我一直在用,可靠行很好,數據傳輸穩定性也不錯,還支持智能組網。
❷ 路由器和交換機的區別是什麼
一般人覺得交換機和路由器長得差不多,都是一個盒子幾個插口,都是網路用的東西,就以為是一種東西,其實不然,這兩個還真不是一樣的東西,這兩者在功用上還是有很大區別的。
我們經常說到的乙太網交換機實際是一個基於網橋技術的多埠第二層網路設備,它為數據幀從一個埠到另一個任意埠的轉發提供了低時延、低開銷的通路。 交換機內部核心處有一個交換矩陣,為任意兩埠間的通信提供通路,或是一個快速交換匯流排,以使由任意埠接收的數據幀從其他埠送出。
而路由器是OSI協議模型的網路層中的分組交換設備(或網路層中繼設備),路由器的基本功能是把數據(IP報文)傳送到正確的網路。
在主幹網上,路由器的主要作用是路由選擇。主幹網上的路由器,必須知道到達所有下層網路的路徑。這需要維護龐大的路由表,並對連接狀態的變化作出盡可能迅速的反應。路由器的故障將會導致嚴重的信息傳輸問題。
在地區網中,路由器的主要作用是網路連接和路由選擇,即連接下層各個基層網路單位--園區網,同時負責下層網路之間的數據轉發。
在園區網內部,路由器的主要作用是分隔子網。早期的互連網基層單位是區域網(LAN),其中所有主機處於同一邏輯網路中。隨著網路規模的不斷擴大,區域網演變成以高速主幹和路由器連接的多個子網所組成的園區網。在其中,處個子網在邏輯上獨立,而路由器就是唯一能夠分隔它們的設備,它負責子網間的報文轉發和廣播隔離,在邊界上的路由器則負責與上層網路的連接。
兩者的.主要區別在於:
1、工作層次不同
最初的的交換機是工作在OSI/RM開放體系結構的數據鏈路層,也就是第二層,而路由器一開始就設計工作在OSI模型的網路層。由於交換機工作在OSI的第二層(數據鏈路層),所以它的工作原理比較簡單,而路由器工作在OSI的第三層(網路層),可以得到更多的協議信息,路由器可以做出更加智能的轉發決策。
2、迴路:根據交換機地址學習和站表建立演算法,交換機之間不允許存在迴路。一旦存在迴路,必須啟動生成樹演算法,阻塞掉產生迴路的埠。而路由器的路由協議沒有這個問題,路由器之間可以有多條通路來平衡負載,提高可靠性。
3、子網劃分:交換機只能識別MAC地址。MAC地址是物理地址,而且採用平坦的地址結構,因此不能根據MAC地址來劃分子網。而路由器識別IP地址,IP地址由網路管理員分配,是邏輯地址且IP地址具有層次結構,被劃分成網路號和主機號,可以非常方便地用於劃分子網,路由器的主要功能就是用於連接不同的網路。
4、負載集中:交換機之間只能有一條通路,使得信息集中在一條通信鏈路上,不能進行動態分配,以平衡負載。而路由器的路由協議演算法可以避免這一點,OSPF路由協議演算法不但能產生多條路由,而且能為不同的網路應用選擇各自不同的最佳路由。
5、廣播控制:交換機只能縮小沖突域,而不能縮小廣播域。整個交換式網路就是一個大的廣播域,廣播報文散到整個交換式網路。而路由器可以隔離廣播域,廣播報文不能通過路由器繼續進行廣播。
6、介質相關:交換機作為橋接設備也能完成不同鏈路層和物理層之間的轉換,但這種轉換過程比較復雜,不適合ASIC實現,勢必降低交換機的轉發速度。因此目前交換機主要完成相同或相似物理介質和鏈路協議的網路互連,而不會用來在物理介質和鏈路層協議相差甚元的網路之間進行互連。而路由器則不同,它主要用於不同網路之間互連,因此能連接不同物理介質、鏈路層協議和網路層協議的網路。路由器在功能上雖然占據了優勢,但價格昂貴,報文轉發速度低。
7、保密問題:雖說交換機也可以根據幀的源MAC地址、目的MAC地址和其他幀中內容對幀實施過濾,但路由器根據報文的源IP地址、目的IP地址、TCP埠地址等內容對報文實施過濾,更加直觀方便。
以上講述的稍顯復雜,對於非計算機行業人員來說理解起來不是很容易。
最後我從不專業的角度簡單說一下家用交換機和路由器的區別。家用交換機主要起到線路連通的功用,比如你家裡有三台電腦,希望組建一個區域網,那麼每台電腦拉出一根網線到交換機上,那麼這三台電腦就組成了一個網,可以相互連通和共享文件。路由器呢,它也可以當普通交換機使用,具備交換機的線路連通的功能。但是路由器還有個功能交換機沒有,那就是撥號上網功能。你家裡有三台電腦需要同時上網,貓就一個,怎麼辦,用路由器就能輕松解決,但是交換機不行。不過家用路由器一般都是4個口的,如果電腦過多,比如單位有幾十台電腦,那麼單靠路由是不行了,需要交換機來撐住場面,交換機一般有4口、8口、16口、24口,能接入更多的電腦。
所以,現在家用的話還是路由器比較多。
❸ 路由器問題
我也是復制來的
路由器的功能八十年代初路由器問世,並由IETF對其作了網關定義。從原來單純為了分割網路這一目的而發展至今,其用途和性能已有了相當大的擴充與 增強。路由器的功能大致可分為以下3點:
1. 網路分段,這是路由器最主要的功能之一,即可根據實際需求將整個網路分割成不同的網段。
2. 路由器的工作過程路由器是OSI七層網路模型中第三層的設備。它在網路 中,收到任何一個數據包(包括廣播包在內),就要將該數據包第二層(數據鏈路層
)的信息去掉(稱為「拆包」),查看第三層信息。然後,根據路由表確定數據包的 路由,再檢查安全訪問表;若被通過,則再進行第二層信息的封裝(稱為「打包
」),最後將該數據包轉發。如果在路由表中查不到對應MAC地址的網路,則路由 器將向源地址的站點返回一個信息,並把這個數據包丟掉。這便是路由器工作過
程的簡要描述。
3. 路由器對網路造成的限制路由器是無連接的設備,其工作機制使它成為一 個轉發並遺忘的網路設備。僅就路由器對任何數據包都要有一個「拆打」過程來看,即使是同一源地址向同一目的地址發出的所有數據包,也要重復相同的過程。這導致路由器不可能具有高的吞吐量,這也是路由器成為網路瓶頸的原因之一。
分類:
路由器是網路中的核心設備。硬體路由器是大家所熟悉的,最典型的就是Cisco公司的系列路由器。軟體路由器是個新興的產品,比如Tiny Software推出的WinRoute Pro軟體路由器,Vicomsoft公司推出的Internet Gateway軟體路由器等等。主要區別就在於:Cisco路由器的網路操作系統(IOS)中包含路由軟體,而軟路由器產品則是運行在Windows系列的操作系統上。
還有其他的分類:
1)按性能檔次分為高、中、低檔路由器。
通常將路由器吞吐量大於40Gbps的路由器稱為高檔路由器,背吞吐量在25Gbps~40Gbps之間的路由器稱為中檔路由器,而將低於25Gbps的看作低檔路由器。當然這只是一種宏觀上的劃分標准,各廠家劃分並不完全一致,實際上路由器檔次的劃分不僅是以吞吐量為依據的,是有一個綜合指標的。以市場佔有率最大的Cisco公司為例,12000系列為高端路由器,7500以下系列路由器為中低端路由器。
2)從結構上分為「模塊化路由器」和「非模塊化路由器」。
模塊化結構可以靈活地配置路由器,以適應企業不斷增加的業務需求,非模塊化的就只能提供固定的埠。通常中高端路由器為模塊化結構,低端路由器為非模塊化結構。
3)從功能上劃分,可將路由器分為「骨幹級路由器」,「企業級路由器」和「接入級路由器」。
骨幹級路由器是實現企業級網路互連的關鍵設備,它數據吞吐量較大,非常重要。對骨幹級路由器的基本性能要求是高速度和高可靠性。為了獲得高可靠性,網路系統普遍採用諸如熱備份、雙電源、雙數據通路等傳統冗餘技術,從而使得骨幹路由器的可靠性一般不成問題。
企業級路由器連接許多終端系統,連接對象較多,但系統相對簡單,且數據流量較小,對這類路由器的要求是以盡量便宜的方法實現盡可能多的端點互連,同時還要求能夠支持不同的服務質量。
接入級路由器主要應用於連接家庭或ISP內的小型企業客戶群體。
4)按所處網路位置劃分通常把路由器劃分為「邊界路由器」和「中間節點路由器」。
很明顯"邊界路由器"是處於網路邊緣,用於不同網路路由器的連接;而"中間節點路由器"則處於網路的中間,通常用於連接不同網路,起到一個數據轉發的橋梁作用。由於各自所處的網路位置有所不同,其主要性能也就有相應的側重,如中間節點路由器因為要面對各種各樣的網路。如何識別這些網路中的各節點呢?靠的就是這些中間節點路由器的MAC地址記憶功能。基於上述原因,選擇中間節點路由器時就需要在MAC地址記憶功能更加註重,也就是要求選擇緩存更大,MAC地址記憶能力較強的路由器。但是邊界路由器由於它可能要同時接受來自許多不同網路路由器發來的數據,所以這就要求這種邊界路由器的背板帶寬要足夠寬,當然這也要與邊界路由器所處的網路環境而定。
5)從性能上可分為「線速路由器」以及「非線速路由器」。
所謂"線速路由器"就是完全可以按傳輸介質帶寬進行通暢傳輸,基本上沒有間斷和延時。通常線速路由器是高端路由器,具有非常高的埠帶寬和數據轉發能力,能以媒體速率轉發數據包;中低端路由器是非線速路由器。但是一些新的寬頻接入路由器也有線速轉發能力。
❹ 路由器的工作原理什麼
路由器的功能八十年代初路由器問世,並由IETF對其作了網關定義。從原來單純為了分割網路這一目的而發展至今,其用途和性能已有了相當大的擴充與 增強。路由器的功能大致可分為以下3點:
1. 網路分段,這是路由器最主要的功能之一,即可根據實際需求將整個網路分割成不同的網段。
2. 路由器的工作過程路由器是OSI七層網路模型中第三層的設備。它在網路 中,收到任何一個數據包(包括廣播包在內),就要將該數據包第二層(數據鏈路層
)的信息去掉(稱為「拆包」),查看第三層信息。然後,根據路由表確定數據包的 路由,再檢查安全訪問表;若被通過,則再進行第二層信息的封裝(稱為「打包
」),最後將該數據包轉發。如果在路由表中查不到對應MAC地址的網路,則路由 器將向源地址的站點返回一個信息,並把這個數據包丟掉。這便是路由器工作過
程的簡要描述。
3. 路由器對網路造成的限制路由器是無連接的設備,其工作機制使它成為一 個轉發並遺忘的網路設備。僅就路由器對任何數據包都要有一個「拆打」過程來看,即使是同一源地址向同一目的地址發出的所有數據包,也要重復相同的過程。這導致路由器不可能具有高的吞吐量,這也是路由器成為網路瓶頸的原因之一。
分類:
路由器是網路中的核心設備。硬體路由器是大家所熟悉的,最典型的就是Cisco公司的系列路由器。軟體路由器是個新興的產品,比如Tiny Software推出的WinRoute Pro軟體路由器,Vicomsoft公司推出的Internet Gateway軟體路由器等等。主要區別就在於:Cisco路由器的網路操作系統(IOS)中包含路由軟體,而軟路由器產品則是運行在Windows系列的操作系統上。
還有其他的分類:
1)按性能檔次分為高、中、低檔路由器。
通常將路由器吞吐量大於40Gbps的路由器稱為高檔路由器,背吞吐量在25Gbps~40Gbps之間的路由器稱為中檔路由器,而將低於25Gbps的看作低檔路由器。當然這只是一種宏觀上的劃分標准,各廠家劃分並不完全一致,實際上路由器檔次的劃分不僅是以吞吐量為依據的,是有一個綜合指標的。以市場佔有率最大的Cisco公司為例,12000系列為高端路由器,7500以下系列路由器為中低端路由器。
2)從結構上分為「模塊化路由器」和「非模塊化路由器」。
模塊化結構可以靈活地配置路由器,以適應企業不斷增加的業務需求,非模塊化的就只能提供固定的埠。通常中高端路由器為模塊化結構,低端路由器為非模塊化結構。
3)從功能上劃分,可將路由器分為「骨幹級路由器」,「企業級路由器」和「接入級路由器」。
骨幹級路由器是實現企業級網路互連的關鍵設備,它數據吞吐量較大,非常重要。對骨幹級路由器的基本性能要求是高速度和高可靠性。為了獲得高可靠性,網路系統普遍採用諸如熱備份、雙電源、雙數據通路等傳統冗餘技術,從而使得骨幹路由器的可靠性一般不成問題。
企業級路由器連接許多終端系統,連接對象較多,但系統相對簡單,且數據流量較小,對這類路由器的要求是以盡量便宜的方法實現盡可能多的端點互連,同時還要求能夠支持不同的服務質量。
接入級路由器主要應用於連接家庭或ISP內的小型企業客戶群體。
4)按所處網路位置劃分通常把路由器劃分為「邊界路由器」和「中間節點路由器」。
很明顯"邊界路由器"是處於網路邊緣,用於不同網路路由器的連接;而"中間節點路由器"則處於網路的中間,通常用於連接不同網路,起到一個數據轉發的橋梁作用。由於各自所處的網路位置有所不同,其主要性能也就有相應的側重,如中間節點路由器因為要面對各種各樣的網路。如何識別這些網路中的各節點呢?靠的就是這些中間節點路由器的MAC地址記憶功能。基於上述原因,選擇中間節點路由器時就需要在MAC地址記憶功能更加註重,也就是要求選擇緩存更大,MAC地址記憶能力較強的路由器。但是邊界路由器由於它可能要同時接受來自許多不同網路路由器發來的數據,所以這就要求這種邊界路由器的背板帶寬要足夠寬,當然這也要與邊界路由器所處的網路環境而定。
5)從性能上可分為「線速路由器」以及「非線速路由器」。
所謂"線速路由器"就是完全可以按傳輸介質帶寬進行通暢傳輸,基本上沒有間斷和延時。通常線速路由器是高端路由器,具有非常高的埠帶寬和數據轉發能力,能以媒體速率轉發數據包;中低端路由器是非線速路由器。但是一些新的寬頻接入路由器也有線速轉發能力。
品牌: 價格:
普瑞爾(TP-LINK) 100-5000
D-Link 110-27000
華為 110-22000
CISCO 4800-125000
金浪 180-3600
LINKSYS 280-6000
Netcore 100-2800
網件Netgear 320
阿爾法 120-1500
Vigor 720-3650
博達 6500-47800
Accton(智邦) 290-1500
安奈特 3200-14500
世紀大吉 430-550
華碩 2800
❺ 路由器的原理
路由器的概念及基本構成
路由器是一種用於網路互連的計算機設備,它工作在 OSI 參考模型的第三層
(網路層),為不同的網路之間報文尋徑並存儲轉發。
作為路由器,必須具備:
Ⅰ 兩個或兩個以上的介面:用於連接不同的網路。
Ⅱ 協議至少實現到網路層:只有理解網路層協議才能與網路層通訊。
Ⅲ 至少支持兩種以上的子網協議:異種子網互聯。
Ⅳ 具有存儲、轉發、尋徑功能 :實現速率匹配與路由尋徑。
Ⅴ 一組路由協議:包括域內路由協議、域間路由協議。
路由器的作用
Ⅰ 異種網路互連:主要是具有異種子網協議的網路互連。
Ⅱ 子網協議轉換:不同子網間包括區域網和廣域網間協議轉換。
Ⅲ 路由(尋徑):路由表建立、刷新、查找。
Ⅳ 速率適配:不同介面具有不同的速率,路由器可以利用自己 緩存及流控協議適配。
Ⅴ 隔離網路:防止廣播風暴,網路安全(防火牆)。
Ⅵ 報文分片與重組:介面的 MTU 不同,超過介面的 MTU 的報文會被分片,到達目的地的報文會被重組。
Ⅶ備份、流量流控:主備線路的切換及復雜的流量控制。
路由器工作原理
路由器中時刻維持著一張路由表,所有報文的發送和轉發都通過查找路由表。從相應埠發送。這張路由表可以是靜態配置的,也可以是動態路由協議產生的。物理層從路由器的一個埠收到一個報文,上送到數據鏈路層。數據鏈路層去掉鏈路層封裝,根據報文的協議域上送到網路層。網路層首先看報文是否是送給本機的,若是,去掉網路層封裝,送給上層。若不是,則根據報文的目的地址查找路由表,若找到路由,將報文送給相應埠的數據鏈路層,數據鏈路層封裝後,發送報文。若找不到路由,報文丟棄。
電子產品世界
路由器工作原理
手機與無線通信 作者:何富和 時間:2015-05-27來源:電子產品世界
導讀:說起路由器,大家對它一定非常熟悉吧,上網都靠他,但它是靠什麼原理工作的呢,它的工作流程是怎樣呢?今天小編帶大家了解一下路由器的工作原理。
路由器的概念及基本構成
路由器是一種用於網路互連的計算機設備,它工作在 OSI 參考模型的第三層
(網路層),為不同的網路之間報文尋徑並存儲轉發。
作為路由器,必須具備:
Ⅰ 兩個或兩個以上的介面:用於連接不同的網路。
Ⅱ 協議至少實現到網路層:只有理解網路層協議才能與網路層通訊。
Ⅲ 至少支持兩種以上的子網協議:異種子網互聯。
Ⅳ 具有存儲、轉發、尋徑功能 :實現速率匹配與路由尋徑。
Ⅴ 一組路由協議:包括域內路由協議、域間路由協議。
路由器的作用
Ⅰ 異種網路互連:主要是具有異種子網協議的網路互連。
Ⅱ 子網協議轉換:不同子網間包括區域網和廣域網間協議轉換。
Ⅲ 路由(尋徑):路由表建立、刷新、查找。
Ⅳ 速率適配:不同介面具有不同的速率,路由器可以利用自己 緩存及流控協議適配。
Ⅴ 隔離網路:防止廣播風暴,網路安全(防火牆)。
Ⅵ 報文分片與重組:介面的 MTU 不同,超過介面的 MTU 的報文會被分片,到達目的地的報文會被重組。
Ⅶ備份、流量流控:主備線路的切換及復雜的流量控制。
路由器工作原理
路由器中時刻維持著一張路由表,所有報文的發送和轉發都通過查找路由表。從相應埠發送。這張路由表可以是靜態配置的,也可以是動態路由協議產生的。物理層從路由器的一個埠收到一個報文,上送到數據鏈路層。數據鏈路層去掉鏈路層封裝,根據報文的協議域上送到網路層。網路層首先看報文是否是送給本機的,若是,去掉網路層封裝,送給上層。若不是,則根據報文的目的地址查找路由表,若找到路由,將報文送給相應埠的數據鏈路層,數據鏈路層封裝後,發送報文。若找不到路由,報文丟棄。
子網尋徑及路由
標準的尋徑表表目是一個二維組(信宿網路地址,下一驛站地址),其中不攜帶子網信息,不能滿足子網尋徑。引入子網編址以後,子網尋徑表的每一表目中加入子網模,於是子網尋徑表表目變為三維組:子網模、信宿網路地址、下一驛站地址。
路由演算法、路由協議、尋徑
路由器依據路由表來為報文尋徑,路由表由路由協議建立和維護。路由協議的設計則是依據某種路由演算法。
選徑是否是最佳:
以什麼參數來衡量路由,如時延、距離、中間網關數等。
簡潔性:路由演算法應設計的盡可能簡潔。
強壯性:路由演算法必須具有魯棒性,應經得起各種網路環境的考驗。
快速收斂性:即所有路由器就最優路徑達成一致的過程路由演算法如果收斂的慢,就會引起路徑循環或網路消耗。
靈活性、彈性:路由演算法能否適應網路環境的各種變化,例如網路帶寬、路由器的緩存、網路時延等發生變化,路由演算法能否根據這些變化做出調整。路由表包含的信息用來交換路由信息和選擇最佳路由路由表是路由器的核心,其中的路由信息來源有兩種:一種是手動添加的靜態路由,另外一種是路由器運行過程中由動態路由協議學習而得來。路由演算法使用了許多不同的權決定最佳路由。
通常採用的權如下:
Ⅰ 路徑距離:指所經過的每條鏈路的權值之和,有的路由協議指節點數目;
Ⅱ 可靠性:指網路鏈路是否容易出故障;
Ⅲ 時延:指網路鏈路造成的網路延時;
Ⅳ 帶寬:指鏈路傳輸信息流容量的能力;
Ⅴ 承載量:指網路資源如路由器的繁忙程度;
路由器與相關網路設備的比較
Hubs(中繼器):對應 7 層模型的物理層,它的作用是放大電信號。主要用於連接具有相同物理層的 LAN。Hubs 還將乙太網的匯流排結構變成星狀結構。Bridges(Switches):是一種在數據鏈路層實現互連的存儲轉發設備,廣泛用於區域網的擴展。Bridges 從一個網段接收完整的數據幀,進行必要的比較和驗證,然後決定是丟棄還是發送給另外一個網段。Bridges 具有隔離網段的作用。在網路上適當地使用 Bridges 可以調整網路負載,提高傳輸性能。
Router(路由器):與 Bridges 相比,路由器實現網路互連是發生在網路層,它實現了相對復雜的功能:路由選擇、多路重發、錯誤檢測等。路由器的異構網互連能力、阻塞控制能力和網段的隔離能力要強於 Bridges。路由器可以阻止網路風暴、支持多協議、提供多種介面。
❻ 什麼是路由器
路由器(Router)是一種用來傳遞資料封包的網路裝置,而傳遞資料封包的過程稱為路由。路由發生於七層OSI模型中的第三層。
1 網路互連
把自己的網路同其它的網路互連起來,從網路中獲取更多的信息和向網路發布自己
的消息,是網路互連的最主要的動力。網路的互連有多種方式,其中使用最多的是網橋
互連和路由器互連。
1.1 網橋互連的網路
網橋工作在OSI模型中的第二層,即鏈路層。完成數據幀(frame)的轉發,主要目
的是在連接的網路間提供透明的通信。網橋的轉發是依據數據幀中的源地址和目的地址
來判斷一個幀是否應轉發和轉發到哪個埠。幀中的地址稱為「MAC」地址或「硬體」
地址,一般就是網卡所帶的地址。
網橋的作用是把兩個或多個網路互連起來,提供透明的通信。網路上的設備看不到
網橋的存在,設備之間的通信就如同在一個網上一樣方便。由於網橋是在數據幀上進行
轉發的,因此只能連接相同或相似的網路(相同或相似結構的數據幀),如乙太網之
間、乙太網與令牌環(token ring)之間的互連,對於不同類型的網路(數據幀結構不
同),如乙太網與X.25之間,網橋就無能為力了。
網橋擴大了網路的規模,提高了網路的性能,給網路應用帶來了方便,在以前的網
絡中,網橋的應用較為廣泛。但網橋互連也帶來了不少問題:一個是廣播風暴,網橋不
阻擋網路中廣播消息,當網路的規模較大時(幾個網橋,多個乙太網段),有可能引起
廣播風暴(broadcasting storm),導致整個網路全被廣播信息充滿,直至完全癱瘓。
第二個問題是,當與外部網路互連時,網橋會把內部和外部網路合二為一,成為一個網
,雙方都自動向對方完全開放自己的網路資源。這種互連方式在與外部網路互連時顯然
是難以接受的。問題的主要根源是網橋只是最大限度地把網路溝通,而不管傳送的信息
是什麼。
1.2 路由器互連網路
路由器互連與網路的協議有關,我們討論限於TCP/IP網路的情況。
路由器工作在OSI模型中的第三層,即網路層。路由器利用網路層定義的「邏輯」
上的網路地址(即IP地址)來區別不同的網路,實現網路的互連和隔離,保持各個網路
的獨立性。路由器不轉發廣播消息,而把廣播消息限制在各自的網路內部。發送到其他
網路的數據先被送到路由器,再由路由器轉發出去。
IP路由器只轉發IP分組,把其餘的部分擋在網內(包括廣播),從而保持各個網路
具有相對的獨立性,這樣可以組成具有許多網路(子網)互連的大型的網路。由於是在
網路層的互連,路由器可方便地連接不同類型的網路,只要網路層運行的是IP協議,通
過路由器就可互連起來。
網路中的設備用它們的網路地址(TCP/IP網路中為IP地址)互相通信。IP地址是
與硬體地址無關的「邏輯」地址。路由器只根據IP地址來轉發數據。IP地址的結構有兩
部分,一部分定義網路號,另一部分定義網路內的主機號。目前,在Internet網路中采
用子網掩碼來確定IP地址中網路地址和主機地址。子網掩碼與IP地址一樣也是32bit,
並且兩者是一一對應的,並規定,子網掩碼中數字為「1」所對應的IP地址中的部分為
網路號,為「0」所對應的則為主機號。網路號和主機號合起來,才構成一個完整的IP
地址。同一個網路中的主機IP地址,其網路號必須是相同的,這個網路稱為IP子網。
通信只能在具有相同網路號的IP地址之間進行,要與其它IP子網的主機進行通信,
則必須經過同一網路上的某個路由器或網關(gateway)出去。不同網路號的IP地址不
能直接通信,即使它們接在一起,也不能通信。
路由器有多個埠,用於連接多個IP子網。每個埠的IP地址的網路號要求與所連
接的IP子網的網路號相同。不同的埠為不同的網路號,對應不同的IP子網,這樣才能
使各子網中的主機通過自己子網的IP地址把要求出去的IP分組送到路由器上。
2 路由原理
當IP子網中的一台主機發送IP分組給同一IP子網的另一台主機時,它將直接把IP分
組送到網路上,對方就能收到。而要送給不同IP子網上的主機時,它要選擇一個能到達
目的子網上的路由器,把IP分組送給該路由器,由路由器負責把IP分組送到目的地。如
果沒有找到這樣的路由器,主機就把IP分組送給一個稱為「預設網關(default
gateway)」的路由器上。「預設網關」是每台主機上的一個配置參數,它是接在同一
個網路上的某個路由器埠的IP地址。
路由器轉發IP分組時,只根據IP分組目的IP地址的網路號部分,選擇合適的埠,
把IP分組送出去。同主機一樣,路由器也要判定埠所接的是否是目的子網,如果是,
就直接把分組通過埠送到網路上,否則,也要選擇下一個路由器來傳送分組。路由器
也有它的預設網關,用來傳送不知道往哪兒送的IP分組。這樣,通過路由器把知道如何
傳送的IP分組正確轉發出去,不知道的IP分組送給「預設網關」路由器,這樣一級級地
傳送,IP分組最終將送到目的地,送不到目的地的IP分組則被網路丟棄了。
目前TCP/IP網路,全部是通過路由器互連起來的,Internet就是成千上萬個IP子
網通過路由器互連起來的國際性網路。這種網路稱為以路由器為基礎的網路(router
based network),形成了以路由器為節點的「網間網」。在「網間網」中,路由器不
僅負責對IP分組的轉發,還要負責與別的路由器進行聯絡,共同確定「網間網」的路由
選擇和維護路由表。
路由動作包括兩項基本內容:尋徑和轉發。尋徑即判定到達目的地的最佳路徑,由
路由選擇演算法來實現。由於涉及到不同的路由選擇協議和路由選擇演算法,要相對復雜一
些。為了判定最佳路徑,路由選擇演算法必須啟動並維護包含路由信息的路由表,其中路
由信息依賴於所用的路由選擇演算法而不盡相同。路由選擇演算法將收集到的不同信息填入
路由表中,根據路由表可將目的網路與下一站(nexthop)的關系告訴路由器。路由器
間互通信息進行路由更新,更新維護路由表使之正確反映網路的拓撲變化,並由路由器
根據量度來決定最佳路徑。這就是路由選擇協議(routing protocol),例如路由信息
協議(RIP)、開放式最短路徑優先協議(OSPF)和邊界網關協議(BGP)等。
轉發即沿尋徑好的最佳路徑傳送信息分組。路由器首先在路由表中查找,判明是否
知道如何將分組發送到下一個站點(路由器或主機),如果路由器不知道如何發送分組
,通常將該分組丟棄;否則就根據路由表的相應表項將分組發送到下一個站點,如果目
的網路直接與路由器相連,路由器就把分組直接送到相應的埠上。這就是路由轉發協
議(routed protocol)。
路由轉發協議和路由選擇協議是相互配合又相互獨立的概念,前者使用後者維護的
路由表,同時後者要利用前者提供的功能來發布路由協議數據分組。下文中提到的路由
協議,除非特別說明,都是指路由選擇協議,這也是普遍的習慣。
3 路由協議
典型的路由選擇方式有兩種:靜態路由和動態路由。
靜態路由是在路由器中設置的固定的路由表。除非網路管理員干預,否則靜態路由
不會發生變化。由於靜態路由不能對網路的改變作出反映,一般用於網路規模不大、拓
撲結構固定的網路中。靜態路由的優點是簡單、高效、可靠。在所有的路由中,靜態路
由優先順序最高。當動態路由與靜態路由發生沖突時,以靜態路由為准。
動態路由是網路中的路由器之間相互通信,傳遞路由信息,利用收到的路由信息更
新路由器表的過程。它能實時地適應網路結構的變化。如果路由更新信息表明發生了網
絡變化,路由選擇軟體就會重新計算路由,並發出新的路由更新信息。這些信息通過各
個網路,引起各路由器重新啟動其路由演算法,並更新各自的路由表以動態地反映網路拓
撲變化。動態路由適用於網路規模大、網路拓撲復雜的網路。當然,各種動態路由協議
會不同程度地佔用網路帶寬和CPU資源。
靜態路由和動態路由有各自的特點和適用范圍,因此在網路中動態路由通常作為靜
態路由的補充。當一個分組在路由器中進行尋徑時,路由器首先查找靜態路由,如果查
到則根據相應的靜態路由轉發分組;否則再查找動態路由。
根據是否在一個自治域內部使用,動態路由協議分為內部網關協議(IGP)和外部
網關協議(EGP)。這里的自治域指一個具有統一管理機構、統一路由策略的網路。自
治域內部採用的路由選擇協議稱為內部網關協議,常用的有RIP、OSPF;外部網關協議
主要用於多個自治域之間的路由選擇,常用的是BGP和BGP-4。下面分別進行簡要介紹。
3.1 RIP路由協議
RIP協議最初是為Xerox網路系統的Xerox parc通用協議而設計的,是Internet中常
用的路由協議。RIP採用距離向量演算法,即路由器根據距離選擇路由,所以也稱為距離
向量協議。路由器收集所有可到達目的地的不同路徑,並且保存有關到達每個目的地的
最少站點數的路徑信息,除到達目的地的最佳路徑外,任何其它信息均予以丟棄。同時
路由器也把所收集的路由信息用RIP協議通知相鄰的其它路由器。這樣,正確的路由信
息逐漸擴散到了全網。
RIP使用非常廣泛,它簡單、可靠,便於配置。但是RIP只適用於小型的同構網路,
因為它允許的最大站點數為15,任何超過15個站點的目的地均被標記為不可達。而且
RIP每隔30s一次的路由信息廣播也是造成網路的廣播風暴的重要原因之一。
3.2 OSPF路由協議
80年代中期,RIP已不能適應大規模異構網路的互連,0SPF隨之產生。它是網間工
程任務組織(IETF)的內部網關協議工作組為IP網路而開發的一種路由協議。
0SPF是一種基於鏈路狀態的路由協議,需要每個路由器向其同一管理域的所有其它
路由器發送鏈路狀態廣播信息。在OSPF的鏈路狀態廣播中包括所有介面信息、所有的量
度和其它一些變數。利用0SPF的路由器首先必須收集有關的鏈路狀態信息,並根據一定
的演算法計算出到每個節點的最短路徑。而基於距離向量的路由協議僅向其鄰接路由器發
送有關路由更新信息。
與RIP不同,OSPF將一個自治域再劃分為區,相應地即有兩種類型的路由選擇方式
:當源和目的地在同一區時,採用區內路由選擇;當源和目的地在不同區時,則採用區
間路由選擇。這就大大減少了網路開銷,並增加了網路的穩定性。當一個區內的路由器
出了故障時並不影響自治域內其它區路由器的正常工作,這也給網路的管理、維護帶來
方便。
3.3 BGP和BGP-4路由協議
BGP是為TCP/IP互聯網設計的外部網關協議,用於多個自治域之間。它既不是基於
純粹的鏈路狀態演算法,也不是基於純粹的距離向量演算法。它的主要功能是與其它自治域
的BGP交換網路可達信息。各個自治域可以運行不同的內部網關協議。BGP更新信息包括
網路號/自治域路徑的成對信息。自治域路徑包括到達某個特定網路須經過的自治域串
,這些更新信息通過TCP傳送出去,以保證傳輸的可靠性。
為了滿足Internet日益擴大的需要,BGP還在不斷地發展。在最新的BGp4中,還可
以將相似路由合並為一條路由。
3.4 路由表項的優先問題
在一個路由器中,可同時配置靜態路由和一種或多種動態路由。它們各自維護的路
由表都提供給轉發程序,但這些路由表的表項間可能會發生沖突。這種沖突可通過配置
各路由表的優先順序來解決。通常靜態路由具有默認的最高優先順序,當其它路由表表項與
它矛盾時,均按靜態路由轉發。
4 路由演算法
路由演算法在路由協議中起著至關重要的作用,採用何種演算法往往決定了最終的尋徑
結果,因此選擇路由演算法一定要仔細。通常需要綜合考慮以下幾個設計目標:
(1)最優化:指路由演算法選擇最佳路徑的能力。
(2)簡潔性:演算法設計簡潔,利用最少的軟體和開銷,提供最有效的功能。
(3)堅固性:路由演算法處於非正常或不可預料的環境時,如硬體故障、負載過高
或*作失誤時,都能正確運行。由於路由器分布在網路聯接點上,所以在它們出故障時
會產生嚴重後果。最好的路由器演算法通常能經受時間的考驗,並在各種網路環境下被證
實是可靠的。
(4)快速收斂:收斂是在最佳路徑的判斷上所有路由器達到一致的過程。當某個
網路事件引起路由可用或不可用時,路由器就發出更新信息。路由更新信息遍及整個網
絡,引發重新計算最佳路徑,最終達到所有路由器一致公認的最佳路徑。收斂慢的路由
演算法會造成路徑循環或網路中斷。
(5)靈活性:路由演算法可以快速、准確地適應各種網路環境。例如,某個網段發
生故障,路由演算法要能很快發現故障,並為使用該網段的所有路由選擇另一條最佳路
徑。
路由演算法按照種類可分為以下幾種:靜態和動態、單路和多路、平等和分級、源路
由和透明路由、域內和域間、鏈路狀態和距離向量。前面幾種的特點與字面意思基本一
致,下面著重介紹鏈路狀態和距離向量演算法。
鏈路狀態演算法(也稱最短路徑演算法)發送路由信息到互聯網上所有的結點,然而對
於每個路由器,僅發送它的路由表中描述了其自身鏈路狀態的那一部分。距離向量演算法
(也稱為Bellman-Ford演算法)則要求每個路由器發送其路由表全部或部分信息,但僅發
送到鄰近結點上。從本質上來說,鏈路狀態演算法將少量更新信息發送至網路各處,而距
離向量演算法發送大量更新信息至鄰接路由器。
由於鏈路狀態演算法收斂更快,因此它在一定程度上比距離向量演算法更不易產生路由
循環。但另一方面,鏈路狀態演算法要求比距離向量演算法有更強的CPU能力和更多的內存
空間,因此鏈路狀態演算法將會在實現時顯得更昂貴一些。除了這些區別,兩種演算法在大
多數環境下都能很好地運行。
最後需要指出的是,路由演算法使用了許多種不同的度量標准去決定最佳路徑。復雜
的路由演算法可能採用多種度量來選擇路由,通過一定的加權運算,將它們合並為單個的
復合度量、再填入路由表中,作為尋徑的標准。通常所使用的度量有:路徑長度、可靠
性、時延、帶寬、負載、通信成本等。
5 新一代路由器
由於多媒體等應用在網路中的發展,以及ATM、快速乙太網等新技術的不斷採用,
網路的帶寬與速率飛速提高,傳統的路由器已不能滿足人們對路由器的性能要求。因為
傳統路由器的分組轉發的設計與實現均基於軟體,在轉發過程中對分組的處理要經過許
多環節,轉發過程復雜,使得分組轉發的速率較慢。另外,由於路由器是網路互連的關
鍵設備,是網路與其它網路進行通信的一個「關口」,對其安全性有很高的要求,因此
路由器中各種附加的安全措施增加了CPU的負擔,這樣就使得路由器成為整個互聯網上
的「瓶頸」。
傳統的路由器在轉發每一個分組時,都要進行一系列的復雜*作,包括路由查找、
訪問控製表匹配、地址解析、優先順序管理以及其它的附加操作。這一系列的操作大大影響
了路由器的性能與效率,降低了分組轉發速率和轉發的吞吐量,增加了CPU的負擔。而
經過路由器的前後分組間的相關性很大,具有相同目的地址和源地址的分組往往連續到
達,這為分組的快速轉發提供了實現的可能與依據。新一代路由器,如IP Switch、
Tag Switch等,就是採用這一設計思想用硬體來實現快速轉發,大大提高了路由器的性
能與效率。
新一代路由器使用轉發緩存來簡化分組的轉發操作。在快速轉發過程中,只需對一
組具有相同目的地址和源地址的分組的前幾個分組進行傳統的路由轉發處理,並把成功
轉發的分組的目的地址、源地址和下一網關地址(下一路由器地址)放人轉發緩存中。
當其後的分組要進行轉發時,應先查看轉發緩存,如果該分組的目的地址和源地址與轉
發緩存中的匹配,則直接根據轉發緩存中的下一網關地址進行轉發,而無須經過傳統的
復雜操作,大大減輕了路由器的負擔,達到了提高路由器吞吐量的目標。
❼ 路由器是什麼
路由器是什麼 是什麼把網路相互連接起來?是路由器。路由器是互聯網路的樞紐、"交通警察"。目前路由器已經廣泛應用於各行各業,各種不同檔次的產品已經成為實現各種骨幹網內部連接、骨幹網間互聯和骨幹網與互聯網互聯互通業務的主力軍。 所謂路由就是指通過相互連接的網路把信息從源地點移動到目標地點的活動。一般來說,在路由過程中,信息至少會經過一個或多個中間節點。通常,人們會把路由和交換進行對比,這主要是因為在普通用戶看來兩者所實現的功能是完全一樣的。其實,路由和交換之間的主要區別就是交換發生在OSI參考模型的第二層(數據鏈路層),而路由發生在第三層,即網路層。這一區別決定了路由和交換在移動信息的過程中需要使用不同的控制信息,所以兩者實現各自功能的方式是不同的。 早在40多年之間就已經出現了對路由技術的討論,但是直到80年代路由技術才逐漸進入商業化的應用。路由技術之所以在問世之初沒有被廣泛使用主要是因為80年代之前的網路結構都非常簡單,路由技術沒有用武之地。直到最近十幾年,大規模的互聯網路才逐漸流行起來,為路由技術的發展提供了良好的基礎和平台。 路由器是互聯網的主要節點設備。路由器通過路由決定數據的轉發。轉發策略稱為路由選擇(routing),這也是路由器名稱的由來(router,轉發者)。作為不同網路之間互相連接的樞紐,路由器系統構成了基於 TCP/IP 的國際互連網路 Internet 的主體脈絡,也可以說,路由器構成了 Internet 的骨架。它的處理速度是網路通信的主要瓶頸之一,它的可靠性則直接影響著網路互連的質量。因此,在園區網、地區網、乃至整個 Internet 研究領域中,路由器技術始終處於核心地位,其發展歷程和方向,成為整個 Internet 研究的一個縮影。在當前我國網路基礎建設和信息建設方興未艾之際,探討路由器在互連網路中的作用、地位及其發展方向,對於國內的網路技術研究、網路建設,以及明確網路市場上對於路由器和網路互連的各種似是而非的概念,都具有重要的意義。 路由器是工作在OSI參考模型第三層——網路層的數據包轉發設備。路由器通過轉發數據包來實現網路互連。雖然路由器可以支持多種協議(例如TCP/IP、IPX/SPX、AppleTalk等協議),但是在我國絕大多數路由器運行TCP/IP協議。 路由器通常連接兩個或多個由IP子網或點到點協議標識的邏輯埠,至少擁有1個物理埠。路由器根據收到數據包中的網路層地址以及路由器內部維護的路由表決定輸出埠以及下一跳地址,並且重寫鏈路層數據包頭實現轉發數據包。 路由器通常動態維護路由表來反映當前的網路拓撲。路由器通過與網路上其他路由器交換路由和鏈路信息來維護路由表。 路由器是連接IP網的核心設備。 路由器的分類 當前路由器分類方法各異。各種分類方法有一定的關聯,但是並不完全一致。 從能力上分,路由器可分高端路由器和中低端路由器。各廠家劃分並不完全一致。通常將背板交換能力大於40G的路由器稱為高端路由器,背板交換能力40G以下的路由器稱為中低端路由器。以市場佔有率最大的Cisco公司為例,12000系列為高端路由器,7500以下系列路由器為中低端路由器。 從結構上分,路由器可分為模塊化結構與非模塊化結構。通常中高端路由器為模塊化結構,低端路由器為非模塊化結構。 從網路位置劃分,路由器可分為核心路由器與接入路由器。核心路由器位於網路中心,通常是使用高端路由器。要求快速的包交換能力與高速的網路介面,通常是模塊化結構。接入路由器位於網路邊緣,通常使用中低端路由器。要求相對低速的埠以及較強的接入控制能力。 從功能分,路由器可分為通用路由器與專用路由器。一般所說的路由器為通用路由器。專用路由器通常為實現某種特定功能對路由器介面、硬體等作專門優化。例如接入伺服器用作接入撥號用戶,增強PSTN介面以及信令能力;VPN路由器增強隧道處理能力以及硬體加密;寬頻接入路由器強調寬頻介面數量及種類。 從性能上分,路由器可分為線速路由器以及非線速路由器。通常線速路由器是高端路由器,能以媒體速率轉發數據包;中低端路由器是非線速路由器。但是一些新的寬頻接入路由器也有線速轉發能力。 路由器分類方法還有很多,並且隨著路由器技術的發展,可能會出現越來越多的分類方法。 路由器功能 路由器通常實現下列基本功能: 實現IP、TCP、UDP、ICMP等互聯網協議。 連接到兩個或多個數據包交換的網路。對每個連接到的網路,實現該網路所要求的功能。這些功能包括: IP數據包封裝到鏈路層幀或從鏈路層幀中取出IP數據包。 按照該網路所支持的最大數據包大小發送或接收IP數據報。該大小是網路最大傳輸單元(MTU)。 將IP地址與相應網路的鏈路層地址相互轉換。例如將IP地址轉換成乙太網硬體地址。 實現網路支持的流量控制和差錯指示。 接收及轉發數據包,在收發過程中實現緩沖區管理、擁塞控制以及公平性處理。 出現差錯時辨認差錯並產生ICMP差錯及必要的差錯消息。 丟棄生存時間(TTL)域為0的數據包。 必要時將數據包分段。 按照路由表信息,為每個IP數據包選擇下一跳目的地。 支持至少一種內部網關協議(IGP)與其他同一自治域中路由器交換路由信息及可達性信息。支持外部網關協議(Exterior Gateway Protocol,EGP)與其他自治域交換拓撲信息。 提供網路管理和系統支持機制,包括存儲/上載配置、診斷、升級、狀態報告、異常情況報告及控制等。 路由器介面 路由器介面用作將路由器連接到網路,可以分為區域網介面及廣域網介面兩種。區域網介面主要包括乙太網(10M、100M和1000M乙太網)、令牌環、令牌匯流排、FDDI等網路介面。廣域網主要包括E1/T1、E3/T3、DS3、通用串列口(可轉換成X.21 DTE/DCE、V.35 DTE/DCE、RS?232 DTE/DCE、RS?449 DTE/DCE、EIA530 DTE)ATM介面、POS介面等網路介面。 當前路由器介面技術較成熟,難點在於高密度介面板的設計與製作和高速介面(大於/等於2.5Gbps)的實現。 路由協議 路由器路由協議的實現是路由器軟體中重要組成部分。路由協議用作建立以及維護路由表。路由表用於為每個IP包選擇輸出埠或下一跳地址。開放的路由協議主要包含RIP/RIPv2、OSPF、IS-IS和BGP4。 RIP/RIPv2、OSPF和IS-IS作為域內路由協議,一般用在AS(自治系統)內部,用於在AS內部計算以及交換網路可達性消息。RIP/RIPv2是距離向量路由協議,一般用於企業內部小規模網路。OSPF和IS-IS協議原理和實現都類似,是鏈路狀態協議,一般用於大規模企業網或運營商網路。 BGP4協議基於距離向量,是當前AS間路由協議的唯一選擇。通常BGP交換大量網路可達性消息,是IP網上重要協議。 路由協議的實現與路由器軟體要求相似,需要實現高可靠、高穩定、魯棒性以及安全性。路由器性能 路由器性能通常主要包含如下內容: 背板能力:通常指路由器背板容量或者匯流排能力。 吞吐量:指路由器包轉發能力。 丟包率:指路由器在穩定的持續負荷下由於資源缺少在應該轉發的數據包中不能轉發的數據包所佔比例。 轉發時延:指需轉發的數據包最後一比特進入路由器埠到該數據包第一比特出現在埠鏈路上的時間間隔。 路由表容量:指路由器運行中可以容納的路由數量。 可靠性:指路由器可用性、無故障工作時間和故障恢復時間等指標。 路由器上的QoS 路由器上的QoS可以通過下面幾種手段獲得: 通過大帶寬得到。在路由器上除增加介面帶寬以外不作任何額外工作來保障QoS。 由於數據通信沒有相應公認的數學模型作保障,該方法只能粗略地使用經驗值作估計。通常認為當帶寬利用率到達50%以後就應當擴容,保證介面帶寬利用率小於50%。 通過端到端帶寬預留實現。該方法通過使用RSVP或者類似協議在全網范圍內通信的節點間端到端預留帶寬。該方法能保證QoS,但是代價太高,通常只在企業網或者私網上運行,在大網公網上無法實現。 通過接入控制、擁塞控制和區分服務(Diff?Serv)等方式得到。該方式無法完全保證QoS。這能與增加介面帶寬等方式結合使用,在一定程度上提供相對的CoS。 通過MPLS流量工程得到。 路由器安全性 路由器的安全性分兩方面,一方面是路由器本身的安全,另一方面是數據的安全。 由於路由器是互聯網的核心,是網路互連的關鍵設備。所以路由器的安全要求比其他設備的安全性要求更高。主機的安全漏洞最多導致該主機無法訪問,路由器的安全漏洞可能導致整個網路不可訪問。 路由器的安全漏洞可能存在管理上原因和技術上原因。在管理上,對路由器口令糟糕的選擇、路由協議授權機制的不恰當使用、錯誤的路由配置都可能導致路由器工作出現問題。技術上路由器的安全漏洞可能有如下方面: 惡意攻擊。如竊聽、流量分析、假冒、重發、拒絕服務、資源非授權訪問、干擾、病毒等攻擊。 軟體漏洞。後門、操作系統漏洞、資料庫漏洞、TCP/IP協議漏洞、網路服務等都可能會存在漏洞。 路由器所傳遞數據的安全可以由網路提供或者用戶提供。如果由網路提供則只與接入路由器相關。通常可以由接入路由器提供IPSec安全通道來保證安全。參考資料:http://www.windowscn.org/club/archiver/?tid-428.html]
❽ 路由器和交換機有什麼區別
路由器系統構成了基於TCP/IP 的國際互聯網路Internet 的主體脈絡,也可以說,路由器構成了Internet的骨架。交換機(Switch)和路由器(Router)是兩種不同的網路設備。交換機工作在數據鏈路層,負責 MAC地址;路由器工作在網路層,負責 IP地址。那麼如何將路由器設置為交換機呢?下面將首先介紹兩種設備及其區別,再介紹路由器設置為交換機的方法。
方法步驟
1、路由器(Router)又稱網關設備(Gateway),用於連接多個邏輯上分開的網路,可以實現數據從一個子網路傳輸到另外一個子網路,屬於網路層的一種互聯設備。如下圖,路由器的各個介面:
(1)POWER: 電源介面。
(2)RESET: 復位鍵恢復出廠設置。
(3)WAN: 用網線將路由器與寬頻/數據機(MODEM)相連。
(4)LAN(1-4):用網線將路由器與上網設備(計算機等)相連。
另外:家用(無線)路由器的IP地址一般為:192.168.1.1或者192.168.0.1,IP地址和登錄用戶名密碼一般標注在路由器底部。
2、交換機(Switch)是在數據鏈路層面,為接入交換機的任意兩個網路節點提供獨享電信號通路的設備。交換機可以同時進行多個埠對之間的數據傳輸,每一埠都可視為獨立的物理網段(非IP網段),連接在其上的網路設備獨享全部寬頻。
另外,交換機內部的CPU會在每個埠成功連接時,通過將MAC地址(Media Access Control,媒體訪問控制或稱為物理地址)和埠對應,形成一張MAC表。交換機還可以學習MAC地址,並把其存放在內部地址表中,通過在數據幀的始發者和目標接收者之間建立臨時的交換路徑,使數據幀直接由源地址到達目的地址。
3、交換機和路由器的區別。
區別之一:交換機工作在OSI模型(Open Systems Interconnection Reference Model,開放式通信系統互聯參考模型)的第二層,即數據鏈路層,工作原理比較簡單;路由器工作在OSI模型的第三層,即網路層,可以得到更多的協議信息。
其中,第二層數據鏈路層則負責 MAC地址,第三層網路層負責 IP地址。下圖是OSI將計算機網路體系結構(Architecture)分為七層:物理層、數據鏈路層、網路層、傳輸層、會話層、表示層和應用層。
4、下面,將路由器設置為交換機。首先,登錄路由器管理界面。在瀏覽器中輸入路由器登錄地址,一般默認是192.168.1.1(查看路由器外殼/底部的銘牌)。其次,登錄路由器管理界面後,左側菜單欄DHCP伺服器-->DHCP服務-->不啟用DHCP伺服器,然後保存,如下圖。
註:DHCP,Dynamic Host Configuration Protocol,動態主機配置協議。
5、再次,左側菜單欄網路參數-->LAN口設置,將LAN口的IP地址改為:192.168.1.254 或者其它IP地址,只要不與別的電腦本地IP地址沖突就行,建議統一改成192.168.1.254 較好,然後保存。如下圖。最後,以上設置好,路由器就可以當作交換機使用,需要注意的是,路由器的WAN埠不可以用,其它四個埠可以當做交換機的埠。
6、有發現:路由器不需要設置,只要不使用WAN埠,LAN埠就可以當交換機使用。但有些路由器不設置會造成網路不穩定或者偶爾掉線,若真想將路由器當交換機使用,設置一下也很簡單。今後還原設置,又成為路由器。
相關閱讀:路由器安全特性注意點
由於路由器是網路中比較關鍵的設備,針對網路存在的各種安全隱患,路由器必須具有如下的安全特性:
(1)可靠性與線路安全 可靠性要求是針對故障恢復和負載能力而提出來的。對於路由器來說,可靠性主要體現在介面故障和網路流量增大兩種情況下,為此,備份是路由器不可或缺的手段之一。當主介面出現故障時,備份介面自動投入工作,保證網路的正常運行。當網路流量增大時,備份介面又可承當負載分擔的任務。
(2)身份認證路由器中的身份認證主要包括訪問路由器時的身份認證、對端路由器的身份認證和路由信息的身份認證。
(3)訪問控制對於路由器的訪問控制,需要進行口令的分級保護。有基於IP地址的訪問控制和基於用戶的訪問控制。
(4)信息隱藏與對端通信時,不一定需要用真實身份進行通信。通過地址轉換,可以做到隱藏網內地址,只以公共地址的方式訪問外部網路。除了由內部網路首先發起的連接,網外用戶不能通過地址轉換直接訪問網內資源。
(5)數據加密
為了避免因為數據竊聽而造成的信息泄漏,有必要對所傳輸的信息進行加密,只有與之通信的對端才能對此密文進行解密。通過對路由器所發送的報文進行加密,即使在Internet上進行傳輸,也能保證數據的私有性、完整性以及報文內容的真實性。
(6)攻擊探測和防範
❾ 如何提高城域網路由器網路層的可靠性
首先,在LSP的入口處即LSR1,使用一條用戶命令激活MPLS保護切換功能;LSR1向LSP路徑上的所有LSR發送信令,每個LSR都計算出一條旁路下一跳LSR的備份LSP,LSP快速重路由配置即完成。當LSP路徑上的某個LSR檢測到下游故障時,由該LSR在本地將流量切換到備份LSP內。
在IETF中有多種快速重路由的方案,主流的兩種保護方式為鏈路保護和節點保護,其解決問題的思路和復雜度各異,目前該技術還沒有形成正式的RFC。