導航:首頁 > 網路設置 > 神經網路知多少

神經網路知多少

發布時間:2023-03-16 22:09:46

❶ 一文看懂四種基本的神經網路架構

原文鏈接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干貨就在我的個人博客 http://blackblog.tech 歡迎關注

剛剛入門神經網路,往往會對眾多的神經網路架構感到困惑,神經網路看起來復雜多樣,但是這么多架構無非也就是三類,前饋神經網路,循環網路,對稱連接網路,本文將介紹四種常見的神經網路,分別是CNN,RNN,DBN,GAN。通過這四種基本的神經網路架構,我們來對神經網路進行一定的了解。

神經網路是機器學習中的一種模型,是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
一般來說,神經網路的架構可以分為三類:

前饋神經網路:
這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。

循環網路:
循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。
循環網路的目的使用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。例如,你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。
循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。

對稱連接網路:
對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。

其實之前的帖子講過一些關於感知機的內容,這里再復述一下。
首先還是這張圖
這是一個M-P神經元

一個神經元有n個輸入,每一個輸入對應一個權值w,神經元內會對輸入與權重做乘法後求和,求和的結果與偏置做差,最終將結果放入激活函數中,由激活函數給出最後的輸出,輸出往往是二進制的,0 狀態代表抑制,1 狀態代表激活。

可以把感知機看作是 n 維實例空間中的超平面決策面,對於超平面一側的樣本,感知器輸出 1,對於另一側的實例輸出 0,這個決策超平面方程是 w⋅x=0。 那些可以被某一個超平面分割的正反樣例集合稱為線性可分(linearly separable)樣例集合,它們就可以使用圖中的感知機表示。
與、或、非問題都是線性可分的問題,使用一個有兩輸入的感知機能容易地表示,而異或並不是一個線性可分的問題,所以使用單層感知機是不行的,這時候就要使用多層感知機來解決疑惑問題了。

如果我們要訓練一個感知機,應該怎麼辦呢?
我們會從隨機的權值開始,反復地應用這個感知機到每個訓練樣例,只要它誤分類樣例就修改感知機的權值。重復這個過程,直到感知機正確分類所有的樣例。每一步根據感知機訓練法則來修改權值,也就是修改與輸入 xi 對應的權 wi,法則如下:

這里 t 是當前訓練樣例的目標輸出,o 是感知機的輸出,η 是一個正的常數稱為學習速率。學習速率的作用是緩和每一步調整權的程度,它通常被設為一個小的數值(例如 0.1),而且有時會使其隨著權調整次數的增加而衰減。

多層感知機,或者說是多層神經網路無非就是在輸入層與輸出層之間加了多個隱藏層而已,後續的CNN,DBN等神經網路只不過是將重新設計了每一層的類型。感知機可以說是神經網路的基礎,後續更為復雜的神經網路都離不開最簡單的感知機的模型,

談到機器學習,我們往往還會跟上一個詞語,叫做模式識別,但是真實環境中的模式識別往往會出現各種問題。比如:
圖像分割:真實場景中總是摻雜著其它物體。很難判斷哪些部分屬於同一個對象。對象的某些部分可以隱藏在其他對象的後面。
物體光照:像素的強度被光照強烈影響。
圖像變形:物體可以以各種非仿射方式變形。例如,手寫也可以有一個大的圓圈或只是一個尖頭。
情景支持:物體所屬類別通常由它們的使用方式來定義。例如,椅子是為了讓人們坐在上面而設計的,因此它們具有各種各樣的物理形狀。
卷積神經網路與普通神經網路的區別在於,卷積神經網路包含了一個由卷積層和子采樣層構成的特徵抽取器。在卷積神經網路的卷積層中,一個神經元只與部分鄰層神經元連接。在CNN的一個卷積層中,通常包含若干個特徵平面(featureMap),每個特徵平面由一些矩形排列的的神經元組成,同一特徵平面的神經元共享權值,這里共享的權值就是卷積核。卷積核一般以隨機小數矩陣的形式初始化,在網路的訓練過程中卷積核將學習得到合理的權值。共享權值(卷積核)帶來的直接好處是減少網路各層之間的連接,同時又降低了過擬合的風險。子采樣也叫做池化(pooling),通常有均值子采樣(mean pooling)和最大值子采樣(max pooling)兩種形式。子采樣可以看作一種特殊的卷積過程。卷積和子采樣大大簡化了模型復雜度,減少了模型的參數。
卷積神經網路由三部分構成。第一部分是輸入層。第二部分由n個卷積層和池化層的組合組成。第三部分由一個全連結的多層感知機分類器構成。
這里舉AlexNet為例:

·輸入:224×224大小的圖片,3通道
·第一層卷積:11×11大小的卷積核96個,每個GPU上48個。
·第一層max-pooling:2×2的核。
·第二層卷積:5×5卷積核256個,每個GPU上128個。
·第二層max-pooling:2×2的核。
·第三層卷積:與上一層是全連接,3*3的卷積核384個。分到兩個GPU上個192個。
·第四層卷積:3×3的卷積核384個,兩個GPU各192個。該層與上一層連接沒有經過pooling層。
·第五層卷積:3×3的卷積核256個,兩個GPU上個128個。
·第五層max-pooling:2×2的核。
·第一層全連接:4096維,將第五層max-pooling的輸出連接成為一個一維向量,作為該層的輸入。
·第二層全連接:4096維
·Softmax層:輸出為1000,輸出的每一維都是圖片屬於該類別的概率。

卷積神經網路在模式識別領域有著重要應用,當然這里只是對卷積神經網路做了最簡單的講解,卷積神經網路中仍然有很多知識,比如局部感受野,權值共享,多卷積核等內容,後續有機會再進行講解。

傳統的神經網路對於很多問題難以處理,比如你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。RNN之所以稱為循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。理論上,RNN能夠對任何長度的序列數據進行處理。
這是一個簡單的RNN的結構,可以看到隱藏層自己是可以跟自己進行連接的。

那麼RNN為什麼隱藏層能夠看到上一刻的隱藏層的輸出呢,其實我們把這個網路展開來開就很清晰了。

從上面的公式我們可以看出,循環層和全連接層的區別就是循環層多了一個權重矩陣 W。
如果反復把式2帶入到式1,我們將得到:

在講DBN之前,我們需要對DBN的基本組成單位有一定的了解,那就是RBM,受限玻爾茲曼機。
首先什麼是玻爾茲曼機?
[圖片上傳失敗...(image-d36b31-1519636788074)]
如圖所示為一個玻爾茲曼機,其藍色節點為隱層,白色節點為輸入層。
玻爾茲曼機和遞歸神經網路相比,區別體現在以下幾點:
1、遞歸神經網路本質是學習一個函數,因此有輸入和輸出層的概念,而玻爾茲曼機的用處在於學習一組數據的「內在表示」,因此其沒有輸出層的概念。
2、遞歸神經網路各節點鏈接為有向環,而玻爾茲曼機各節點連接成無向完全圖。

而受限玻爾茲曼機是什麼呢?
最簡單的來說就是加入了限制,這個限制就是將完全圖變成了二分圖。即由一個顯層和一個隱層構成,顯層與隱層的神經元之間為雙向全連接。

h表示隱藏層,v表示顯層
在RBM中,任意兩個相連的神經元之間有一個權值w表示其連接強度,每個神經元自身有一個偏置系數b(對顯層神經元)和c(對隱層神經元)來表示其自身權重。
具體的公式推導在這里就不展示了

DBN是一個概率生成模型,與傳統的判別模型的神經網路相對,生成模型是建立一個觀察數據和標簽之間的聯合分布,對P(Observation|Label)和 P(Label|Observation)都做了評估,而判別模型僅僅而已評估了後者,也就是P(Label|Observation)。
DBN由多個限制玻爾茲曼機(Restricted Boltzmann Machines)層組成,一個典型的神經網路類型如圖所示。這些網路被「限制」為一個可視層和一個隱層,層間存在連接,但層內的單元間不存在連接。隱層單元被訓練去捕捉在可視層表現出來的高階數據的相關性。

生成對抗網路其實在之前的帖子中做過講解,這里在說明一下。
生成對抗網路的目標在於生成,我們傳統的網路結構往往都是判別模型,即判斷一個樣本的真實性。而生成模型能夠根據所提供的樣本生成類似的新樣本,注意這些樣本是由計算機學習而來的。
GAN一般由兩個網路組成,生成模型網路,判別模型網路。
生成模型 G 捕捉樣本數據的分布,用服從某一分布(均勻分布,高斯分布等)的雜訊 z 生成一個類似真實訓練數據的樣本,追求效果是越像真實樣本越好;判別模型 D 是一個二分類器,估計一個樣本來自於訓練數據(而非生成數據)的概率,如果樣本來自於真實的訓練數據,D 輸出大概率,否則,D 輸出小概率。
舉個例子:生成網路 G 好比假幣製造團伙,專門製造假幣,判別網路 D 好比警察,專門檢測使用的貨幣是真幣還是假幣,G 的目標是想方設法生成和真幣一樣的貨幣,使得 D 判別不出來,D 的目標是想方設法檢測出來 G 生成的假幣。
傳統的判別網路:

生成對抗網路:

下面展示一個cDCGAN的例子(前面帖子中寫過的)
生成網路

判別網路

最終結果,使用MNIST作為初始樣本,通過學習後生成的數字,可以看到學習的效果還是不錯的。

本文非常簡單的介紹了四種神經網路的架構,CNN,RNN,DBN,GAN。當然也僅僅是簡單的介紹,並沒有深層次講解其內涵。這四種神經網路的架構十分常見,應用也十分廣泛。當然關於神經網路的知識,不可能幾篇帖子就講解完,這里知識講解一些基礎知識,幫助大家快速入(zhuang)門(bi)。後面的帖子將對深度自動編碼器,Hopfield 網路長短期記憶網路(LSTM)進行講解。

❷ 神經網路模型-27種神經網路模型們的簡介

​ 

【1】Perceptron(P) 感知機

【1】感知機 

感知機是我們知道的最簡單和最古老的神經元模型,它接收一些輸入,然後把它們加總,通過激活函數並傳遞到輸出層。

【2】Feed Forward(FF)前饋神經網路

 【2】前饋神經網路

前饋神經網路(FF),這也是一個很古老的方法——這種方法起源於50年代。它的工作原理通常遵循以下規則:

1.所有節點都完全連接

2.激活從輸入層流向輸出,無回環

3.輸入和輸出之間有一層(隱含層)

在大多數情況下,這種類型的網路使用反向傳播方法進行訓練。

【3】Radial Basis Network(RBF) RBF神經網路

 【3】RBF神經網路

RBF 神經網路實際上是 激活函數是徑向基函數 而非邏輯函數的FF前饋神經網路(FF)。兩者之間有什麼區別呢?

邏輯函數--- 將某個任意值映射到[0 ,... 1]范圍內來,回答「是或否」問題。適用於分類決策系統,但不適用於連續變數。

相反, 徑向基函數--- 能顯示「我們距離目標有多遠」。 這完美適用於函數逼近和機器控制(例如作為PID控制器的替代)。

簡而言之,RBF神經網路其實就是, 具有不同激活函數和應用方向的前饋網路 。

【4】Deep Feed Forword(DFF)深度前饋神經網路

【4】DFF深度前饋神經網路 

DFF深度前饋神經網路在90年代初期開啟了深度學習的潘多拉盒子。 這些依然是前饋神經網路,但有不止一個隱含層 。那麼,它到底有什麼特殊性?

在訓練傳統的前饋神經網路時,我們只向上一層傳遞了少量的誤差信息。由於堆疊更多的層次導致訓練時間的指數增長,使得深度前饋神經網路非常不實用。 直到00年代初,我們開發了一系列有效的訓練深度前饋神經網路的方法; 現在它們構成了現代機器學習系統的核心 ,能實現前饋神經網路的功能,但效果遠高於此。

【5】Recurrent Neural Network(RNN) 遞歸神經網路

【5】RNN遞歸神經網路 

RNN遞歸神經網路引入不同類型的神經元——遞歸神經元。這種類型的第一個網路被稱為約旦網路(Jordan Network),在網路中每個隱含神經元會收到它自己的在固定延遲(一次或多次迭代)後的輸出。除此之外,它與普通的模糊神經網路非常相似。

當然,它有許多變化 — 如傳遞狀態到輸入節點,可變延遲等,但主要思想保持不變。這種類型的神經網路主要被使用在上下文很重要的時候——即過去的迭代結果和樣本產生的決策會對當前產生影響。最常見的上下文的例子是文本——一個單詞只能在前面的單詞或句子的上下文中進行分析。

【6】Long/Short Term Memory (LSTM) 長短時記憶網路

【6】LSTM長短時記憶網路 

LSTM長短時記憶網路引入了一個存儲單元,一個特殊的單元,當數據有時間間隔(或滯後)時可以處理數據。遞歸神經網路可以通過「記住」前十個詞來處理文本,LSTM長短時記憶網路可以通過「記住」許多幀之前發生的事情處理視頻幀。 LSTM網路也廣泛用於寫作和語音識別。

存儲單元實際上由一些元素組成,稱為門,它們是遞歸性的,並控制信息如何被記住和遺忘。

【7】Gated Recurrent Unit (GRU)

 【7】GRU是具有不同門的LSTM

GRU是具有不同門的LSTM。

聽起來很簡單,但缺少輸出門可以更容易基於具體輸入重復多次相同的輸出,目前此模型在聲音(音樂)和語音合成中使用得最多。

實際上的組合雖然有點不同:但是所有的LSTM門都被組合成所謂的更新門(Update Gate),並且復位門(Reset Gate)與輸入密切相關。

它們比LSTM消耗資源少,但幾乎有相同的效果。

【8】Auto Encoder (AE) 自動編碼器

 【8】AE自動編碼器

Autoencoders自動編碼器用於分類,聚類和特徵壓縮。

當您訓練前饋(FF)神經網路進行分類時,您主要必須在Y類別中提供X個示例,並且期望Y個輸出單元格中的一個被激活。 這被稱為「監督學習」。

另一方面,自動編碼器可以在沒有監督的情況下進行訓練。它們的結構 - 當隱藏單元數量小於輸入單元數量(並且輸出單元數量等於輸入單元數)時,並且當自動編碼器被訓練時輸出盡可能接近輸入的方式,強制自動編碼器泛化數據並搜索常見模式。

【9】Variational AE (VAE)  變分自編碼器

 【9】VAE變分自編碼器

變分自編碼器,與一般自編碼器相比,它壓縮的是概率,而不是特徵。

盡管如此簡單的改變,但是一般自編碼器只能回答當「我們如何歸納數據?」的問題時,變分自編碼器回答了「兩件事情之間的聯系有多強大?我們應該在兩件事情之間分配誤差還是它們完全獨立的?」的問題。

【10】Denoising AE (DAE) 降噪自動編碼器

 【10】DAE降噪自動編碼器

雖然自動編碼器很酷,但它們有時找不到最魯棒的特徵,而只是適應輸入數據(實際上是過擬合的一個例子)。

降噪自動編碼器(DAE)在輸入單元上增加了一些雜訊 - 通過隨機位來改變數據,隨機切換輸入中的位,等等。通過這樣做,一個強制降噪自動編碼器從一個有點嘈雜的輸入重構輸出,使其更加通用,強制選擇更常見的特徵。

【11】Sparse AE (SAE) 稀疏自編碼器

【11】SAE稀疏自編碼器 

稀疏自編碼器(SAE)是另外一個有時候可以抽離出數據中一些隱藏分組樣試的自動編碼的形式。結構和AE是一樣的,但隱藏單元的數量大於輸入或輸出單元的數量。

【12】Markov Chain (MC) 馬爾科夫鏈

 【12】Markov Chain (MC) 馬爾科夫鏈

馬爾可夫鏈(Markov Chain, MC)是一個比較老的圖表概念了,它的每一個端點都存在一種可能性。過去,我們用它來搭建像「在單詞hello之後有0.0053%的概率會出現dear,有0.03551%的概率出現you」這樣的文本結構。

這些馬爾科夫鏈並不是典型的神經網路,它可以被用作基於概率的分類(像貝葉斯過濾),用於聚類(對某些類別而言),也被用作有限狀態機。

【13】Hopfield Network (HN) 霍普菲爾網路

【13】HN霍普菲爾網路 

霍普菲爾網路(HN)對一套有限的樣本進行訓練,所以它們用相同的樣本對已知樣本作出反應。

在訓練前,每一個樣本都作為輸入樣本,在訓練之中作為隱藏樣本,使用過之後被用作輸出樣本。

在HN試著重構受訓樣本的時候,他們可以用於給輸入值降噪和修復輸入。如果給出一半圖片或數列用來學習,它們可以反饋全部樣本。

【14】Boltzmann Machine (BM) 波爾滋曼機

【14】 BM 波爾滋曼機 

波爾滋曼機(BM)和HN非常相像,有些單元被標記為輸入同時也是隱藏單元。在隱藏單元更新其狀態時,輸入單元就變成了輸出單元。(在訓練時,BM和HN一個一個的更新單元,而非並行)。

這是第一個成功保留模擬退火方法的網路拓撲。

多層疊的波爾滋曼機可以用於所謂的深度信念網路,深度信念網路可以用作特徵檢測和抽取。

【15】Restricted BM (RBM) 限制型波爾滋曼機

【15】 RBM 限制型波爾滋曼機 

在結構上,限制型波爾滋曼機(RBM)和BM很相似,但由於受限RBM被允許像FF一樣用反向傳播來訓練(唯一的不同的是在反向傳播經過數據之前RBM會經過一次輸入層)。

【16】Deep Belief Network (DBN) 深度信念網路

【16】DBN 深度信念網路 

像之前提到的那樣,深度信念網路(DBN)實際上是許多波爾滋曼機(被VAE包圍)。他們能被連在一起(在一個神經網路訓練另一個的時候),並且可以用已經學習過的樣式來生成數據。

【17】Deep Convolutional Network (DCN) 深度卷積網路

【17】 DCN 深度卷積網路

當今,深度卷積網路(DCN)是人工神經網路之星。它具有卷積單元(或者池化層)和內核,每一種都用以不同目的。

卷積核事實上用來處理輸入的數據,池化層是用來簡化它們(大多數情況是用非線性方程,比如max),來減少不必要的特徵。

他們通常被用來做圖像識別,它們在圖片的一小部分上運行(大約20x20像素)。輸入窗口一個像素一個像素的沿著圖像滑動。然後數據流向卷積層,卷積層形成一個漏斗(壓縮被識別的特徵)。從圖像識別來講,第一層識別梯度,第二層識別線,第三層識別形狀,以此類推,直到特定的物體那一級。DFF通常被接在卷積層的末端方便未來的數據處理。

【18】Deconvolutional Network (DN) 去卷積網路

 【18】 DN 去卷積網路

去卷積網路(DN)是將DCN顛倒過來。DN能在獲取貓的圖片之後生成像(狗:0,蜥蜴:0,馬:0,貓:1)一樣的向量。DNC能在得到這個向量之後,能畫出一隻貓。

【19】Deep Convolutional Inverse Graphics Network (DCIGN) 深度卷積反轉圖像網路

【19】 DCIGN 深度卷積反轉圖像網路

深度卷積反轉圖像網路(DCIGN),長得像DCN和DN粘在一起,但也不完全是這樣。

事實上,它是一個自動編碼器,DCN和DN並不是作為兩個分開的網路,而是承載網路輸入和輸出的間隔區。大多數這種神經網路可以被用作圖像處理,並且可以處理他們以前沒有被訓練過的圖像。由於其抽象化的水平很高,這些網路可以用於將某個事物從一張圖片中移除,重畫,或者像大名鼎鼎的CycleGAN一樣將一匹馬換成一個斑馬。

【20】Generative Adversarial Network (GAN) 生成對抗網路

 【20】 GAN 生成對抗網路

生成對抗網路(GAN)代表了有生成器和分辨器組成的雙網路大家族。它們一直在相互傷害——生成器試著生成一些數據,而分辨器接收樣本數據後試著分辨出哪些是樣本,哪些是生成的。只要你能夠保持兩種神經網路訓練之間的平衡,在不斷的進化中,這種神經網路可以生成實際圖像。

【21】Liquid State Machine (LSM) 液體狀態機

 【21】 LSM 液體狀態機

液體狀態機(LSM)是一種稀疏的,激活函數被閾值代替了的(並不是全部相連的)神經網路。只有達到閾值的時候,單元格從連續的樣本和釋放出來的輸出中積累價值信息,並再次將內部的副本設為零。

這種想法來自於人腦,這些神經網路被廣泛的應用於計算機視覺,語音識別系統,但目前還沒有重大突破。

【22】Extreme  Learning Machine (ELM) 極端學習機

【22】ELM 極端學習機 

極端學習機(ELM)是通過產生稀疏的隨機連接的隱藏層來減少FF網路背後的復雜性。它們需要用到更少計算機的能量,實際的效率很大程度上取決於任務和數據。

【23】Echo State Network (ESN) 回聲狀態網路

【23】 ESN 回聲狀態網路

回聲狀態網路(ESN)是重復網路的細分種類。數據會經過輸入端,如果被監測到進行了多次迭代(請允許重復網路的特徵亂入一下),只有在隱藏層之間的權重會在此之後更新。

據我所知,除了多個理論基準之外,我不知道這種類型的有什麼實際應用。。。。。。。

【24】Deep Resial Network (DRN) 深度殘差網路

​【24】 DRN 深度殘差網路 

深度殘差網路(DRN)是有些輸入值的部分會傳遞到下一層。這一特點可以讓它可以做到很深的層級(達到300層),但事實上它們是一種沒有明確延時的RNN。

【25】Kohonen Network (KN) Kohonen神經網路

​ 【25】 Kohonen神經網路

Kohonen神經網路(KN)引入了「單元格距離」的特徵。大多數情況下用於分類,這種網路試著調整它們的單元格使其對某種特定的輸入作出最可能的反應。當一些單元格更新了, 離他們最近的單元格也會更新。

像SVM一樣,這些網路總被認為不是「真正」的神經網路。

【26】Support Vector Machine (SVM)

​【26】 SVM 支持向量機 

支持向量機(SVM)用於二元分類工作,無論這個網路處理多少維度或輸入,結果都會是「是」或「否」。

SVM不是所有情況下都被叫做神經網路。

【27】Neural Turing Machine (NTM) 神經圖靈機

​【27】NTM 神經圖靈機 

神經網路像是黑箱——我們可以訓練它們,得到結果,增強它們,但實際的決定路徑大多數我們都是不可見的。

神經圖靈機(NTM)就是在嘗試解決這個問題——它是一個提取出記憶單元之後的FF。一些作者也說它是一個抽象版的LSTM。

記憶是被內容編址的,這個網路可以基於現狀讀取記憶,編寫記憶,也代表了圖靈完備神經網路。

❸ 什麼是神經網路

隱層節點數在BP 網路中,隱層節點數的選擇非常重要,它不僅對建立的神經網路模型的性能影響很大,而且是訓練時出現「過擬合」的直接原因,但是目前理論上還沒有一種科學的和普遍的確定方法。 目前多數文獻中提出的確定隱層節點數的計算公式都是針對訓練樣本任意多的情況,而且多數是針對最不利的情況,一般工程實踐中很難滿足,不宜採用。事實上,各種計算公式得到的隱層節點數有時相差幾倍甚至上百倍。為盡可能避免訓練時出現「過擬合」現象,保證足夠高的網路性能和泛化能力,確定隱層節點數的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結構,即取盡可能少的隱層節點數。研究表明,隱層節點數不僅與輸入/輸出層的節點數有關,更與需解決的問題的復雜程度和轉換函數的型式以及樣本數據的特性等因素有關。在確定隱層節點數時必須滿足下列條件:(1)隱層節點數必須小於N-1(其中N為訓練樣本數),否則,網路模型的系統誤差與訓練樣本的特性無關而趨於零,即建立的網路模型沒有泛化能力,也沒有任何實用價值。同理可推得:輸入層的節點數(變數數)必須小於N-1。(2) 訓練樣本數必須多於網路模型的連接權數,一般為2~10倍,否則,樣本必須分成幾部分並採用「輪流訓練」的方法才可能得到可靠的神經網路模型。 總之,若隱層節點數太少,網路可能根本不能訓練或網路性能很差;若隱層節點數太多,雖然可使網路的系統誤差減小,但一方面使網路訓練時間延長,另一方面,訓練容易陷入局部極小點而得不到最優點,也是訓練時出現「過擬合」的內在原因。因此,合理隱層節點數應在綜合考慮網路結構復雜程度和誤差大小的情況下用節點刪除法和擴張法確定。

❹ 一文讀懂神經網路

要說近幾年最引人注目的技術,無疑的,非人工智慧莫屬。無論你是否身處科技互聯網行業,隨處可見人工智慧的身影:從 AlphaGo 擊敗世界圍棋冠軍,到無人駕駛概念的興起,再到科技巨頭 All in AI,以及各大高校向社會輸送海量的人工智慧專業的畢業生。以至於人們開始萌生一個想法:新的革命就要來了,我們的世界將再次發生一次巨變;而後開始焦慮:我的工作是否會被機器取代?我該如何才能抓住這次革命?

人工智慧背後的核心技術是深度神經網路(Deep Neural Network),大概是一年前這個時候,我正在回老家的高鐵上學習 3Blue1Brown 的 Neural Network 系列視頻課程,短短 4 集 60 多分鍾的時間,就把神經網路從 High Level 到推導細節說得清清楚楚,當時的我除了獲得新知的興奮之外,還有一點新的認知,算是給頭腦中的革命性的技術潑了盆冷水:神經網路可以解決一些復雜的、以前很難通過寫程序來完成的任務——例如圖像、語音識別等,但它的實現機制告訴我,神經網路依然沒有達到生物級別的智能,短期內期待它來取代人也是不可能的。

一年後的今天,依然在這個春運的時間點,將我對神經網路的理解寫下來,算是對這部分知識的一個學習筆記,運氣好的話,還可以讓不了解神經網路的同學了解起來。

維基網路這樣解釋 神經網路 :

這個定義比較寬泛,你甚至還可以用它來定義其它的機器學習演算法,例如之前我們一起學習的邏輯回歸和 GBDT 決策樹。下面我們具體一點,下圖是一個邏輯回歸的示意圖:

其中 x1 和 x2 表示輸入,w1 和 w2 是模型的參數,z 是一個線性函數:

接著我們對 z 做一個 sigmod 變換(圖中藍色圓),得到輸出 y:

其實,上面的邏輯回歸就可以看成是一個只有 1 層 輸入層 , 1 層 輸出層 的神經網路,圖中容納數字的圈兒被稱作 神經元 ;其中,層與層之間的連接 w1、w2 以及 b,是這個 神經網路的參數 ,層之間如果每個神經元之間都保持著連接,這樣的層被稱為 全連接層 (Full Connection Layer),或 稠密層 (Dense Layer);此外,sigmoid 函數又被稱作 激活函數 (Activation Function),除了 sigmoid 外,常用的激活函數還有 ReLU、tanh 函數等,這些函數都起到將線性函數進行非線性變換的作用。我們還剩下一個重要的概念: 隱藏層 ,它需要把 2 個以上的邏輯回歸疊加起來加以說明:

如上圖所示,除輸入層和輸出層以外,其他的層都叫做 隱藏層 。如果我們多疊加幾層,這個神經網路又可以被稱作 深度神經網路 (Deep Neural Network),有同學可能會問多少層才算「深」呢?這個沒有絕對的定論,個人認為 3 層以上就算吧:)

以上,便是神經網路,以及神經網路中包含的概念,可見,神經網路並不特別,廣義上講,它就是

可見,神經網路和人腦神經也沒有任何關聯,如果我們說起它的另一個名字—— 多層感知機(Mutilayer Perceptron) ,就更不會覺得有多麼玄乎了,多層感知機創造於 80 年代,可為什麼直到 30 年後的今天才爆發呢?你想得沒錯,因為改了個名字……開個玩笑;實際上深度學習這項技術也經歷過很長一段時間的黑暗低谷期,直到人們開始利用 GPU 來極大的提升訓練模型的速度,以及幾個標志性的事件:如 AlphaGo戰勝李世石、Google 開源 TensorFlow 框架等等,感興趣的同學可以翻一下這里的歷史。

就拿上圖中的 3 個邏輯回歸組成的神經網路作為例子,它和普通的邏輯回歸比起來,有什麼優勢呢?我們先來看下單邏輯回歸有什麼劣勢,對於某些情況來說,邏輯回歸可能永遠無法使其分類,如下面數據:

這 4 個樣本畫在坐標系中如下圖所示

因為邏輯回歸的決策邊界(Decision Boundary)是一條直線,所以上圖中的兩個分類,無論你怎麼做,都無法找到一條直線將它們分開,但如果藉助神經網路,就可以做到這一點。

由 3 個邏輯回歸組成的網路(這里先忽略 bias)如下:

觀察整個網路的計算過程,在進入輸出層之前,該網路所做的計算實際上是:

即把輸入先做了一次線性變換(Linear Transformation),得到 [z1, z2] ,再把 [z1, z2] 做了一個非線性變換(sigmoid),得到 [x1', x2'] ,(線性變換的概念可以參考 這個視頻 )。從這里開始,後面的操作就和一個普通的邏輯回歸沒有任何差別了,所以它們的差異在於: 我們的數據在輸入到模型之前,先做了一層特徵變換處理(Feature Transformation,有時又叫做特徵抽取 Feature Extraction),使之前不可能被分類的數據變得可以分類了

我們繼續來看下特徵變換的效果,假設 為 ,帶入上述公式,算出 4 個樣本對應的 [x1', x2'] 如下:

再將變換後的 4 個點繪制在坐標系中:

顯然,在做了特徵變換之後,這兩個分類就可以很容易的被一條決策邊界分開了。

所以, 神經網路的優勢在於,它可以幫助我們自動的完成特徵變換或特徵提取 ,尤其對於聲音、圖像等復雜問題,因為在面對這些問題時,人們很難清晰明確的告訴你,哪些特徵是有用的。

在解決特徵變換的同時,神經網路也引入了新的問題,就是我們需要設計各式各樣的網路結構來針對性的應對不同的場景,例如使用卷積神經網路(CNN)來處理圖像、使用長短期記憶網路(LSTM)來處理序列問題、使用生成式對抗網路(GAN)來寫詩和作圖等,就連去年自然語言處理(NLP)中取得突破性進展的 Transformer/Bert 也是一種特定的網路結構。所以, 學好神經網路,對理解其他更高級的網路結構也是有幫助的

上面說了,神經網路可以看作一個非線性函數,該函數的參數是連接神經元的所有的 Weights 和 Biases,該函數可以簡寫為 f(W, B) ,以手寫數字識別的任務作為例子:識別 MNIST 數據集 中的數字,數據集(MNIST 數據集是深度學習中的 HelloWorld)包含上萬張不同的人寫的數字圖片,共有 0-9 十種數字,每張圖片為 28*28=784 個像素,我們設計一個這樣的網路來完成該任務:

把該網路函數所具備的屬性補齊:

接下來的問題是,這個函數是如何產生的?這個問題本質上問的是這些參數的值是怎麼確定的。

在機器學習中,有另一個函數 c 來衡量 f 的好壞,c 的參數是一堆數據集,你輸入給 c 一批 Weights 和 Biases,c 輸出 Bad 或 Good,當結果是 Bad 時,你需要繼續調整 f 的 Weights 和 Biases,再次輸入給 c,如此往復,直到 c 給出 Good 為止,這個 c 就是損失函數 Cost Function(或 Loss Function)。在手寫數字識別的列子中,c 可以描述如下:

可見,要完成手寫數字識別任務,只需要調整這 12730 個參數,讓損失函數輸出一個足夠小的值即可,推而廣之,絕大部分神經網路、機器學習的問題,都可以看成是定義損失函數、以及參數調優的問題。

在手寫識別任務中,我們既可以使用交叉熵(Cross Entropy)損失函數,也可以使用 MSE(Mean Squared Error)作為損失函數,接下來,就剩下如何調優參數了。

神經網路的參數調優也沒有使用特別的技術,依然是大家剛接觸機器學習,就學到的梯度下降演算法,梯度下降解決了上面迭代過程中的遺留問題——當損失函數給出 Bad 結果時,如何調整參數,能讓 Loss 減少得最快。

梯度可以理解為:

把 Loss 對應到 H,12730 個參數對應到 (x,y),則 Loss 對所有參數的梯度可以表示為下面向量,該向量的長度為 12730:
$$
abla L(w,b) = left[

frac{partial L}{partial w_1},
frac{partial L}{partial w_2},...,
frac{partial L}{partial b_{26}}

ight] ^ op
$$
所以,每次迭代過程可以概括為

用梯度來調整參數的式子如下(為了簡化,這里省略了 bias):

上式中, 是學習率,意為每次朝下降最快的方向前進一小步,避免優化過頭(Overshoot)。

由於神經網路參數繁多,所以需要更高效的計算梯度的演算法,於是,反向傳播演算法(Backpropagation)呼之欲出。

在學習反向傳播演算法之前,我們先復習一下微積分中的鏈式法則(Chain Rule):設 g = u(h) , h = f(x) 是兩個可導函數,x 的一個很小的變化 △x 會使 h 產生一個很小的變化 △h,從而 g 也產生一個較小的變化 △g,現要求 △g/△x,可以使用鏈式法則:

有了以上基礎,理解反向傳播演算法就簡單了。

假設我們的演示網路只有 2 層,輸入輸出都只有 2 個神經元,如下圖所示:

其中 是輸入, 是輸出, 是樣本的目標值,這里使用的損失函數 L 為 MSE;圖中的上標 (1) 或 (2) 分別表示參數屬於第 (1) 層或第 (2) 層,下標 1 或 2 分別表示該層的第 1 或 第 2 個神經元。

現在我們來計算 和 ,掌握了這 2 個參數的偏導數計算之後,整個梯度的計算就掌握了。

所謂反向傳播演算法,指的是從右向左來計算每個參數的偏導數,先計算 ,根據鏈式法則

對左邊項用鏈式法則展開

又 是輸出值, 可以直接通過 MSE 的導數算出:

而 ,則 就是 sigmoid 函數的導數在 處的值,即

於是 就算出來了:

再來看 這一項,因為

所以

注意:上面式子對於所有的 和 都成立,且結果非常直觀,即 對 的偏導為左邊的輸入 的大小;同時,這里還隱含著另一層意思:需要調整哪個 來影響 ,才能使 Loss 下降得最快,從該式子可以看出,當然是先調整較大的 值所對應的 ,效果才最顯著 。

於是,最後一層參數 的偏導數就算出來了

我們再來算上一層的 ,根據鏈式法則 :

繼續展開左邊這一項

你發現沒有,這幾乎和計算最後一層一摸一樣,但需要注意的是,這里的 對 Loss 造成的影響有多條路徑,於是對於只有 2 個輸出的本例來說:

上式中, 都已經在最後一層算出,下面我們來看下 ,因為

於是

同理

注意:這里也引申出梯度下降的調參直覺:即要使 Loss 下降得最快,優先調整 weight 值比較大的 weight。

至此, 也算出來了

觀察上式, 所謂每個參數的偏導數,通過反向傳播演算法,都可以轉換成線性加權(Weighted Sum)計算 ,歸納如下:

式子中 n 代表分類數,(l) 表示第 l 層,i 表示第 l 層的第 i 個神經元。 既然反向傳播就是一個線性加權,那整個神經網路就可以藉助於 GPU 的矩陣並行計算了

最後,當你明白了神經網路的原理,是不是越發的認為,它就是在做一堆的微積分運算,當然,作為能證明一個人是否學過微積分,神經網路還是值得學一下的。Just kidding ..

本文我們通過

這四點,全面的學習了神經網路這個知識點,希望本文能給你帶來幫助。

參考:

❺ 什麼是神經網路

神經網路是機器學習的一個流派。這是現今最火的一個學派。我們在第一講中,已經知道人學習知識是通過神經元的連接,科學家通過模仿人腦機理發明了人工神經元。技術的進一步發展,多層神經元的連接,就形成了神經網路。那麼神經網路是怎麼搭建起來的呢?神經元是構建神經網路的最基本單位, 這張圖就是一個人工神經元的原理圖,非常簡單,一個神經元由一個加法器和一個門限器組成。加法器有一些輸入,代表從其他神經元來的信號,這些信號分別被乘上一個系數後在加法器里相加,如果相加的結果大於某個值,就「激活」這個神經元,接通到下個神經元,否則就不激活。原理就這么簡單,做起來也很簡單。今天所有的神經網路的基本單元都是這個。輸入信號乘上的系數,我們也叫「權重」,就是網路的參數,玩神經網路就是調整權重,讓它做你想讓它做的事。 一個神經元只能識別一個東西,比如,當你訓練給感知器會「認」數字「8」,你給它看任何一個數字,它就會告訴你,這是「8」還不是「8」。為了讓機器識別更多更復雜的圖像,我們就需要用更多的神經元。人的大腦由 1000 億個神經元構成,人腦神經元組成了一個很復雜的三維立體結構。

❻ 神經網路具體是什麼

神經網路由大量的神經元相互連接而成。每個神經元接受線性組合的輸入後,最開始只是簡單的線性加權,後來給每個神經元加上了非線性的激活函數,從而進行非線性變換後輸出。每兩個神經元之間的連接代表加權值,稱之為權重(weight)。不同的權重和激活函數,則會導致神經網路不同的輸出。 舉個手寫識別的例子,給定一個未知數字,讓神經網路識別是什麼數字。此時的神經網路的輸入由一組被輸入圖像的像素所激活的輸入神經元所定義。在通過非線性激活函數進行非線性變換後,神經元被激活然後被傳遞到其他神經元。重復這一過程,直到最後一個輸出神經元被激活。從而識別當前數字是什麼字。 神經網路的每個神經元如下

基本wx + b的形式,其中 x1、x2表示輸入向量 w1、w2為權重,幾個輸入則意味著有幾個權重,即每個輸入都被賦予一個權重 b為偏置bias g(z) 為激活函數 a 為輸出 如果只是上面這樣一說,估計以前沒接觸過的十有八九又必定迷糊了。事實上,上述簡單模型可以追溯到20世紀50/60年代的感知器,可以把感知器理解為一個根據不同因素、以及各個因素的重要性程度而做決策的模型。 舉個例子,這周末北京有一草莓音樂節,那去不去呢?決定你是否去有二個因素,這二個因素可以對應二個輸入,分別用x1、x2表示。此外,這二個因素對做決策的影響程度不一樣,各自的影響程度用權重w1、w2表示。一般來說,音樂節的演唱嘉賓會非常影響你去不去,唱得好的前提下 即便沒人陪同都可忍受,但如果唱得不好還不如你上台唱呢。所以,我們可以如下表示: x1:是否有喜歡的演唱嘉賓。x1 = 1 你喜歡這些嘉賓,x1 = 0 你不喜歡這些嘉賓。嘉賓因素的權重w1 = 7 x2:是否有人陪你同去。x2 = 1 有人陪你同去,x2 = 0 沒人陪你同去。是否有人陪同的權重w2 = 3。 這樣,咱們的決策模型便建立起來了:g(z) = g(w1x1 + w2x2 + b ),g表示激活函數,這里的b可以理解成 為更好達到目標而做調整的偏置項。 一開始為了簡單,人們把激活函數定義成一個線性函數,即對於結果做一個線性變化,比如一個簡單的線性激活函數是g(z) = z,輸出都是輸入的線性變換。後來實際應用中發現,線性激活函數太過局限,於是引入了非線性激活函數。

❼ 神經網路簡述

機器學習中談論的神經網路是指「神經網路學習」,或者說,是機器學習和神經網路這兩個學科領域的交叉部分[1]。

在這里,神經網路更多的是指計算機科學家模擬人類大腦結構和智能行為,發明的一類演算法的統稱。

神經網路是眾多優秀仿生演算法中的一種,讀書時曾接觸過蟻群優化演算法,曾驚訝於其強大之處,但神經網路的強大,顯然蟻群優化還不能望其項背。

A、起源與第一次高潮。有人認為,神經網路的最早討論,源於現代計算機科學的先驅——阿蘭.圖靈在1948年的論文中描述的「B型組織機器」[2]。二十世紀50年代出現了以感知機、Adaling為代表的一系列成功,這是神經網路發展的第一個高潮[1]。

B、第一次低谷。1969年,馬文.明斯基出版《感知機》一書,書中論斷直接將神經網路打入冷宮,導致神經網路十多年的「冰河期」。值得一提的是,在這期間的1974年,哈佛大學Paul Webos發明BP演算法,但當時未受到應有的重視[1]。

C、第二次高潮。1983年,加州理工學院的物理學家John Hopfield利用神經網路,在旅行商問題上獲得當時最好結果,引起轟動;Rumelhart等人重新發明了BP演算法,BP演算法迅速走紅,掀起神經網路第二次高潮[1]。

D、第二次低谷。二十世紀90年代中期,統計學習理論和支持向量機興起,較之於這些演算法,神經網路的理論基礎不清晰等缺點更加凸顯,神經網路研究進入第二次低谷[1]。

E、深度學習的崛起。2010年前後,隨著計算能力的提升和大數據的涌現,以神經網路為基礎的「深度學習」崛起,科技巨頭公司谷歌、Facebook、網路投入巨資研發,神經網路迎來第三次高潮[1]。2016年3月9日至15日,Google人工智慧程序AlphaGo對陣韓國圍棋世界冠軍李世乭,以4:1大比分獲勝,比眾多專家預言早了十年。這次比賽,迅速在全世界經濟、科研、計算機產業各領域掀起人工智慧和深度學習的熱烈討論。

F、展望。從幾個方面討論一下。

1)、近期在Google AlphaGo掀起的熱潮中,民眾的熱情與期待最大,甚至有少許恐慌情緒;計算機產業和互聯網產業熱情也非常巨大,對未來充滿期待,各大巨頭公司對其投入大量資源;學術界的反應倒是比較冷靜的。學術界的冷靜,是因為神經網路和深度神經網路的理論基礎還沒有出現長足的進步,其缺點還沒有根本改善。這也從另一個角度說明了深度神經網路理論進步的空間很大。

2)、"當代神經網路是基於我們上世紀六十年代掌握的腦知識。"關於人類大腦的科學與知識正在爆炸式增長。[3]世界上很多學術團隊正在基於大腦機制新的認知建立新的模型[3]。我個人對此報樂觀態度,從以往的仿生演算法來看,經過億萬年進化的自然界對科技發展的促進從來沒有停止過。

3)、還說AlphaGo,它並不是理論和演算法的突破,而是基於已有演算法的工程精品。AlhphaGo的工作,為深度學習的應用提供了非常廣闊的想像空間。分布式技術提供了巨大而廉價的計算能力,巨量數據的積累提供了豐富的訓練樣本,深度學習開始騰飛,這才剛剛開始。

一直沿用至今的,是McChlloch和Pitts在1943年依據腦神經信號傳輸結構抽象出的簡單模型,所以也被稱作」M-P神經元模型「。

其中,

f函數像一般形如下圖的函數,既考慮階躍性,又考慮光滑可導性。

實際常用如下公式,因形如S,故被稱作sigmoid函數。

把很多個這樣的神經元按一定層次連接起來,就得到了神經網路。

兩層神經元組成,輸入層接收外界輸入信號,輸出層是M-P神經元(只有輸出層是)。

感知機的數學模型和單個M-P神經元的數學模型是一樣的,如因為輸入層只需接收輸入信號,不是M-P神經元。

感知機只有輸出層神經元是B-P神經元,學習能力非常有限。對於現行可分問題,可以證明學習過程一定會收斂。而對於非線性問題,感知機是無能為力的。

BP神經網路全稱叫作誤差逆傳播(Error Propagation)神經網路,一般是指基於誤差逆傳播演算法的多層前饋神經網路。這里為了不佔篇幅,BP神經網路將起篇另述。

BP演算法是迄今最為成功的神經網路學習演算法,也是最有代表性的神經網路學習演算法。BP演算法不僅用於多層前饋神經網路,還用於其他類型神經網路的訓練。

RBF網路全程徑向基函數(Radial Basis Function)網路,是一種單隱層前饋神經網路,其與BP網路最大的不同是採用徑向基函數作為隱層神經元激活函數。

卷積神經網路(Convolutional neural networks,簡稱CNNs)是一種深度學習的前饋神經網路,在大型圖片處理中取得巨大成功。卷積神經網路將起篇另述。

循環神經網路(Recurrent Neural Networks,RNNs)與傳統的FNNs不同,RNNs引入定向循環,能夠處理那些輸入之間前後關聯的問題。RNNs已經在眾多自然語言處理(Natural Language Processing, NLP)中取得了巨大成功以及廣泛應用[5]。RNNs將起篇另述。[5]

[1]、《機器學習》,周志華著

[2]、《模式識別(第二版)》,Richard O.Duda等著,李宏東等譯

[3]、《揭秘IARPA項目:解碼大腦演算法或將徹底改變機器學習》,Emily Singerz著,機器之心編譯出品

[4]、圖片來源於互聯網

[5]、 循環神經網路(RNN, Recurrent Neural Networks)介紹

❽ 神經網路是什麼

神經網路是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。

生物神經網路主要是指人腦的神經網路,它是人工神經網路的技術原型。人腦是人類思維的物質基礎,思維的功能定位在大腦皮層,後者含有大約10^11個神經元,每個神經元又通過神經突觸與大約103個其它神經元相連,形成一個高度復雜高度靈活的動態網路。作為一門學科,生物神經網路主要研究人腦神經網路的結構、功能及其工作機制,意在探索人腦思維和智能活動的規律。

人工神經網路是生物神經網路在某種簡化意義下的技術復現,作為一門學科,它的主要任務是根據生物神經網路的原理和實際應用的需要建造實用的人工神經網路模型,設計相應的學習演算法,模擬人腦的某種智能活動,然後在技術上實現出來用以解決實際問題。因此,生物神經網路主要研究智能的機理;人工神經網路主要研究智能機理的實現,兩者相輔相成。

(8)神經網路知多少擴展閱讀:

神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:

1、生物原型

從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。

2、建立模型

根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。

3、演算法

在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。

神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。

閱讀全文

與神經網路知多少相關的資料

熱點內容
手機共享網路被限制 瀏覽:730
蘇州網路新聞媒體資源都有哪些 瀏覽:212
網路安全ips是什麼 瀏覽:130
多台網路電視有線如何連接 瀏覽:922
南廣網路有多少分公司 瀏覽:511
蘋果內置瀏覽器怎麼設置網路空間 瀏覽:260
公司管理網路看不到無線網路密碼 瀏覽:195
電影網路電視怎麼看停課不停學 瀏覽:626
五G網路開關在哪裡 瀏覽:640
提示要連接到wlan網路嗎 瀏覽:679
周口移動網路推廣 瀏覽:459
網路電纜線是哪裡 瀏覽:99
江民網路版殺毒軟體怎麼離線升級 瀏覽:709
閘南小學網路密碼 瀏覽:109
無線網路調試視頻 瀏覽:889
華拓網路與中企動力哪個好 瀏覽:617
電腦端網路打不開怎麼辦 瀏覽:446
8500g無線網路 瀏覽:979
有哪些大型網路游戲手游 瀏覽:731
計算機網路技術5g通訊 瀏覽:733

友情鏈接