⑴ 神經網路閥值初始值一般是多少
閥值初始化,即對神經網路中所有的權值閥值進行初始化,初始值通常設為(-1,1)
http://www.chinaaet.com/article/index.aspx?id=18884
⑵ 神經網路問題,什麼閾值是2,中間層到輸出層權值為什麼是{2,1}
net.IW 屬性定義了從網路輸入向量到網路層的權值向量(即輸入層的權值向量)結構。其值為Nl*Ni的細胞矩陣,Nl為網路層數(net.numLayers),Ni為輸入向量數(net.numInputs)。通過訪問net.IW{i,j},可以獲得第i 個網路層來自第j 個輸入向量的權值向量值。 所以一般情況下net,iw{1,1}就是輸入層和隱含層之間的權值。
net.LW定義了從一個網路層到另一個網路層的權值向量結構。其值為Nl*Nl的細胞矩陣,Nl為網路層數(net.numLayers)。通過訪問net.LW{i,j},可以獲得第i 個網路層來自第j 個網路層的權值向量值。 因此,如果網路是單隱含層,net.lw{2,1}就是輸出層和隱含層之間的權值。
最需要理解的就是:這都是元胞數組。
⑶ 神經網路閾值是啥意思
神經網路是模仿大腦的神經元,當外界刺激達到一定的閥值時,神經元才會受刺激,影響下一個神經元。
簡單說來是這樣的:超過閾值,就會引起某一變化,不超過閾值,無論是多少,都不產生影響。
⑷ BP神經網路中初始權值和閾值的設定
首先需要了解BP神經網路是一種多層前饋網路。以看一下在matlab中BP神經網路的訓練函數,有梯度下降法traingd,彈性梯度下降法trainrp,自適應lr梯度下降法traingda等。
因為初始值(初始權值和閥值)都在x這個向量中,x(n,1)的長度n為:n=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum
其中inputnum*hiddennum是輸入層到隱含層的權值數量,hiddennum是隱含層神經元個數(即隱含層閥值個數),hiddennum*outputnum是隱含層到輸出層權值個數,outputnum是輸出層神經元個數(即輸出層閥值個數)。
結構
BP網路是在輸入層與輸出層之間增加若干層(一層或多層)神經元,這些神經元稱為隱單元,它們與外界沒有直接的聯系,但其狀態的改變,則能影響輸入與輸出之間的關系,每一層可以有若干個節點。
BP神經網路的計算過程由正向計算過程和反向計算過程組成。正向傳播過程,輸入模式從輸入層經隱單元層逐層處理,並轉向輸出層,每~層神經元的狀態隻影響下一層神經元的狀態。如果在輸出層不能得到期望的輸出,則轉入反向傳播,將誤差信號沿原來的連接通路返回,通過修改各神經元的權值,使得誤差信號最小。
以上內容參考:網路-BP神經網路
⑸ 什麼是神經網路演算法的閾值
神經元是一個多輸入單輸出的非線性單元,輸入之和需要超過一定數值時,輸出才會有反應,這個數值一般稱為閾值
⑹ BP神經網路一般初始權值和閥值是多少
初始的權值和偏差一般是在0-1之間,隨機選取某一0-1之間的值作為某一權值或偏差的值
原因在於:
1、數據預處理階段會將所有的數據規范化到0-1之間,並且神經網路的輸出也是0-1之間的向量,因此其中的網路結點值也應位於0-1中
2、隨機初始化的優勢在於可有效避免梯度消失或梯度爆炸的問題,增加網路的穩定性。
⑺ 神經網路演算法中權值W和閾值的定義是什麼
因為高斯距離在歐式幾何中定義的。(就是說這個最短)權值就是類似於方程y=ax+b,中a的值。訓練好的神經網路對於新的數據不一定是最優的。甚至不一定可以用來預測。
⑻ 神經網路中的權值和閾值什麼意思
簡單說來是這樣的:超過閾值,就會引起某一變化,不超過閾值,無論是多少,都不產生影響.這是一個定性的理解,可以和數字邏輯電路中電平的閾值類比。
⑼ BP神經網路中神經元閾值是什麼意思
在BP神經網路中,閾值也是一個變化值。 權值是層與層神經元之間的,閾值是神經元內的。 同權值類似,都需要設定初始值。 通過訓練網路,對權重和閾值進行修正都,最終達到局部最優。
⑽ 神經網路里的閾值是什麼意思
神經網路是模仿大腦的神經元,當外界刺激達到一定的閥值時,神經元才會受刺激,影響下一個神經元。