導航:首頁 > 網路設置 > bp神經網路訓練大概要多少天

bp神經網路訓練大概要多少天

發布時間:2022-01-09 15:43:46

❶ BP神經網路運行到什麼程度算OK

你可以設定一個goal,這個goal是訓練時用的,用來驗算網路的擬合程度、映射能力,沒有嚴格要求,你可以隨意設定,再慢慢調整,有的人設0.1,有的人設0.000001,你自己慢慢試。主要看最後你用test算例驗證時的效果,可以算相對誤差,再用mse函數或sumsqr函數得到統計指標,指示網路的性能。

❷ 為什麼用訓練好的bp神經網路去測試,准確率為0

1、你可以嘗試運行多次後比較其結果,最好重啟matlab,再運行你的神經網路程序。
2、確認一下你的bp神經網路參數設置是否合理。
3、也有可能的數據不適合用bp神經網路訓練,可以考慮其他方法。

❸ BP神經網路輸入層和訓練次數怎樣選擇

輸入層就是看你研究的結果影響因子的數目,而訓練次數是程序自己計算的,因為你要設定誤差目標,模型誤差到達你設定的目標誤差時訓練結束,這時的訓練次數就是最終訓練次數。

❹ 剛研究神經網路,請問為什麼我的BP神經網路,每次訓練幾步就達到精度要求了正常嗎

validation check達到默認值6.
解決方法:
1、調高validation check
2、net.divideFcn = '';
3、增加更多的隱含層

❺ BP神經網路訓練的過程

你這相當於軟測量建模,你說的Targe是matlab神經網路工具箱中的吧?我也做了一個神經網路模擬,沒有用那個工具箱,直接編的程,我的是二個輸入四個輸出,其實很簡單,一看就懂,想要把qq郵箱給我,我發給你。

❻ 怎樣訓練bp神經網路

就是將訓練樣本集劃分為兩部分,測試集和驗證集,僅用測試集訓練,每次訓練後用驗證集代入,求其誤差和,當訓練誤差不斷減小而驗證誤差卻增加時,可以考慮演算法終止,再訓練可能就會過擬合。
希望你能看明白

❼ 我的BP神經網路訓練一直達不到要求,要怎樣修改才能達到要求

net=init(net);不用這一句,把『logsig『改成「tansig」,第一個,同樣,把第二個改成』purelin『
建議你把』trainrp『改成』trainlm「,試試!

❽ bp神經網路的訓練樣本數量確定多少比較和是

我認為是可以循環的,要注意過優化

❾ BP神經網路的訓練集需要大樣本嗎一般樣本個數為多少

BP神經網路的訓練集需要大樣本嗎?一般樣本個數為多少?
BP神經網路樣本數有什麼影響
學習神經網路這段時間,有一個疑問,BP神經網路中訓練的次數指的網路的迭代次數,如果有a個樣本,每個樣本訓練次數n,則網路一共迭代an次,在n>>a 情況下 , 網路在不停的調整權值,減小誤差,跟樣本數似乎關系不大。而且,a大了的話訓練時間必然會變長。
換一種說法,將你的數據集看成一個固定值, 那麼樣本集與測試集 也可以按照某種規格確定下來如7:3 所以如何看待 樣本集的多少與訓練結果呢? 或者說怎麼使你的網路更加穩定,更加符合你的所需 。

我嘗試從之前的一個例子中看下區別

如何用70行Java代碼實現深度神經網路演算法

作者其實是實現了一個BP神經網路 ,不多說,看最後的例子

一個運用神經網路的例子
最後我們找個簡單例子來看看神經網路神奇的效果。為了方便觀察數據分布,我們選用一個二維坐標的數據,下面共有4個數據,方塊代表數據的類型為1,三角代表數據的類型為0,可以看到屬於方塊類型的數據有(1,2)和(2,1),屬於三角類型的數據有(1,1),(2,2),現在問題是需要在平面上將4個數據分成1和0兩類,並以此來預測新的數據的類型。


圖片描述

我們可以運用邏輯回歸演算法來解決上面的分類問題,但是邏輯回歸得到一個線性的直線做為分界線,可以看到上面的紅線無論怎麼擺放,總是有一個樣本被錯誤地劃分到不同類型中,所以對於上面的數據,僅僅一條直線不能很正確地劃分他們的分類,如果我們運用神經網路演算法,可以得到下圖的分類效果,相當於多條直線求並集來劃分空間,這樣准確性更高。

圖片描述

簡單粗暴,用作者的代碼運行後 訓練5000次 。根據訓練結果來預測一條新數據的分類(3,1)



預測值 (3,1)的結果跟(1,2)(2,1)屬於一類 屬於正方形

這時如果我們去掉 2個樣本,則樣本輸入變成如下

//設置樣本數據,對應上面的4個二維坐標數據
double[][] data = new double[][]{{1,2},{2,2}};
//設置目標數據,對應4個坐標數據的分類
double[][] target = new double[][]{{1,0},{0,1}};
1
2
3
4
1
2
3
4




則(3,1)結果變成了三角形,

如果你選前兩個點 你會發現直接一條中間線就可以區分 這時候的你的結果跟之前4個點時有區別 so 你得增加樣本 直到這些樣本按照你所想要的方式分類 ,所以樣本的多少 重要性體現在,樣本得能反映所有的特徵值(也就是輸入值) ,樣本多少或者特徵(本例子指點的位置特徵)決定的你的網路的訓練結果,!!!這是 我們反推出來的結果 。這里距離深度學習好像近了一步。

另外,這個70行代碼的神經網路沒有保存你訓練的網路 ,所以你每次運行都是重新訓練的網路。其實,在你訓練過後 權值已經確定了下來,我們確定網路也就是根據權值,so只要把訓練後的權值保存下來,將需要分類的數據按照這種權值帶入網路,即可得到輸出值,也就是一旦網路確定, 權值也就確定,一個輸入對應一個固定的輸出,不會再次改變!個人見解。

最後附上作者的源碼,作者的文章見開頭鏈接
下面的實現程序BpDeep.java可以直接拿去使用,

import java.util.Random;
public class BpDeep{
public double[][] layer;//神經網路各層節點
public double[][] layerErr;//神經網路各節點誤差
public double[][][] layer_weight;//各層節點權重
public double[][][] layer_weight_delta;//各層節點權重動量
public double mobp;//動量系數
public double rate;//學習系數

public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;l<layernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1<layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;j<layernum[l]+1;j++)
for(int i=0;i<layernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//隨機初始化權重
}
}
}
//逐層向前計算輸出
public double[] computeOut(double[] in){
for(int l=1;l<layer.length;l++){
for(int j=0;j<layer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;i<layer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐層反向計算誤差並修改權重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;j<layerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);

while(l-->0){
for(int j=0;j<layerErr[l].length;j++){
double z = 0.0;
for(int i=0;i<layerErr[l+1].length;i++){
z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隱含層動量調整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隱含層權重調整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距動量調整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距權重調整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//記錄誤差
}
}
}

public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
下面是這個測試程序BpDeepTest.java的源碼:

import java.util.Arrays;
public class BpDeepTest{
public static void main(String[] args){
//初始化神經網路的基本配置
//第一個參數是一個整型數組,表示神經網路的層數和每層節點數,比如{3,10,10,10,10,2}表示輸入層是3個節點,輸出層是2個節點,中間有4層隱含層,每層10個節點
//第二個參數是學習步長,第三個參數是動量系數
BpDeep bp = new BpDeep(new int[]{2,10,2}, 0.15, 0.8);

//設置樣本數據,對應上面的4個二維坐標數據
double[][] data = new double[][]{{1,2},{2,2},{1,1},{2,1}};
//設置目標數據,對應4個坐標數據的分類
double[][] target = new double[][]{{1,0},{0,1},{0,1},{1,0}};

//迭代訓練5000次
for(int n=0;n<5000;n++)
for(int i=0;i<data.length;i++)
bp.train(data[i], target[i]);

//根據訓練結果來檢驗樣本數據
for(int j=0;j<data.length;j++){
double[] result = bp.computeOut(data[j]);
System.out.println(Arrays.toString(data[j])+":"+Arrays.toString(result));
}

//根據訓練結果來預測一條新數據的分類
double[] x = new double[]{3,1};
double[] result = bp.computeOut(x);
System.out.println(Arrays.toString(x)+":"+Arrays.toString(result));
}
}

❿ 用MATLAB與BP神經網路法處理15組數據,共60個數據,需要多長時間

訓練時長取決於訓練演算法、訓練目標、樣本數量和網路規模。你的樣本只有15組,數量較少,一般幾秒鍾就能訓練完成。

若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。

閱讀全文

與bp神經網路訓練大概要多少天相關的資料

熱點內容
吃雞國際服突然網路異常封號 瀏覽:507
怎麼關閉5g網路用4g網路 瀏覽:302
網路一直轉手機連不上 瀏覽:21
辦公室網路安全講座 瀏覽:488
怎麼設置網路驗證兼容 瀏覽:854
熵網路安全 瀏覽:289
凱立德網路無法連接 瀏覽:848
客戶端軟體未響應和網路有關系嗎 瀏覽:176
圖們市什麼網路信號好 瀏覽:144
無網路無信號打緊急電話 瀏覽:542
蘋果手機127如何顯示5g網路 瀏覽:257
為什麼網路連接點不上 瀏覽:166
北碚區網路營銷軟體 瀏覽:236
青雲花苑小區網路密碼 瀏覽:203
什麼是網路復印件 瀏覽:326
網路計程車資格證在哪裡報名 瀏覽:266
棗庄網路優化多少錢 瀏覽:174
網路銷售哪裡最火 瀏覽:454
微信有網路其他軟體全沒網路 瀏覽:411
手機怎麼提高數據網路網速 瀏覽:384

友情鏈接