❶ 計算機網路——4.網路層
將網路互連並能夠互相通信,會遇到許多問題,例如:不同的定址方案(不同的網路可能地址的表示位數不同),不同的最大分組長度(最大幀長),不同的網路接入機制,不同的超時控制,不同的差錯恢復方法......
如何 將異構的網路互相連接起來 :使用一些 中間設備(中間系統)(中繼系統) :
1.IP地址及其表示方法
IP地址就是給每個連接在互聯網上的 主機(或路由器) 分配一個在全世界范圍內是 唯一的32位 的標識符。IP地址由互聯網名字和數字分配機構(ICANN)進行分配。分配給ISP,然後用戶再通過ISP申請到一個IP地址。
2.IP地址的編址方式
後續還有 NAT 和 IPv6 這些方法
正常使用ABC三類,DE兩類用作科研或者其他一般不開放使用。D類地址還是多播地址
A類地址:
B類地址:
C類地址:
3.特殊IP地址
4.IP地址的一些重要特點
IP地址與硬體地址是不同的地址
通信時使用的兩個地址:
每個介面都有兩個地址,網路層及以上的使用IP地址,數據鏈路層和物理層使用MAC地址(物理地址)
1.地址解析協議ARP的作用
3.ARP分組的傳輸
4.ARP高速緩存的作用
5.ARP欺騙
網路上的任意一台主機,在 沒有接收到ARP請求 的情況下,可以 主動發送ARP響應 。
6.應當注意的問題
7.使用ARP的四種典型情況
假設現在有四個A類網路通過三個路由器連接在一起,而每個網路上都有成千上萬台主機,如果按照目的主機的主機號來製作路由表,那麼一個路由表就有 成千上萬行 ,這樣路由表的內存會過於龐大,因此我們按照 目的主機所在網路地址 來製作路由表,相當於 歸類紀錄 ,這樣的話每個路由表只需要幾行就可以,會大大簡化。如下圖:
2.特定主機路由 :雖然互聯網所有的分組轉發都是基於 目的主機所在的網路 ,但是在大多數情況下,都允許有一個特例,即 指定某個網路中的某一台主機填入路由表 ,採用特定主機路由可以使網路管理人員 更方便地控制網路和測試網路 ,同時也考慮到某種 安全問題 。
3.默認路由 :假如現在有一個分組的地址為1.2.3.4那麼它的網路地址就是1.0.0.0,但是在路由表中沒有記錄,那麼路由器就不知道該轉發給誰,怎麼轉發,就會將這個分組丟棄,為了避免這種情況,有了默認路由,一旦出現 找不到目的地址的分組 ,就 由默認路由轉發 (或者說 默認路由能夠匹配所有的地址 )。但同時 默認路由的優先順序是最小的 ,也就是 只有在找不到的情況下才會使用 ,找到了的話就不會用默認路由。採用默認路由可以 減少路由表所佔用的空間和搜索路由表所用的時間 ,如果主機連接在一個 小網路 上,並且這個網路只用一個路由器與互聯網連接,那麼這種情況非常適合使用默認路由。例如下圖:
1.從兩級IP地址到三級IP地址
早期IP地址的不合理設計:IP地址浪費極大,因此對分類的IP地址做了一個改進,劃分子網:在IP地址中增加一個"子網號欄位",使原本的兩級地址(網路號,主機號)變成三級地址(網路號,主機號,子網號),如下圖所示:
例如:
3.子網掩碼
規則:
(6).報告轉發分組出錯
1.網路前綴
劃分子網雖然在一定程度上解決了困難,但是並 沒有從根本上解決 ,仍然有幾個問題:
2.CIDR的特點
CIDR是在 變長子網掩碼(VLSM) 的基礎上進一步提出的,它的全稱為 無分類域間選擇(CIDR) 。
主要特點:
3.路由聚合
4.CIDR記法的其它形式
5.CIDR地址塊劃分
❷ 常見的網路互連方式
10.1 網路互連概述
網路互連是指將不同的網路連接起來,以構成更大規模的網路系統,實現網路間的數據通信、資源共享和協同工作。
10.1.1 網路互連的必要性
ISO/OSI雖然問世多年,但實際運行中各種現有的特定網路並不一定都採用OSI七層模型。OSI所採用的通信子網和現有的多種網路產品,它本身就決定了各種類型的通信子網一直共存下去。
網路互連可以改善網路性能,主要體現在提高系統的可靠性、改進系統的性能、增加系統保密性、建網方便、增加地理覆蓋范圍等幾方面。
隨著商業需求的推動,特別是Internet的深入人心,網路互連技術已成為實現如Internet這樣的大規模網路通信和資源共享的關鍵技術。
10.1.2 網路互連的基本原理
1. 網路互連的要求
由於不同的網路間可能存在各種差異,因此對網路互連有如下要求:
(1)在網路之間提供一條鏈路,至少需要一條物理和鏈路控制的鏈路。若不存在鏈路,一個網路的信息就不可能傳輸到另一個網路中去。
(2)提供不同網路結點的路由選擇和數據傳送。
(3)提供網路記賬服務,記錄網路資源使用情況,提供各用戶使用網路的記錄及有關狀態信息。
(4)在提供網路互連時,應盡量避免由於互連而降低網路的通信性能。
(5)不修改互連在一起的各網路原有的結構和協議。這就要求網路互連設備應能進行協議轉換,協調各個網路的不同性能,這些性能包括:
① 不同的編址方式:每個網路有不同的端點名字、編址方法、定址方式和目錄保持方案,需要提供全網編址方法和目錄服務。
② 不同的最大分組長度:在互連網路中,分組從一個網路送到另一網路時,往往需要分成幾部分,稱為分段。不同的網路存在著不同的分組大小。
③ 不同的傳輸速率:在互連網路中,不同網路的傳輸速率可能不同。
④ 不同的時限:對連接的傳送服務總要等待回答響應,如超時後仍沒有接到響應,則需要重傳。但在互連網路中,數據傳送有時需要經過多個網路,這需要更長時間,應該設定合適的超時值,以防不必要的重傳。
⑤ 不同的網路訪問機制:對不同網路上的多個結點,結點和網路之間的訪問機制可以是相同的,也可能是不同的。
⑥ 差錯恢復:各個網路有不同的差錯恢復功能。互連網路的服務既不要依賴也不要影響各個網路原來的差錯恢復能力。
⑦ 狀態報告:不同的網路有不同的狀態報告,對互連網路還應該提供網路互連的活動信息。
⑧ 路由選擇技術:網內的路徑選擇一般依靠各個網特有的故障檢測和擁擠控制技術。而互連網路應提供不同網路之間進行路徑選擇的能力。
⑨ 用戶訪問控制:不同的網路有不同的用戶訪問控制方法,用於管理用戶對網路的訪問許可權。互連網路需要具有對不同的用戶訪問許可權的控制能力。
⑩ 連接和無連接服務:不同的網路可能提供面向連接的服務,也可能提供無連接的數據報服務。互連網路的服務不應該依賴於原來各個網路所提供的服務類型。
當源網路發送分組到目的網路要跨越一個或多個外部網路時,這些性能差異會使得數據包在穿過不同網路時產生很多問題。網路互連的目的就在於提供不依賴於原來各個網路特性的互連網路服務。
2. 網路互連的層次
不同目的的網路互連可以在不同的網路分層中實現。由於網路間存在不同的差異,也就需要用不同的網路互連設備將各個網路連接起來。根據網路互連設備工作的層次及其所支持的協議,可以將網間設備分為中繼器、網橋、路由器和網關,如圖10.1所示。
(1)物理層
用於不同地理范圍內的網段的互連。通過互連,在不同的通信介質中傳送比特流,要求連接的各網路的數據傳輸率和鏈路協議必須相同。
工作在物理層的網間設備是中繼器、集線器。
用於擴展網路傳輸的長度,實現兩個相同的區域網段間的電氣連接。它僅僅是將比特流從一個物理網段復制到另一個物理網段,而與網路所採用的網路協議(如TCP/IP、IPX/SPX、NETBIOS等)無關。物理層的互連協議最簡單,互連標准主要由EIA、ITU-T、IEEE等機構制定。集線器就是多埠的中繼器。
(2)數據鏈路層
用於互連兩個或多個同一類型的區域網,傳輸幀。工作在數據鏈路層的網間設備是橋接器(或橋)、交換機。
橋可以將兩個或多個網段互連,如果信息不是發向橋所連接的網段,則橋可以過濾掉,避免了網路的瓶頸。區域網的連接實際上是MAC子層的互連,MAC橋的標准由IEEE802的各個分委員會開發。
(3)網路層
主要用於廣域網的互連中。網路層互連解決路由選擇、阻塞控制、差錯處理、分段等問題。
工作在網路層的網間設備是路由器、第三層交換機。
路由器提供各種網路間的網路層介面。路由器是主動的、智能的網路結點,它們參與網路管理,提供網間數據的路由選擇,並對網路的資源進行動態控制等。路由器是依賴於協議的,它必須對某一種協議提供支持,如IP、IPX等。路由器及路由協議種類繁多,其標准主要由ANSI任務組X3S3.3和ISO/IEC工作組TC1/SC6/WG2制定。
(4)高層
用於在高層之間進行不同協議的轉換,它也為最復雜。工作在第三層以上的網間設備稱為網關,它的作用是連接兩個或多個不同的網路,使之能相互通信。這種「不同」常常是物理網路和高層協議都不一樣,網關必須提供不同網路間協議的相互轉換。最常見的如將某一特定種類的區域網或廣域網與某個專用的網路體系結構相互連接起來。
10.1.3 網路互連的類型
網路互連可分為LAN-LAN、LAN-WAN、LAN-WAN-LAN、WAN-WAN四種類型。
1. LAN-LAN
LAN互連又分為同種LAN互連和異種LAN互連。同構網路互連是指符合相同協議區域網的互連,主要採用的設備有中繼器、集線器、網橋、交換機等。而異構網的互連是指兩種不同協議區域網的互連,主要採用的設備為網橋、路由器等設備。LAN互連如圖10.2所示。
2. LAN-WAN
是目前常見的方式之一,用來連接的設備是路由器或網關,具體如圖10.3所示。
3. LAN-WAN-LAN
這是將兩個分布在不同地理位置的LAN通過WAN實現互連,連接設備主要有路由器和網關。
4. WAN-WAN
通過路由器和網關將兩個或多個廣域網互連起來,可以使分別連入各個廣域網的主機資源能夠實現共享。
10.1.4 網路互連解決方案
網路互連是網路層需要解決的問題。網路互連可以採用面向連接的和面向非連接的兩種解決方案。
1. 面向連接的解決方案
面向連接的解決方案要求兩個節點在通信時建立一條邏輯通道,所有的信息單元沿著這條邏輯通道傳送。路由器將一個網路中的邏輯通道連接到另一個網路中的邏輯通道,最終形成一條從源節點至目的節點的完整通道。
如圖10.4所示,主機A和主機B通信時形成了一條邏輯通道。該通道經過網路1、網路2和網路4,並利用中間系統I和中間系統M連接起來。一旦通道建立起來,主機A和主機B之間的信息傳輸就會沿著該通道進行。面向連接的解決方案要求互聯網中的每一個物理網路(如圖10.4中的網路1、網路2、網路3和網路4)都能夠提供面向連接的服務,但這樣的要求在實際中是不現實的。
2. 面向非連接的解決方案
在面向非連接的解決方案中主機A和主機B之間通信時並不需要建立邏輯通道。網路中的數據單元獨立對待,這些數據單元經過一系列的網路和路由器,最終到達目的節點。
如圖10.5所示為一個面向非連接的解決方案示意圖。當主機A需要發送一個數據單元D1到主機B時,主機A首先進行路由選擇,判斷D1到達主機B的最佳路徑。如果它認為D1經過路由器I到達主機B是一條最佳路徑,那麼主機A就將數據單元D1投遞給路由器I。路由器I收到主機A發送的數據單元D1後,根據自己掌握的路由信息為D1選擇一條到達主機B的最佳路徑,從而決定將D1傳遞給路由器M還是K。這樣,D1經過多個路由器的中繼和轉發,最終到達目的主機B。如果主機A需要發送另外一個數據單元D2到達主機B,那麼主機A同樣需要對D2進行路由選擇。由於網路設備對每一個數據單元的路由選擇是獨立進行的,所以,數據單元D2到達目的主機B可能經過了一條與D1完全不同的路徑。
目前流行的互聯網就是採用了面向非連接的解決方案。
IP協議是面向非連接的互聯網解決方案中最常用的協議。支持IP協議的路由器稱為IP路由器,IP協議處理的數據單元叫做IP數據報
❸ IP指的是什麼
IP是Internet Protocol(網際互連協議)的縮寫,是TCP/IP體系中的網路層協議。
IP是整個TCP/IP協議族的核心,也是構成互聯網的基礎。
IP位於TCP/IP模型的網路層(相當於OSI模型的網路層),對上可載送傳輸層各種協議的信息,例如TCP、UDP等;對下可將IP信息包放到鏈路層,通過乙太網、令牌環網路等各種技術來傳送。
(3)異構網路如何互連擴展閱讀
IP地址的結構:
1、網路地址
網路地址可用來識別設備所在的網路,網路地址位於IP地址的前段。
當組織或企業申請IP地址時,所獲得的並非IP地址,而是取得一個唯一的、能夠識別的網路地址。同一網路上的所有設備,都有相同的網路地址。IP路由的功能是根據IP地址中的網路地址,決定要將IP信息包送至所指明的那個網路。
2、主機地址
主機地址位於IP地址的後段,可用來識別網路上設備。同一網路上的設備都會有相同的網路地址,而各設備之間則是以主機地址來區別。
由於各個網路的規模大小不一,大型的網路應該使用較短的網路地址,以便能使用較多的主機地址;反之,較小的網路則應該使用較長的網路地址。為了符合不同網路規模的需求,IP在設計時便根據網路地址的長度,設計與劃分IP地址。
❹ 實現異構網路的互聯互通用相同網路好還是中間設備好
登錄
首頁
學習
實踐
活動
工具
TVP
越陌度阡
677 篇文章
關注
計算機網路之網路層-網路互連與網路互連設備
2020-11-26 11:33:48閱讀 4060
1. 異構網路互連
異構網路:主要是指兩個網路的通信技術和運行協議的不同。 例如:WIFI和網線等。
異構網路互連的基本策略:
(1). 協議轉換
採用一類支持異構網路之間協議轉換的網路中間設備嘩胡,來實現 異構網路之間數據分組的轉換與轉發。 例如:交換機或者是多協議路由器。
(2). 構建虛擬互聯網路
在異構網路基礎上構建一個同構的虛擬互聯網路。
2. 路由器
路由器:最典型的網路層設備,具有多個輸入埠和多個輸出埠的專用計算機, 主要任務就是獲取與維護路由信息以及轉發分組。
路由器從功能體系結構角度:
(1). 輸入埠
輸入埠:查找,轉發,到達分組, 緩存排隊功能。
(2). 交換結構
交換結構:完成具體的轉發工作,將輸入埠的IP數據報交換到指定的輸出埠。
主要包括:
A. 基於內存交換 ,性能最低,路由器亂早攔價格最便宜。
B. 基於匯流排交換
C. 基於網路交換,性能最高,路由器價格昂貴。
(3). 輸出埠
輸出埠:緩存排隊,從隊列中取出分組進行數據鏈路層數據幀的封裝,發送。
調度策略:
A. 按先到先服務(FCFS)調度;
B. 按優先順序調度;
C. 按IP數據報的服務類型調度。
(4). 路由處理器
A. 執行命令;
B. 路由協議運睜悉行;
C. 路由計算以及路由表的更新和維護。
❺ 異構網路的異構網路模型
圖2.1給出了一種異構網路模型。不同類型的網路,通過網關連接到核心網,最後連接到Internet網路上,最終融合成為一個整體。異構網路融合的一個重要問題是這些網路以何種方式來進行互連,為異構無線網路資源提供統一的管理平台。為了說明異構網路的融合結構,這里給出一種特定的異構網路場景,它是由無線廣域網(Wireless Wide Area Network,WWAN)(例如CDMA2000)和WLAN(例如IEEE802.11)組成的異構網路系統,如圖2.2所示。
一個CDMA2000網路可以分成無線接入網(Radio Access Network,RAN)和核心網路(Core Network,CN)兩部分。RAN包括一些無線技術實體,如基站控制器(Base Station Controller,BSC)和基站收發設備(Base Transceiver Station,BTS),來負責無線資源的管理。CN通常包括移動交換中心(Mobile Switching Center,MSC)來實現電路交換方式、分組數據服務節點(Packet Data Serving Node,PDSN)來實現包交換方式和網路交互功能(Inter-working Function,IWF)來為包交換和電路交換提供連接。CN負責呼叫管理和建立連接。在WLAN中,移動終端(Mobile Terminals,MTs)和接入點(Access Point,AP)之間進行通信。AP在WLAN中實現物理和數據鏈路層的功能,也充當無線路由器來執行網路層的功能,為WLAN與其他網路提供連接。
在如圖2.2中異構網路的融合結構中,通常有三種類型的融合方案,分別是松耦合結構、緊耦合結構、超緊耦合結構。接下來分別介紹這三種耦合結構。
超緊耦合是通過連接到相同的BSC上與不同的無線接入技術(Radio Access Technology,RAT)進行融合。網路的狀態信息是局部的,不需要通過額外的請求來獲得信息,可以應用在當網路之間是重疊覆蓋的情況下。與其他的耦合方案相比,超緊耦合方案的切換時延很短,因為中間涉及到的網路實體少。但是由於這兩種RAT完全不同,因此實現超緊耦合方式就需要對應用在BSC上的處理過程進行很多修改。
在緊耦合結構中,不同的RATs通過CN進行融合,耦合結點可以是MSC或者PDSN。在圖2.2中,MSC或者PDSN都是負責WWAN和WLAN的連接管理、認證和定價,因此WLAN路由器需要實現相關的WWAN協議。與超緊耦合相比,這個系統僅需要對現有接入網路進行很小的修改,因此它非常容易實現。與超緊耦合相比,在切換過程中,由於涉及到很多網路的實體,因此這種方案的VHO時延增加了。
在松耦合的異構網路中,MSC與WLAN都經過通用介面與公共的Internet進行交互信息,來保持服務的連續性。但是由於每個網路需要執行網路的連接和會話的激活過程,因此這種方案執行切換時會導致時延很大。
對於超緊耦合和緊耦合方式的異構網路融合結構中,網路選擇演算法通常可以安排在耦合節點上,即分別是BSC和CN。但是對於松耦合方式,網路選擇演算法可以應用在移動終端。