以看作是一個多輸入單輸出的信息處理單元,根據神經元的特性和功能,可以把神經元抽象成一個簡單的數學模型。

神經網路有三個要素: 拓撲結構、連接方式、學習規則

神經網路的拓撲結構 :神經網路的單元通常按照層次排列,根據網路的層次數,可以將神經網路分為單層神經網路、兩層神經網路、三層神經網路等。結構簡單的神經網路,在學習時收斂的速度快,但准確度低。

神經網路的層數和每層的單元數由問題的復雜程度而定。問題越復雜,神經網路的層數就越多。例如,兩層神經網路常用來解決線性問題,而多層網路就可以解決多元非線性問題

神經網路的連接 :包括層次之間的連接和每一層內部的連接,連接的強度用權來表示。

根據層次之間的連接方式,分為:

1)前饋式網路:連接是單向的,上層單元的輸出是下層單元的輸入,如反向傳播網路,Kohonen網路

2)反饋式網路:除了單項的連接外,還把最後一層單元的輸出作為第一層單元的輸入,如Hopfield網路

根據連接的范圍,分為:

1)全連接神經網路:每個單元和相鄰層上的所有單元相連

2)局部連接網路:每個單元只和相鄰層上的部分單元相連

神經網路的學習

根據學習方法分:

感知器:有監督的學習方法,訓練樣本的類別是已知的,並在學習的過程中指導模型的訓練

認知器:無監督的學習方法,訓練樣本類別未知,各單元通過競爭學習。

根據學習時間分:

離線網路:學習過程和使用過程是獨立的

在線網路:學習過程和使用過程是同時進行的

根據學習規則分:

相關學習網路:根據連接間的激活水平改變權系數

糾錯學習網路:根據輸出單元的外部反饋改變權系數

自組織學習網路:對輸入進行自適應地學習

摘自《數學之美》對人工神經網路的通俗理解:

神經網路種類很多,常用的有如下四種:

1)Hopfield網路,典型的反饋網路,結構單層,有相同的單元組成

2)反向傳播網路,前饋網路,結構多層,採用最小均方差的糾錯學習規則,常用於語言識別和分類等問題

3)Kohonen網路:典型的自組織網路,由輸入層和輸出層構成,全連接

4)ART網路:自組織網路

深度神經網路:

Convolutional Neural Networks(CNN)卷積神經網路

Recurrent neural Network(RNN)循環神經網路

Deep Belief Networks(DBN)深度信念網路

深度學習是指多層神經網路上運用各種機器學習演算法解決圖像,文本等各種問題的演算法集合。深度學習從大類上可以歸入神經網路,不過在具體實現上有許多變化。

深度學習的核心是特徵學習,旨在通過分層網路獲取分層次的特徵信息,從而解決以往需要人工設計特徵的重要難題。

Machine Learning vs. Deep Learning 

神經網路(主要是感知器)經常用於 分類

神經網路的分類知識體現在網路連接上,被隱式地存儲在連接的權值中。

神經網路的學習就是通過迭代演算法,對權值逐步修改的優化過程,學習的目標就是通過改變權值使訓練集的樣本都能被正確分類。

神經網路特別適用於下列情況的分類問題:

1) 數據量比較小,缺少足夠的樣本建立模型

2) 數據的結構難以用傳統的統計方法來描述

3) 分類模型難以表示為傳統的統計模型

缺點:

1) 需要很長的訓練時間,因而對於有足夠長訓練時間的應用更合適。

2) 需要大量的參數,這些通常主要靠經驗確定,如網路拓撲或「結構」。

3)  可解釋性差 。該特點使得神經網路在數據挖掘的初期並不看好。

優點:

1) 分類的准確度高

2)並行分布處理能力強

3)分布存儲及學習能力高

4)對噪音數據有很強的魯棒性和容錯能力

最流行的基於神經網路的分類演算法是80年代提出的 後向傳播演算法 。後向傳播演算法在多路前饋神經網路上學習。 

定義網路拓撲

在開始訓練之前,用戶必須說明輸入層的單元數、隱藏層數(如果多於一層)、每一隱藏層的單元數和輸出層的單元數,以確定網路拓撲。

對訓練樣本中每個屬性的值進行規格化將有助於加快學習過程。通常,對輸入值規格化,使得它們落入0.0和1.0之間。

離散值屬性可以重新編碼,使得每個域值一個輸入單元。例如,如果屬性A的定義域為(a0,a1,a2),則可以分配三個輸入單元表示A。即,我們可以用I0 ,I1 ,I2作為輸入單元。每個單元初始化為0。如果A = a0,則I0置為1;如果A = a1,I1置1;如此下去。

一個輸出單元可以用來表示兩個類(值1代表一個類,而值0代表另一個)。如果多於兩個類,則每個類使用一個輸出單元。

隱藏層單元數設多少個「最好」 ,沒有明確的規則。

網路設計是一個實驗過程,並可能影響准確性。權的初值也可能影響准確性。如果某個經過訓練的網路的准確率太低,則通常需要採用不同的網路拓撲或使用不同的初始權值,重復進行訓練。

後向傳播演算法學習過程:

迭代地處理一組訓練樣本,將每個樣本的網路預測與實際的類標號比較。

每次迭代後,修改權值,使得網路預測和實際類之間的均方差最小。

這種修改「後向」進行。即,由輸出層,經由每個隱藏層,到第一個隱藏層(因此稱作後向傳播)。盡管不能保證,一般地,權將最終收斂,學習過程停止。

演算法終止條件:訓練集中被正確分類的樣本達到一定的比例,或者權系數趨近穩定。

後向傳播演算法分為如下幾步:

1) 初始化權

網路的權通常被初始化為很小的隨機數(例如,范圍從-1.0到1.0,或從-0.5到0.5)。

每個單元都設有一個偏置(bias),偏置也被初始化為小隨機數。

2) 向前傳播輸入

對於每一個樣本X,重復下面兩步:

向前傳播輸入,向後傳播誤差

計算各層每個單元的輸入和輸出。輸入層:輸出=輸入=樣本X的屬性;即,對於單元j,Oj = Ij = Xj。隱藏層和輸出層:輸入=前一層的輸出的線性組合,即,對於單元j, Ij =wij Oi + θj,輸出=

3) 向後傳播誤差

計算各層每個單元的誤差。

輸出層單元j,誤差:

Oj是單元j的實際輸出,而Tj是j的真正輸出。

隱藏層單元j,誤差:

wjk是由j到下一層中單元k的連接的權,Errk是單元k的誤差

更新 權 和 偏差 ,以反映傳播的誤差。

權由下式更新:

 其中,△wij是權wij的改變。l是學習率,通常取0和1之間的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改變。

Example

人類視覺原理:

深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和Torsten Wiesel,以及Roger Sperry。前兩位的主要貢獻,是「發現了視覺系統的信息處理」, 可視皮層是分級的 。

人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。

對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:

在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。

可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。

卷積神經網路是一種多層神經網路,擅長處理圖像特別是大圖像的相關機器學習問題。卷積網路通過一系列方法,成功將數據量龐大的圖像識別問題不斷降維,最終使其能夠被訓練。

CNN最早由Yann LeCun提出並應用在手寫字體識別上。LeCun提出的網路稱為LeNet,其網路結構如下:

這是一個最典型的卷積網路,由 卷積層、池化層、全連接層 組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特徵,最終通過若干個全連接層完成分類。

CNN通過卷積來模擬特徵區分,並且通過卷積的權值共享及池化,來降低網路參數的數量級,最後通過傳統神經網路完成分類等任務。

降低參數量級:如果使用傳統神經網路方式,對一張圖片進行分類,那麼,把圖片的每個像素都連接到隱藏層節點上,對於一張1000x1000像素的圖片,如果有1M隱藏層單元,一共有10^12個參數,這顯然是不能接受的。

但是在CNN里,可以大大減少參數個數,基於以下兩個假設:

1)最底層特徵都是局部性的,也就是說,用10x10這樣大小的過濾器就能表示邊緣等底層特徵

2)圖像上不同小片段,以及不同圖像上的小片段的特徵是類似的,也就是說,能用同樣的一組分類器來描述各種各樣不同的圖像

基於以上兩個假設,就能把第一層網路結構簡化

用100個10x10的小過濾器,就能夠描述整幅圖片上的底層特徵。

卷積運算的定義如下圖所示:

如上圖所示,一個5x5的圖像,用一個3x3的 卷積核 :

   101

   010

   101

來對圖像進行卷積操作(可以理解為有一個滑動窗口,把卷積核與對應的圖像像素做乘積然後求和),得到了3x3的卷積結果。

這個過程可以理解為使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。在實際訓練過程中, 卷積核的值是在學習過程中學到的。

在具體應用中,往往有多個卷積核,可以認為, 每個卷積核代表了一種圖像模式 ,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果設計了6個卷積核,可以理解為這個圖像上有6種底層紋理模式,也就是用6種基礎模式就能描繪出一副圖像。以下就是24種不同的卷積核的示例:

池化 的過程如下圖所示:

可以看到,原始圖片是20x20的,對其進行采樣,采樣窗口為10x10,最終將其采樣成為一個2x2大小的特徵圖。

之所以這么做,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行采樣。

即使減少了許多數據,特徵的統計屬性仍能夠描述圖像,而且由於降低了數據維度,有效地避免了過擬合。

在實際應用中,分為最大值采樣(Max-Pooling)與平均值采樣(Mean-Pooling)。

LeNet網路結構:

注意,上圖中S2與C3的連接方式並不是全連接,而是部分連接。最後,通過全連接層C5、F6得到10個輸出,對應10個數字的概率。

卷積神經網路的訓練過程與傳統神經網路類似,也是參照了反向傳播演算法

第一階段,向前傳播階段:

a)從樣本集中取一個樣本(X,Yp),將X輸入網路;

b)計算相應的實際輸出Op

第二階段,向後傳播階段

a)計算實際輸出Op與相應的理想輸出Yp的差;

b)按極小化誤差的方法反向傳播調整權矩陣。

E. 神經網路一個隱含層通常有幾個節點數阿

一個最簡單的分類,是在平面上畫一條直線,左邊為類0,右邊為類1,直線表示為

這是一個分類器,輸入(x,y),那麼,要求的參數有三個:a,b,c。另外注意c的作用,如果沒有c,這條直線一定會過原點。


因此,我們可以設計一個簡單的神經網路,包含兩層,輸入層有三個節點,代表x,y,1,三條線分別代表a,b,cg(z)對傳入的值x進行判別,並輸出結果。

但是,由於z的值可能為[],為了方便處理,需要將其壓縮到一個合理的范圍,還需sigmoid函數:

這樣的激勵函數,能夠將剛才的區間,壓縮到

閱讀全文

與神經網路隱藏層一般設多少個相關的資料

熱點內容
內網安裝路由器多有影響網路嗎 瀏覽:125
企業如何命名網路 瀏覽:108
low貨是什麼意思網路用語 瀏覽:729
如何自製電腦網路插件 瀏覽:557
手機提示危險網路是什麼意思 瀏覽:206
中國移動網路代理伺服器 瀏覽:631
tenda路由器連接上網路但不能用 瀏覽:71
如何使網路數據信號變好 瀏覽:116
怎麼樣才能不需要網路安全 瀏覽:520
網路教育專科加本科多少錢 瀏覽:906
網路產品直銷如何去做 瀏覽:748
怎麼在oppo上給電腦連網路 瀏覽:477
如何利用網路推廣保險 瀏覽:541
網路連接域名 瀏覽:170
計算機網路物理隔絕 瀏覽:178
電腦有網路wifi沒有網路怎麼解決 瀏覽:212
網路教研的優勢主要有哪些 瀏覽:373
無線網路攝像頭供電是幾伏幾安的 瀏覽:960
天翼網關網路多少兆 瀏覽:984
EMS列印網路連接異常 瀏覽:544

友情鏈接