導航:首頁 > 網路設置 > 神經網路設置范圍

神經網路設置范圍

發布時間:2022-05-27 08:11:50

『壹』 BP神經網路中初始權值和閾值的設定

首先需要了解BP神經網路是一種多層前饋網路。以看一下在matlab中BP神經網路的訓練函數,有梯度下降法traingd,彈性梯度下降法trainrp,自適應lr梯度下降法traingda等。

因為初始值(初始權值和閥值)都在x這個向量中,x(n,1)的長度n為:n=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum

其中inputnum*hiddennum是輸入層到隱含層的權值數量,hiddennum是隱含層神經元個數(即隱含層閥值個數),hiddennum*outputnum是隱含層到輸出層權值個數,outputnum是輸出層神經元個數(即輸出層閥值個數)。

結構

BP網路是在輸入層與輸出層之間增加若干層(一層或多層)神經元,這些神經元稱為隱單元,它們與外界沒有直接的聯系,但其狀態的改變,則能影響輸入與輸出之間的關系,每一層可以有若干個節點。

BP神經網路的計算過程由正向計算過程和反向計算過程組成。正向傳播過程,輸入模式從輸入層經隱單元層逐層處理,並轉向輸出層,每~層神經元的狀態隻影響下一層神經元的狀態。如果在輸出層不能得到期望的輸出,則轉入反向傳播,將誤差信號沿原來的連接通路返回,通過修改各神經元的權值,使得誤差信號最小。

以上內容參考:網路-BP神經網路

『貳』 新手,神經網路的問題,求大神們解答啊

我覺得 就 BP 神經網路就很好好 ,你 分為31 類, 輸出層31, 一般隱層 2-4 層就可以了,你的第一層 沒必要弄那麼多神經元吧,第二層也是,沒必要那麼多,你開始可以【5,5,31】,在設置 一定的迭代次數,和誤差,看看訓練結果 好不 ,不好的話在適當增加第1 .2 層的 神經元個數 比如改為【10,5 ,31】。。BP神經網路傳遞函數 一般包括:logsig(n) tansig(n) purelin(n)
這3 種 ,他們的取值范圍 分別為【0,1】 【-1,1】 【整個平面都可以取】 所以輸出層的傳遞函數 要依據你的輸出選函數,BP 的 訓練函數就比較多了,這個網路裡面都有 ;隱層常採用tansig
函數進行中間結果傳遞,

『叄』 神經網路 的四個基本屬性是什麼

神經網路 的四個基本屬性:

(1)非線性:非線性是自然界的普遍特徵。腦智能是一種非線性現象。人工神經元處於兩種不同的激活或抑制狀態,它們在數學上是非線性的。由閾值神經元組成的網路具有更好的性能,可以提高網路的容錯性和存儲容量。

(2)無限制性:神經網路通常由多個連接廣泛的神經元組成。一個系統的整體行為不僅取決於單個神經元的特性,而且還取決於單元之間的相互作用和互連。通過單元之間的大量連接來模擬大腦的非限制性。聯想記憶是一個典型的無限制的例子。

(3)非常定性:人工神經網路具有自適應、自組織和自學習的能力。神經網路處理的信息不僅會發生變化,而且非線性動態系統本身也在發生變化。迭代過程通常用來描述動態系統的演化。

(4)非凸性:在一定條件下,系統的演化方向取決於特定的狀態函數。例如,能量函數的極值對應於系統的相對穩定狀態。非凸性是指函數具有多個極值,系統具有多個穩定平衡態,從而導致系統演化的多樣性。

(3)神經網路設置范圍擴展閱讀:

神經網路的特點優點:

人工神經網路的特點和優越性,主要表現在三個方面:

第一,具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。

第二,具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。

第三,具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。

『肆』 神經網路優缺點,

優點:

(1)具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。

自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。

(2)具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。

(3)具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。

缺點:

(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。

(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網路就無法進行工作。

(3)把一切問題的特徵都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。

(4)理論和學習演算法還有待於進一步完善和提高。

(4)神經網路設置范圍擴展閱讀:

神經網路發展趨勢

人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。

人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。

將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。

神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。

由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。

參考資料:網路-人工神經網路

『伍』 神經網路的隱層數,節點數設置。

我自己總結的:
1、神經網路演算法隱含層的選取
1.1 構造法
首先運用三種確定隱含層層數的方法得到三個隱含層層數,找到最小值和最大值,然後從最小值開始逐個驗證模型預測誤差,直到達到最大值。最後選取模型誤差最小的那個隱含層層數。該方法適用於雙隱含層網路。
1.2 刪除法
單隱含層網路非線性映射能力較弱,相同問題,為達到預定映射關系,隱層節點要多一些,以增加網路的可調參數,故適合運用刪除法。
1.3黃金分割法
演算法的主要思想:首先在[a,b]內尋找理想的隱含層節點數,這樣就充分保證了網路的逼近能力和泛化能力。為滿足高精度逼近的要求,再按照黃金分割原理拓展搜索區間,即得到區間[b,c](其中b=0.619*(c-a)+a),在區間[b,c]中搜索最優,則得到逼近能力更強的隱含層節點數,在實際應用根據要求,從中選取其一即可。

『陸』 神經網路演算法中,參數的設置或者調整,有什麼方法可以採用

若果對你有幫助,請點贊。
神經網路的結構(例如2輸入3隱節點1輸出)建好後,一般就要求神經網路里的權值和閾值。現在一般求解權值和閾值,都是採用梯度下降之類的搜索演算法(梯度下降法、牛頓法、列文伯格-馬跨特法、狗腿法等等),這些演算法會先初始化一個解,在這個解的基礎上,確定一個搜索方向和一個移動步長(各種法算確定方向和步長的方法不同,也就使各種演算法適用於解決不同的問題),使初始解根據這個方向和步長移動後,能使目標函數的輸出(在神經網路中就是預測誤差)下降。 然後將它更新為新的解,再繼續尋找下一步的移動方向的步長,這樣不斷的迭代下去,目標函數(神經網路中的預測誤差)也不斷下降,最終就能找到一個解,使得目標函數(預測誤差)比較小。
而在尋解過程中,步長太大,就會搜索得不仔細,可能跨過了優秀的解,而步長太小,又會使尋解過程進行得太慢。因此,步長設置適當非常重要。
學習率對原步長(在梯度下降法中就是梯度的長度)作調整,如果學習率lr = 0.1,那麼梯度下降法中每次調整的步長就是0.1*梯度,
而在matlab神經網路工具箱里的lr,代表的是初始學習率。因為matlab工具箱為了在尋解不同階段更智能的選擇合適的步長,使用的是可變學習率,它會根據上一次解的調整對目標函數帶來的效果來對學習率作調整,再根據學習率決定步長。
機制如下:
if newE2/E2 > maxE_inc %若果誤差上升大於閾值
lr = lr * lr_dec; %則降低學習率
else
if newE2 < E2 %若果誤差減少
lr = lr * lr_inc;%則增加學習率
end
詳細的可以看《神經網路之家》nnetinfo里的《[重要]寫自己的BP神經網路(traingd)》一文,裡面是matlab神經網路工具箱梯度下降法的簡化代碼

若果對你有幫助,請點贊。
祝學習愉快

『柒』 神經網路 seed 設置成多少

seed函數是對神經網路里用到的rand函數其作用的吧.設置seed為明確的值,只是不同的人或不同次運行隨機函數是能產生相同的隨機數,觀察到相同的結果。實際運行中,設置成多少應該是無所謂的,這才是隨機數。

『捌』 神經網路使用范圍

個人感覺在系統或者說被控對象的數學模型是不明確的,或是非線性的、或者是強耦合等用常規方法難以控制的情況下,用一下神經網路還可以。

『玖』 什麼是神經網路

隱層節點數在BP 網路中,隱層節點數的選擇非常重要,它不僅對建立的神經網路模型的性能影響很大,而且是訓練時出現「過擬合」的直接原因,但是目前理論上還沒有一種科學的和普遍的確定方法。 目前多數文獻中提出的確定隱層節點數的計算公式都是針對訓練樣本任意多的情況,而且多數是針對最不利的情況,一般工程實踐中很難滿足,不宜採用。事實上,各種計算公式得到的隱層節點數有時相差幾倍甚至上百倍。為盡可能避免訓練時出現「過擬合」現象,保證足夠高的網路性能和泛化能力,確定隱層節點數的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結構,即取盡可能少的隱層節點數。研究表明,隱層節點數不僅與輸入/輸出層的節點數有關,更與需解決的問題的復雜程度和轉換函數的型式以及樣本數據的特性等因素有關。在確定隱層節點數時必須滿足下列條件:(1)隱層節點數必須小於N-1(其中N為訓練樣本數),否則,網路模型的系統誤差與訓練樣本的特性無關而趨於零,即建立的網路模型沒有泛化能力,也沒有任何實用價值。同理可推得:輸入層的節點數(變數數)必須小於N-1。(2) 訓練樣本數必須多於網路模型的連接權數,一般為2~10倍,否則,樣本必須分成幾部分並採用「輪流訓練」的方法才可能得到可靠的神經網路模型。 總之,若隱層節點數太少,網路可能根本不能訓練或網路性能很差;若隱層節點數太多,雖然可使網路的系統誤差減小,但一方面使網路訓練時間延長,另一方面,訓練容易陷入局部極小點而得不到最優點,也是訓練時出現「過擬合」的內在原因。因此,合理隱層節點數應在綜合考慮網路結構復雜程度和誤差大小的情況下用節點刪除法和擴張法確定。

『拾』 徑向基神經網路中spread的取值范圍和DF的取值范圍是多少啊經驗值也可以,要范圍。

SPREAD為徑向基函數的擴展系數,默認值為1.0。合理選擇SPREAD是非常重要的,其值應該足夠大,使徑向基神經元能夠對輸入向量所覆蓋的區間都產生響應,但也不要求大到所有的徑向基神經元都如此,只要部分徑向基神經元能夠對輸入向量所覆蓋的區間產生響應就足夠了。SPREAD的值越大,其輸出結果越光滑,但太大的SPREAD值會導致數值計算上的困難,若在涉及網路時,出現「Rank Deficient」警告,應考慮減小SPREAD的值重新設計。
因此,在網路設計的過程中,需要用不同的擴展常數進行嘗試,以確定一個最優值。為了更嚴格地對數據進行擬合,最好使擴展常數的值小於輸入向量之間的典型距離。
一般擴展常數取0.7、0.8或默認的都可以,要用試湊法。

閱讀全文

與神經網路設置范圍相關的資料

熱點內容
悅盒連接無線網路 瀏覽:158
中國電信改移動網路 瀏覽:286
如果網線沒接好網路會出什麼問題 瀏覽:582
疫情期間網路異常活躍 瀏覽:823
網路打車平台投訴找哪個部門 瀏覽:673
搶單軟體顯示網路異常是咋回事 瀏覽:766
網路分析儀測量相位校準設置 瀏覽:252
mp3電腦傳歌需要網路嗎 瀏覽:22
不能拉黑的網路電話哪個好 瀏覽:260
周口下樓無線網路管理中心 瀏覽:692
網路欺詐金額多少錢才能立案 瀏覽:745
如何做一張網路虛擬電話卡 瀏覽:42
如何打開共享網路搜索 瀏覽:23
如何看待網路的普及和危害 瀏覽:535
蘋果xr玩游戲網路卡頓 瀏覽:364
邢台淘寶網路運營電話多少 瀏覽:538
手機的網路經常斷開 瀏覽:571
黑鯊手機wifi網路連接受限 瀏覽:359
怎麼查看同一網路下的其他電腦 瀏覽:55
網路核相儀公司有哪些 瀏覽:176

友情鏈接