導航:首頁 > 網路設置 > 卷積網路怎麼設置

卷積網路怎麼設置

發布時間:2022-07-15 11:33:48

1. 如何訓練一個簡單的分類卷積神經網路

卷積神經網路有以下幾種應用可供研究:
1、基於卷積網路的形狀識別
物體的形狀是人的視覺系統分析和識別物體的基礎,幾何形狀是物體的本質特徵的表現,並具有平移、縮放和旋轉不變等特點,所以在模式識別領域,對於形狀的分析和識別具有十分重要的意義,而二維圖像作為三維圖像的特例以及組成部分,因此二維圖像的識別是三維圖像識別的基礎。
2、基於卷積網路的人臉檢測
卷積神經網路與傳統的人臉檢測方法不同,它是通過直接作用於輸入樣本,用樣本來訓練網路並最終實現檢測任務的。它是非參數型的人臉檢測方法,可以省去傳統方法中建模、參數估計以及參數檢驗、重建模型等的一系列復雜過程。本文針對圖像中任意大小、位置、姿勢、方向、膚色、面部表情和光照條件的人臉。
3、文字識別系統
在經典的模式識別中,一般是事先提取特徵。提取諸多特徵後,要對這些特徵進行相關性分析,找到最能代表字元的特徵,去掉對分類無關和自相關的特徵。然而,這些特徵的提取太過依賴人的經驗和主觀意識,提取到的特徵的不同對分類性能影響很大,甚至提取的特徵的順序也會影響最後的分類性能。同時,圖像預處理的好壞也會影響到提取的特徵。

2. 怎樣用python構建一個卷積神經網路

用keras框架較為方便

首先安裝anaconda,然後通過pip安裝keras

3. 如何使用TensorFlow實現卷積神經網路

調整cnn網路結構需要增加或者減少layer的層數,並且更改layer的類型,比如在現有的conv層和pooling層後面繼續增加conv層和pooling層,目的是為了提取更高層次的特徵。當然你也可以增加全連接層數目(那麼做訓練會變慢--、),修改激活函數和填充器類型。建議你還是使用caffe中自帶的cifar10_quick和caffenet進行訓練,然後針對你的數據修改相應的網路參數和solver參數。

4. 如何合理的修改卷積網路結構num

layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}

5. 如何用tensorflow搭建卷積神經網路

在MNIST數據集上,搭建一個簡單神經網路結構,一個包含ReLU單元的非線性化處理的兩層神經網路。在訓練神經網路的時候,使用帶指數衰減的學習率設置、使用正則化來避免過擬合、使用滑動平均模型來使得最終的模型更加健壯。
程序將計算神經網路前向傳播的部分單獨定義一個函數inference,訓練部分定義一個train函數,再定義一個主函數main。

二、分析與改進設計
1. 程序分析改進
第一,計算前向傳播的函數inference中需要將所有的變數以參數的形式傳入函數,當神經網路結構變得更加復雜、參數更多的時候,程序的可讀性將變得非常差。
第二,在程序退出時,訓練好的模型就無法再利用,且大型神經網路的訓練時間都比較長,在訓練過程中需要每隔一段時間保存一次模型訓練的中間結果,這樣如果在訓練過程中程序死機,死機前的最新的模型參數仍能保留,杜絕了時間和資源的浪費。
第三,將訓練和測試分成兩個獨立的程序,將訓練和測試都會用到的前向傳播的過程抽象成單獨的庫函數。這樣就保證了在訓練和預測兩個過程中所調用的前向傳播計算程序是一致的。
2. 改進後程序設計
mnist_inference.py
該文件中定義了神經網路的前向傳播過程,其中的多次用到的weights定義過程又單獨定義成函數。
通過tf.get_variable函數來獲取變數,在神經網路訓練時創建這些變數,在測試時會通過保存的模型載入這些變數的取值,而且可以在變數載入時將滑動平均值重命名。所以可以直接通過同樣的名字在訓練時使用變數自身,在測試時使用變數的滑動平均值。
mnist_train.py
該程序給出了神經網路的完整訓練過程。
mnist_eval.py
在滑動平均模型上做測試。
通過tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)獲取最新模型的文件名,實際是獲取checkpoint文件的所有內容。

6. 卷積神經網路是如何反向調整參數的

參數調整流程:

  1. 計算loss--loss是根據網路輸入值和真實值求解獲得,與網路參數有關

  2. 根據loss使用梯度下降法進行反向傳播--梯度下降的BP演算法,參考微積分鏈式求導法則.

結束..

可以追問的~~

7. 如何在卷積神經網路中,當識別率低的時候設置大的學習率,識別率高的時候設置小的學習率。

把學習率作為placeholder試試

8. 卷積神經網路中的learn rate是怎麼設置的

學習率的作用是不斷調整權值閾值。對於traingdm等函數建立的BP網路,學習速率一般取0.01-0.1之間。

閱讀全文

與卷積網路怎麼設置相關的資料

熱點內容
怎樣禁止網路連接wifi 瀏覽:377
海信電視機怎麼連手機網路 瀏覽:572
wps怎麼設置文檔網路 瀏覽:454
網路拆小柴1多少 瀏覽:552
沒有任何網路怎樣用手機上網 瀏覽:266
一天中什麼時候網路最好 瀏覽:586
正在用移動網路改善質量請在設置網路設置 瀏覽:822
蘋果x手機怎麼修改網路 瀏覽:129
列印機和無線網路連接 瀏覽:752
金融網路安全中心下載 瀏覽:9
電腦網路標志有個圈 瀏覽:442
sugram蘋果怎麼設置網路 瀏覽:763
在沒網路時怎麼樣把網路修好 瀏覽:913
如何把自家網路密碼改簡單 瀏覽:92
王中王網路未連接服務怎麼辦 瀏覽:624
網路安全工程師技術培訓 瀏覽:363
tplink路由器怎麼設置乙太網絡 瀏覽:301
如家網路會員綁定了別人手機號 瀏覽:553
為什麼紅米網路助手校正總是失敗 瀏覽:210
電腦哪裡可以看到網路 瀏覽:695

友情鏈接