❶ BP神經網路matlab編程問題,給出11個輸入數據和2個輸出數據,進行訓練的程序。要求能運行並出相應的結果
給你一個我的程序,如果自己做不了可以聯系我:1526208341
動量梯度下降演算法訓練 BP 網路
訓練樣本定義如下:
輸入矢量為
p =[-1 -2 3 1
-1 1 5 -3]
目標矢量為 t = [-1 -1 1 1]
close all
clear
echo on
clc
% NEWFF——生成一個新的前向神經網路
% TRAIN——對 BP 神經網路進行訓練
% SIM——對 BP 神經網路進行模擬
pause
% 敲任意鍵開始
clc
% 定義訓練樣本
% P 為輸入矢量
P=[-1, -2, 3, 1; -1, 1, 5, -3];
% T 為目標矢量
T=[-1, -1, 1, 1];
pause;
clc
% 創建一個新的前向神經網路
net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')
% 當前輸入層權值和閾值
inputWeights=net.IW{1,1}
inputbias=net.b{1}
% 當前網路層權值和閾值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
pause
clc
% 設置訓練參數
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
pause
clc
% 調用 TRAINGDM 演算法訓練 BP 網路
[net,tr]=train(net,P,T);
pause
clc
% 對 BP 網路進行模擬
A = sim(net,P)
% 計算模擬誤差
E = T - A
MSE=mse(E)
pause
clc
echo off
❷ 用MATLAB與BP神經網路法處理15組數據,共60個數據,需要多長時間
訓練時長取決於訓練演算法、訓練目標、樣本數量和網路規模。你的樣本只有15組,數量較少,一般幾秒鍾就能訓練完成。
若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。
❸ BP神經網路的訓練集需要大樣本嗎一般樣本個數為多少
BP神經網路的訓練集需要大樣本嗎?一般樣本個數為多少?
BP神經網路樣本數有什麼影響
學習神經網路這段時間,有一個疑問,BP神經網路中訓練的次數指的網路的迭代次數,如果有a個樣本,每個樣本訓練次數n,則網路一共迭代an次,在n>>a 情況下 , 網路在不停的調整權值,減小誤差,跟樣本數似乎關系不大。而且,a大了的話訓練時間必然會變長。
換一種說法,將你的數據集看成一個固定值, 那麼樣本集與測試集 也可以按照某種規格確定下來如7:3 所以如何看待 樣本集的多少與訓練結果呢? 或者說怎麼使你的網路更加穩定,更加符合你的所需 。
我嘗試從之前的一個例子中看下區別
如何用70行Java代碼實現深度神經網路演算法
作者其實是實現了一個BP神經網路 ,不多說,看最後的例子
一個運用神經網路的例子
最後我們找個簡單例子來看看神經網路神奇的效果。為了方便觀察數據分布,我們選用一個二維坐標的數據,下面共有4個數據,方塊代表數據的類型為1,三角代表數據的類型為0,可以看到屬於方塊類型的數據有(1,2)和(2,1),屬於三角類型的數據有(1,1),(2,2),現在問題是需要在平面上將4個數據分成1和0兩類,並以此來預測新的數據的類型。
圖片描述
我們可以運用邏輯回歸演算法來解決上面的分類問題,但是邏輯回歸得到一個線性的直線做為分界線,可以看到上面的紅線無論怎麼擺放,總是有一個樣本被錯誤地劃分到不同類型中,所以對於上面的數據,僅僅一條直線不能很正確地劃分他們的分類,如果我們運用神經網路演算法,可以得到下圖的分類效果,相當於多條直線求並集來劃分空間,這樣准確性更高。
圖片描述
簡單粗暴,用作者的代碼運行後 訓練5000次 。根據訓練結果來預測一條新數據的分類(3,1)
預測值 (3,1)的結果跟(1,2)(2,1)屬於一類 屬於正方形
這時如果我們去掉 2個樣本,則樣本輸入變成如下
//設置樣本數據,對應上面的4個二維坐標數據
double[][] data = new double[][]{{1,2},{2,2}};
//設置目標數據,對應4個坐標數據的分類
double[][] target = new double[][]{{1,0},{0,1}};
1
2
3
4
1
2
3
4
則(3,1)結果變成了三角形,
如果你選前兩個點 你會發現直接一條中間線就可以區分 這時候的你的結果跟之前4個點時有區別 so 你得增加樣本 直到這些樣本按照你所想要的方式分類 ,所以樣本的多少 重要性體現在,樣本得能反映所有的特徵值(也就是輸入值) ,樣本多少或者特徵(本例子指點的位置特徵)決定的你的網路的訓練結果,!!!這是 我們反推出來的結果 。這里距離深度學習好像近了一步。
另外,這個70行代碼的神經網路沒有保存你訓練的網路 ,所以你每次運行都是重新訓練的網路。其實,在你訓練過後 權值已經確定了下來,我們確定網路也就是根據權值,so只要把訓練後的權值保存下來,將需要分類的數據按照這種權值帶入網路,即可得到輸出值,也就是一旦網路確定, 權值也就確定,一個輸入對應一個固定的輸出,不會再次改變!個人見解。
最後附上作者的源碼,作者的文章見開頭鏈接
下面的實現程序BpDeep.java可以直接拿去使用,
import java.util.Random;
public class BpDeep{
public double[][] layer;//神經網路各層節點
public double[][] layerErr;//神經網路各節點誤差
public double[][][] layer_weight;//各層節點權重
public double[][][] layer_weight_delta;//各層節點權重動量
public double mobp;//動量系數
public double rate;//學習系數
public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;l<layernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1<layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;j<layernum[l]+1;j++)
for(int i=0;i<layernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//隨機初始化權重
}
}
}
//逐層向前計算輸出
public double[] computeOut(double[] in){
for(int l=1;l<layer.length;l++){
for(int j=0;j<layer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;i<layer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐層反向計算誤差並修改權重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;j<layerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);
while(l-->0){
for(int j=0;j<layerErr[l].length;j++){
double z = 0.0;
for(int i=0;i<layerErr[l+1].length;i++){
z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隱含層動量調整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隱含層權重調整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距動量調整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距權重調整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//記錄誤差
}
}
}
public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
下面是這個測試程序BpDeepTest.java的源碼:
import java.util.Arrays;
public class BpDeepTest{
public static void main(String[] args){
//初始化神經網路的基本配置
//第一個參數是一個整型數組,表示神經網路的層數和每層節點數,比如{3,10,10,10,10,2}表示輸入層是3個節點,輸出層是2個節點,中間有4層隱含層,每層10個節點
//第二個參數是學習步長,第三個參數是動量系數
BpDeep bp = new BpDeep(new int[]{2,10,2}, 0.15, 0.8);
//設置樣本數據,對應上面的4個二維坐標數據
double[][] data = new double[][]{{1,2},{2,2},{1,1},{2,1}};
//設置目標數據,對應4個坐標數據的分類
double[][] target = new double[][]{{1,0},{0,1},{0,1},{1,0}};
//迭代訓練5000次
for(int n=0;n<5000;n++)
for(int i=0;i<data.length;i++)
bp.train(data[i], target[i]);
//根據訓練結果來檢驗樣本數據
for(int j=0;j<data.length;j++){
double[] result = bp.computeOut(data[j]);
System.out.println(Arrays.toString(data[j])+":"+Arrays.toString(result));
}
//根據訓練結果來預測一條新數據的分類
double[] x = new double[]{3,1};
double[] result = bp.computeOut(x);
System.out.println(Arrays.toString(x)+":"+Arrays.toString(result));
}
}
❹ BP神經網路學習樣本是不是越多越好!
這個沒有明確要求,樣本也不是越多越好。通常情況下,你的樣本可以一部分用來做驗證。加速你有100個樣本,90%用來做訓練,10%用來做驗證等,當然,有時候還得留下10%做測試用。我個人的經驗是,樣本數盡量在10以上吧。
❺ 在使用matlab軟體中有關bp神經網路各項參數的疑惑
隱含層偏小 有經驗公式好像2倍輸入 別的都是為了誤差設置的了
❻ 神經網路遺傳演算法函數極值尋優
對於未知的非線性函數,僅通過函數的輸入輸出數據難以准確尋找函數極值。這類問題可以通過神經網路結合遺傳演算法求解,利用神經網路的非線性擬合能力和遺傳演算法的非線性尋優能力尋找函數極值。本文用神經網路遺傳演算法尋優如下非線性函數極值,函數表達式為
函數圖形如下圖1所示。
從函數方程和圖形可以看出,該函數的全局最小值為0,對應的坐標為(0,0)。雖然從函數方程和圖形中很容易找出函數極值及極值對應坐標,但是在函數方程未知的情況下函數極值及極值對應坐標就很難找到。
神經網路遺傳演算法函數極值尋優主要分為BP神經網路訓練擬合和遺傳演算法極值尋優兩步,演算法流程如下圖2所示。
神經網路訓練擬合根據尋優函數的特點構建合適的BP神經網路,用非線性函數的輸出數據訓練BP網路,訓練後的BP神經網路就可以預測函數輸出。遺傳演算法極值尋優把訓練後的BP神經網路預測結果作為個體適應度值,通過選擇、交叉和變異操作尋找函數的全局最優值及對應輸入值。
本文根據非線性函數有2個輸入參數、1個輸出參數,確定BP神經網路結構為2-5-1.取函數的4 000組輸入輸出數據,從中隨機選取3 900組數據訓練網路,100組數據測試網路性能,網路訓練好後用於預測非線性函數輸出。
遺傳演算法中個體採用實數編碼,由於尋優函數只有2個輸入參數,所以個體長度為2。個體適應度值為BP神經網路預測值,適應度值越小。交叉概率為0.4,變異概率為0.2。
用函數輸入輸出數據訓練BP神經網路,使訓練後的網路能夠擬合非線性函數輸出,保存訓練好的網路用語計算個體適應度值。根據非線性函告讓信數方程隨機得到該函數的4 000組輸入輸出數據,存儲於data.mat中,其中input為函數輸入數據,output為函數對應輸出數據,從中隨機抽取3 900組訓練數據訓練網路,100組測試數據測試網路擬合性能。最後保存訓練好的網路。
把訓練好的BP神經網路預測輸出作為個體適應度值。
BP神經網路擬合結果分析
本文中個體的適應度值為BP神經網路預測值,因此BP神經網路預測精度對於最優位置的尋找具有非常重要的意義。由於尋優非線性函數有2個輸入參數、1個輸出參數,所以構建的BP神經網路的結構為2-5-1。共取非線性函數4 000組輸入輸出數據,從中隨機選擇3 900組數據訓練BP神經網路,100組數據作為測試數據測試BP神經網路擬合性能,BP神經網路預測輸出和期望輸出對比如下圖3所示。
從BP神經網路預測結果可以看出,BP神經網路可以准確預測非線性函數輸出,可以把網路預測近似看成函數實際輸出。
遺傳演算法尋優結果分析 BP神經網路訓練結束後,可以利用遺傳演算法尋找該非線性函數的最小值。遺傳演算法的迭代次數是100次,種群規模是20,交叉概率為0.4,變異概率為0.2,採用浮點數編碼,個體長度為21,優化過程中最優個體適應度值變化曲線如下圖4所示。
本文所使用的方法有比較重要的工程應用價值,比如對於某項試驗來說,試驗目的是獲取到最大試驗結果對應的實驗條件,但是由於時間和經費限制,該試驗只能進行有限次,可能單靠試驗結果找不到最優的試驗條件。這時可以在已知試驗數據的基礎上,通過本文介紹的神經網路遺傳演算法尋找最優試驗條件。
思路就是先根據試驗條件數和試驗結果數確定BP神經網路結構;然後把試驗條件作為輸入數據,滑叢試驗結果作為輸出數據訓練BP網路,使得訓練後的網路襪輪可以預測一定試驗條件下的試驗結果;最後把試驗條件作為遺傳演算法中的種群個體,把網路預測的試驗結果作為個體適應度值,通過遺傳演算法推導最優試驗結果及其對應試驗條件。
❼ bp神經網路對輸入數據和輸出數據有什麼要求
p神經網路的輸入數據越多越好,輸出數據需乎衫要反映網路的聯想記憶和預測能力。
BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。
BP神經網路模型拓輪態撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。BP網路具有高度非線性和較強的泛化能力,但也存在收斂速度慢、迭代步數多、易於陷入局部極小和全局搜索能力差等缺點。
(7)訓練BP神經網路用多少數據擴展閱讀:
BP演算法主要思想是:輸入學習樣本,使用反向傳播演算法對網路的權值和偏差進行反復的調整訓練,使輸出的向量與期望向量盡可能地接近,當網路歲桐腔輸出層的誤差平方和小於指定的誤差時訓練完成,保存網路的權值和偏差。
1、初始化,隨機給定各連接權及閥值。
2、由給定的輸入輸出模式對計算隱層、輸出層各單元輸出
3、計算新的連接權及閥值,計算公式如下:
4、選取下一個輸入模式對返回第2步反復訓練直到網路設輸出誤差達到要求結束訓練。
❽ bp神經網路
BP(Back Propagation)網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。
如圖所示拓撲結構的單隱層前饋網路,一般稱為三層前饋網或三層感知器,即:輸入層、中間層(也稱隱層)和輸出層。它的特點是:各層神經元僅與相鄰層神經元之間相互全連接,同層內神經元之間無連接,各層神經元之間無反饋連接,構成具有層次結構的前饋型神經網路系統。單計算層前饋神經網路只能求解線性可分問題,能夠求解非線性問題的網路必須是具有隱層的多層神經網路。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
神經網路可以用作分類、聚類、預測等。神經網路需要有一定量的歷史數據,通過歷史數據的訓練,網路可以學習到數據中隱含的知識。在你的問題中,首先要找到某些問題的一些特徵,以及對應的評價數據,用這些數據來訓練神經網路。
雖然BP網路得到了廣泛的應用,但自身也存在一些缺陷和不足,主要包括以下幾個方面的問題。
首先,由於學習速率是固定的,因此網路的收斂速度慢,需要較長的訓練時間。對於一些復雜問題,BP演算法需要的訓練時間可能非常長,這主要是由於學習速率太小造成的,可採用變化的學習速率或自適應的學習速率加以改進。
其次,BP演算法可以使權值收斂到某個值,但並不保證其為誤差平面的全局最小值,這是因為採用梯度下降法可能產生一個局部最小值。對於這個問題,可以採用附加動量法來解決。
再次,網路隱含層的層數和單元數的選擇尚無理論上的指導,一般是根據經驗或者通過反復實驗確定。因此,網路往往存在很大的冗餘性,在一定程度上也增加了網路學習的負擔。
最後,網路的學習和記憶具有不穩定性。也就是說,如果增加了學習樣本,訓練好的網路就需要從頭開始訓練,對於以前的權值和閾值是沒有記憶的。但是可以將預測、分類或聚類做的比較好的權值保存。
請採納。
❾ matlab BP神經網路人口預測,用32個數據每4個為一組,前三個為輸入,進行滾動預測
你最好用優化演算法優化一下,結果肯定會更好,我做過一些這方面的研灶鏈緩究,我給你個簡答的遺傳演算法優化BP網路的列子,你可以套用一下,就出來了,同樣是預測:
神經網路遺傳演算法函數極值尋優
%% 清空環境變數
clc
clear
tic
%% 訓練數據預測數據提取及歸一化
%下載輸隱模入輸出數據
load data1 input output
%從1到2000間隨機排序
k=rand(1,4000);
[m,n]=sort(k);
%找出訓練數據和預測數據
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';
%選連樣本輸入輸出數據歸一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% BP網路訓練
% %初始化網路結構
net=newff(inputn,outputn,5);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;
%網路訓練
net=train(net,inputn,outputn);
%% BP網路預測
%預測數據歸一化
inputn_test=mapminmax('apply',input_test,inputps);
%網路預測輸出
an=sim(net,inputn_test);
%網路輸出反歸一化
BPoutput=mapminmax('reverse',an,outputps);
%% 結果分析
figure(1)
plot(BPoutput,':og')
hold on
plot(output_test,'-*'喚鉛);
legend('預測輸出','期望輸出','fontsize',12)
title('BP網路預測輸出','fontsize',12)
xlabel('樣本','fontsize',12)
ylabel('輸出','fontsize',12)
%預測誤差
error=BPoutput-output_test;
figure(2)
plot(error,'-*')
title('神經網路預測誤差')
figure(3)
plot((output_test-BPoutput)./BPoutput,'-*');
title('神經網路預測誤差百分比')
errorsum=sum(abs(error))
❿ BP神經網路數據400組少嗎
少。
如果你的數據具有非常復雜的對應關系,比如現在你分類到博彩類,用神經網路理論上講是可以預測的的,很多人發了論文,講怎麼用神經網路預測雙色球什麼的。實際上效果並不是非常理想。因為內在規律太復雜,有限的數據無法透徹的歸納出來到底數據怎麼變化。這種情況下,縱使你又幾千個數據也不行。比較保險的辦法還是用逆向工程方法建立一個一個的子模型,然後整理成一個大模型再做預測。往往會比因為數據量不夠引起的神經網路預測誤差要小得多。